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Abstract

In computational pathology, multi-gigapixel whole slide

images (WSIs) are typically divided into small patches be-

cause of their extremely large size and memory require-

ments. However, following this strategy, one risks losing

visual context which is very important in the development

of machine learning models aimed at diagnostic and prog-

nostic assessment of WSIs. In this paper, we propose a novel

graph convolutional neural network based model (called

Slide Graph) which overcomes these limitations by build-

ing a graph representation of the cellular architecture in an

entire WSI in a bottom-up manner. We evaluate Slide Graph

for prediction of the status of human epidermal growth fac-

tor receptor 2 (HER2) and progesterone receptor (PR) ex-

pression from WSIs of H&E stained tissue slides of breast

cancer. We demonstrate that the proposed model outper-

forms previous state-of-the-art methods and is more com-

putationally efficient. The proposed paradigm of WSI-level

graphs can potentially be applied to other problems in com-

putational pathology as well.

1. Introduction

Histopathology slide examination under the microscope

by a pathologist is considered the gold standard for can-

cer diagnosis and determining treatment options for a pa-

tient. In recent years, digital pathology has revolutionized

the clinical practice of pathology through the use of slide

scanners to create multi-resolution multi-gigapixel whole

slide images (WSIs). Increasing adoption of WSIs for rou-

tine diagnosis has also given rise to the new discipline of

computational pathology, which aims at the development

of machine learning and artificial intelligence techniques to

automatically analyse WSIs [1, 2, 3]. These tools can im-

prove pathology workflow by providing a more objective

and reproducible results, leading to better patient care [4, 5].

A major limitation of existing methods in computational

pathology [6, 7, 8] stems from the computational complex-

ity associated with whole slide images. Training a deep

learning network on entire WSIs at full resolution is compu-

Figure 1. The proposed Slide Graph Model vs. conventional meth-

ods.

tationally intractable as the size of WSIs at the highest res-

olution can be up to 150,000×100,000 pixels. Typically, a

two-step approach is used to deal with WSIs of such a large

size (Fig. 1) [9, 10]. First, the image is sub-divided into

small patches, where each patch is processed independently

in the neural network [8]. Then, the predicted scores for

each patch within a WSI are aggregated, usually by combin-

ing (pooling) their results with various aggregating strate-

gies such as average pooling, max pooling1 and majority

1Here, pooling refers to the aggregation of multiple predictions, not

down-sampling
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voting [11, 12, 13].

The use of patch-level analysis leads to two major prob-

lems. First, patches provide a limited visual context. The

optimal resolution and patch size for analysis are highly

problem-dependent [7]. Under a specific patch size, patches

drawn at a high magnification level lead to less contextual

and spatial information whereas patches at lower magnifica-

tion levels may not capture cell-level features (see patches

in Fig. 1). Consequently, a patch-level machine learning

method cannot capture the overall organization and struc-

ture of the tissue in a WSI. Secondly, in most prediction

problems in computational pathology, only WSI-level la-

bels are often available and it is non-trivial to model the

association of different patches with a target class. Weakly

supervised machine learning methods such as Multiple In-

stance Learning (MIL) have been proposed to alleviate in-

complete knowledge about labels of training patches and

aggregates patch level predictions into WSI level classifica-

tion. [14, 15, 16, 17]. However, these methods are unable

to model the geometric structure of the tissue at both global

and local levels.

The cell-graph technique [18, 19, 20] was introduced to

learn the structure-function relationship by modeling geo-

metric structure of the tissue using graph theory. It is based

on the assumption that cells in a tissue can organize in a

certain way for specific functional states, such as recep-

tor status in computational pathology. Such cell-graph can

have different types, such as Delaunay Triangles [21, 22],

Voronoi Diagrams, Minimum Spanning Trees (MST), and

Cell Cluster Graphs (CCG) [23]. Yener in [24] explored

various cell-graph constructions to establish a quantitative

relationship between the geometric structure and functional

states. Cell-graph constructions have been successfully

used to characterize spatial proximty of histopathologic

primitives in tasks, such as survival prediction in lung can-

cer [25], risk categories prediction in breast cancer [26], dis-

tant metastasis prediction in colorectal cancer [27]. How-

ever those graph-based methods with deep learning classi-

fiers were all trained on a per-patch basis which have lim-

ited visual context. Extra patch-based voting methods are

necessary to assess the functional state of a given WSI.

In this paper, we propose a graph-based model called

Slide Graph to handle these limitations of existing meth-

ods. Instead of extracting small patches from the WSI and

doing analysis on a limited visual field for prediction, we in-

troduce a pipeline which constructs a graph from the nuclei-

level to the entire WSI-level (Fig. 1). A graph convolutional

neural network is then used for WSI-level prediction. This

method accounts for both cell-level information and contex-

tual information by modelling cellular architecture and in-

teractions in the form of a graph. We demonstrate the effec-

tiveness of the proposed scheme on two clinically relevant

prediction problems in computational pathology: prediction

of the status of human epidermal growth factor receptor 2

(HER2) and progesterone receptor (PR) from breast cancer

hematoxylin and eosin (H&E) stained whole slide images.

Overall, our main contributions in this paper can be sum-

marized as follows:

• To the best of our knowledge, Slide Graph is the first

method which can generate slide-level predictions by

using a graph representation of the cellular intercon-

nection geometry in a whole slide image.

• Slide Graph makes use of nuclei type and region fea-

tures to represent the complex organization of cells and

the overall tissue micro-architecture. The proposed

network outperforms the state-of-the-art methods by a

significant margin in HER2 and PR status prediction.

• Slide Graph is computationally more efficient than

patch-based models and opens the avenue of using

WSI graph representations for solving other problems

in computational pathology as well.

2. Problem Formulation

Development of machine learning models that can cap-

ture tissue micro-architecture and geometry to generate

WSI-level label predictions is an open problem in com-

putational pathology. A typical machine learning prob-

lem in computational pathology involves a training dataset

{(xi, yi)|i = 1...M} of M WSIs xi each with a label

yi ⊂ {0,+1}. The objective is then to develop a ma-

chine learning model such as a neural network based deci-

sion function f (xi; θ), parameterized by its weight param-

eters θ, that can predict the label for unseen cases. In this

paper, we consider two prediction problems: prediction of

status of HER2 and PR from H&E stained images. HER2

is a growth-promoting biomarker/protein that helps breast

cells grow, divide, and repair themselves and breast can-

cer cells that over-express HER2 are called HER2-positive.

HER2-positive breast cancers tend to grow and spread faster

than HER2-negative cancers, but are much more likely to

respond to treatment with specific drugs [28, 29]. Simi-

larly, PR is a valuable prognostic biomarker for determining

survival, drug response and progression [30, 31]. Conven-

tionally, immunohistochemistry (IHC) markers are used for

determination of HER2 and PR status [32]. To the best of

our knowledge, Kather et al. in [33] are the first to pro-

pose a deep learning method to predict hormone receptor

status from routine H&E WSIs. However, like other exist-

ing approaches in computation pathology, their method is

also based on patch-level prediction. As discussed below,

we overcome these limitations using a graph-based method

that can capture cellular organization and geometry in tissue

slides – the so-called histology landscape at the entire WSI

level.



Figure 2. Workflow of proposed Slide Graph for graph classification. Four steps are needed: nuclear segmentation and classification;

spatial clustering; graph construction and GCN.

3. The Proposed Method

The proposed Slide Graph method first builds a graph

representation Gi = G (xi) of a WSI and then uses a graph

convolutional neural network to generate slide level predic-

tions f (G(xi; θ)). It consists of four steps (Fig. 2): first,

we use HoVer-Net [34] to perform simultaneous nuclear

segmentation and classification and extract nuclear features.

Second, we use spatial clustering to group a set of spatially

neighboring nuclei into clusters. Third, we develop a graph

representation of the clusters to capture cellular topology of

the WSI. Lastly, the graph built on the entire WSI is taken as

an input to a graph convolutional neural network to predict

receptor status at the WSI-level. Below, we present details

of each of these steps.

3.1. Nuclear Segmentation and Classification

In order to construct a graph representation of the en-

tire WSI, we first use HoVer-Net [34] to localize nuclei and

predict their types. HoVer-Net is a convolutional neural

network for simultaneous nuclear segmentation and classi-

fication. This network leverages instance-rich information

encoded within vertical and horizontal distances of nuclear

pixels to their centres of mass and achieves accurate seg-

mentation even in areas with overlapping instances. We

train HoVer-Net on the PanNuke dataset [35], which con-

sists of 19 different tissue types, and then predict the fol-

lowing nuclei categories: neoplastic; non-neoplastic epithe-

lial; inflammatory; connective tissue and dead. For a given

WSI, this results is a set of N nuclei P = {pj|j = 1...N}
with nuclear centroids at pj in conjunction with the type

and morphological features of each nucleus. This set is then

used for graph construction (see Algorithm 1).

3.2. Spatial clustering

A single WSI can contain hundreds of thousands of nu-

clei. In this paper, we use Agglomerative clustering [36] to

group spatially neighboring nuclei into clusters to reduce

the computational cost of downstream analysis. Specifi-

cally, we select a random subset R ⊆ P of up to 10,000 nu-

clei for agglomerative clustering using Euclidean distance



metric with average linkage. This is done such that cluster

agglomeration takes place up to a minimum distance thresh-

old of dmin = 500-pixel units. This results in a set of K

clusters represented by the set C = {ck|k = 1...K} with

each pj ∈ R assigned to exactly one cluster. We then use

the nearest neighbor rule [37] to assign all points in P to

clusters in C, i.e., each point pj is assigned the cluster mem-

bership of its nearest neighbor in R. This results in spatial

clustering of all nuclei in a given WSI.

3.3. Graph construction

In this step, we construct a global planar graph represen-

tation G = (V,E) [38, 39, 40] of a given WSI. For this

purpose, we treat each cluster c ∈ C as a node to construct

a vertex set V = {vc|c ∈ C} such that each node is repre-

sented by the cluster’s geometric center gc = 1
|c|

∑

pj∈c pj

and a feature vector hc based on the type and morphology

of its constituent nuclei. Specifically, in each cluster, we use

the count of the six nuclei types and the standard deviation

of nuclear sizes as features to capture local cellular hetero-

geneity. The edge set E ⊆ V × V represents a finite set of

edges between nodes. In order to capture communication

patterns between components of the tissue, the edge set is

constructed by using Delauney triangulation based on the

geometric coordinates of cluster centers with a maximum

distance connectivity threshold of dmax = 4, 000 pixels

chew1989constrained. This results in a planar graph, i.e.,

no two edges in the graph intersect each other. The relation-

ship between distant nodes can be modeled by the structure

of the graph neural network itself.

3.4. WSI graph visualization

In order to understand the ability of WSI-level graphs

to capture tissue architecture and their predictive power for

WSI-level prediction of receptor status, we used Principal

Component Analysis (PCA) [41] over node level features

to visualize differences between HER2+ and HER2- WSIs.

Specifically, PCA is first used to reduce node feature dimen-

sionality from 7 to 3 and then a false color representation of

each node is generated based on its PCA coefficients. This

results in a WSI level graph visualization in which the color

of each node is based on its node features whereas the lo-

cation of the node represents its geometric center. Fig. 3

shows the results of this visualization for 5 HER2- (top row)

and 5 HER2+ (bottom row) WSIs. Despite the use of un-

supervised PCA, one can observe clear differences in the

graphs of the two classes: note the prevalence of red areas

in HER2+ WSIs and blue areas in HER2- WSIs. This sup-

ports the overall idea of using WSI level graphs for machine

learning problems in computational pathology proposed in

this work.

Algorithm 1: WSI Graph Construction.

INPUT: A set of N nuclei P = {pj|j = 1...N} detected

in a given WSI - each represented by its spatial coordi-

nates pj.

OUTPUT: Graph representation G = (V,E) of the WSI.

PARAMETERS:

n = 10, 000, dmin = 500, dmax = 4, 000
STEPS:

1: Select a random subset R ⊆ P of up to n nuclei

2: Perform agglomerative clustering based on R using

Euclidean distance metric with average linkage. This is

done such that cluster agglomeration takes place up to a

minimum distance threshold dmin. This results in a set

of K clusters represented by the set C = {ck|k = 1...K}
with each pj ∈ R assigned to exactly one cluster.

3: Each point pj ∈ P is assigned the cluster membership

of its nearest neighbor in R.

4: Compute the geometric center gc of each cluster set

c ∈ C, i.e., without introducing further notation, gc =
1
|c|

∑

pj∈c pj.

5: Compute a feature representation hc of each cluster

c ∈ C based on type and morphology of its constituent

nuclei.

6: Construct a vertex set V for the given WSI consisting

of nodes vc = (hc,gc) ∈ V .

7: Use Delauney triangulation to construct the edge set E

based on geometric centers of clusters gc in the WSI with

a maximum connectivity distance threshold of dmax.

3.5. Graph Isomorphic Neural Networks

After constructing WSI graphs, the task of WSI-level la-

bel prediction can be considered as a graph classification

problem. We use a graph convolutional neural network

(GCN) with graph isomorphic network convolutional (GIN-

Conv) layers [42] for this purpose. The GCN can be used

to generate predictions for an input graph representation G

of a given WSI. The underlying structure of GINConv lay-

ers is based on the Weisfeiler-Lehman graph isomorphism

test [43] which makes them particularly effective for graph

classification [44], specially for problems in computational

pathology as local cellular architecture in WSIs may be in-

variant to translation and rotational changes. The GCN

used for WSI-level classification in the proposed method

can be considered as a mechanism for learning progres-

sively abstract representations of node level features based

on their local neighborhood through message passing be-

tween neighboring nodes. Mathematically, the output fea-

ture representation of a GINConv layer l in the GCN for a

given node k in the input graph can be represented by:



Figure 3. Visualization of nodes’ features. Top row: HER2 negative; Bottom row: HER2 positive.

hk
(l) = Hθl

(l)

(

(

1 + ε(l)
)

· hk
(l−1) +

∑

u∈Nk

hu
(l−1)

)

,

(1)

Here, h
(l)
k is the feature vector of node k at the l-th con-

volutional layer, Nk denotes the neighbourhood of node k,

i.e., Nk = {c ∈ V : (c, k) ∈ E}, and ε is a scalar parameter

that determines the local impact of a node. H
(l)
θl

represents

a multi-layer perceptron (MLP) that learns a non-linear fea-

ture transformation at the node level for the l-th layer with

weight parameters θl. At the input layer (l = 0), the net-

work takes node level features discussed above as input, i.e.,

hk
(0) = hk. The GCN produces a graph-level prediction

score f(G(x)) by using a readout layer that essentially ac-

cumulates node level feature representations through sum-

mation. The MLP weights in each layer are tuned through

backpropogation of gradients over a weighted cross-entropy

loss function [45] between model predictions and training

labels. In this work, we use two GINConv layers (l = 2)

which have 16 and 8 neurons respectively. The correspond-

ing MLP is set as linear → RELU → linear → BN (batch

normalization) → RELU. ε is a trainable parameter which

is updated though the learning process.

3.6. Implementation and hyperparameter setting

The proposed Slide Graph is implemented 2 using Py-

Torch Geometric (PyG) [46] [47]. For training, we use

adaptive momentum based optimization (Adam [48]) with

the learning rate of 5e−4 and a weight decay 1e−4.

2The code can be obtained via email request or something to that effect.

3.7. Performance Evaluation and Comparison

In order to compare with state-of-the-art methods [33],

we evaluate the performance of our proposed network on

the same H&E stained cohurt from The Cancer Genome

Atlas in breast cancer (TCGA-BRCA) [49]. This dataset to-

tally has 709 WSIs. Among them, in HER2 status differen-

tiation, there are 608 HER2 negative and 101 HER2 positive

images while in PR status differentiation, 452 PR positive

and 256 PR negative images are included. In order to deal

with the imbalance between the classes in the datasets, we

use a weighted cross-entropy loss function where the mi-

nority class is assigned a large weight in the loss function.

We use the area under the receiver operating characteristic

curve (AUC-ROC) as a performance metric. We used three

stratified fold cross-validation for a direct comparison with

two patch-based classification methods which are explained

below [33, 50].

3.7.1 Method 1

To the best of our knowledge, Kather et al. [33] is the first

and only publication to propose a deep learning method to

predict HER2 status from H&E stained tissue images. This

work uses a pretrained ShuffleNet to learn the patch based

features. During the training and testing process, only 1000

patches are randomly selected from each WSI. The patient

cohort is randomly split in three parts in the way that each

part contained approximately the same number of patients

with each label. These three parts of the patient cohort were

then used for three-fold patient-level cross-validation. The
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Figure 4. AUC-ROC using different methods (Left column: deep learning based model proposed in [50]; right: our proposed Slide Graph)

for HER2 (top row) and PR (bottom row) status prediction.

area under the receiver operating characteristic curve (AUC-

ROC) achieved is 0.62 for HER2 and 0.73 for PR status

prediction [33].

3.7.2 Method 2

This work is our own implementation of the deep learning

based model originally published by Kather et al. [50] for

the prediction of microsatellite instability in colorectal can-

cer patients. A pretrained ResNet18 has been used to learn

image based features from the non-overlapping square tiles

of each whole slide image. The trained model gives a score

to each tile and then a majority voting based aggregation

method is finally used to obtain a whole slide prediction.

We use this model as a baseline method to predict receptor

status for model comparison.

4. Results and Discussion

The results of three fold cross-validation over both pre-

diction problems are given in Table 1 and Fig. 4. The cur-

rently published state of the art method by Kather et al. [33]

gives three-fold cross-validation mean AUC-ROC scores of

0.62 and 0.73, for HER2 and PR status prediction, respec-

tively3. The proposed Slide Graph model gives better pre-

dictive performance in comparison to the existing state of

the art by a significant margin: 0.62 to 0.73 in HER2 and

0.73 to 0.75 in PR status prediction. In addition, compar-

ing with the method in [50], our proposed model succeeds

with higher AUC-ROC score and smaller standard devia-

tion, which illustrates the stability of our proposed method.

The confusion matrices for the two classification problems

are given in Table 2.

Table 1. AUC-ROC using different models on HER2/PR status

prediction (Mean ± Standard deviation).

AUC-ROC HER2 PR

Method 1 [33] 0.62 0.73

Method 2 [50] 0.68 ± 0.06 0.66 ± 0.06

Slide Graph 0.73 ± 0.02 0.75 ± 0.03

We have also compared the computational efficiency of

patch-based and the proposed Slide Graph models using a

single NVIDIA TITAN RTX GPU. Once the patches and

3ROC curves and standard deviation values are not reported in [33].



Table 2. Confusion matrix for receptor status prediction. Top:

HER2; bottom: PR.

n=231 Predicted negative Predicted positive

True negative 120 77

True positive 7 27

n=236 Predicted negative Predicted positive

True negative 51 34

True positive 31 120

graphs ready from the WSI, the average single fold training

time for the baseline model [50] is 5.3 hours and the testing

time for a WSI is 1.2 seconds from patches to the final pre-

diction whereas Slide Graph training for a single fold takes

3 minutes on average and 0.4 milliseconds to get the label

prediction from a single graph. These results clearly show

that Slide Graph is well suited to predict the receptor status

from H&E stained images by capturing geometric cellular

structure in WSIs.

5. Conclusions

In this paper, we proposed a novel WSI level represen-

tation, termed Slide Graph, that can be easily coupled with

the graph convolutional networks, for label prediction di-

rectly from the WSI. This method can effectively overcome

the drawbacks of patch-based methods by capturing the bio-

logical geometric structure of the cellular architecture at the

entire WSI level. The proposed Slide Graph can effectively

incorporate both cell-level and contextual information by

using nuclear features and graph convolution. Experimental

analysis over clinically important tasks of HER2 and PR re-

ceptor status prediction show that the proposed Slide Graph

method can produce higher accuracy than previous state-

of-the-art techniques. Slide Graph can be applied to other

problems in computational pathology, such as recurrence

and survival prediction.

Acknowledgements

WL, SG, NR and FM are supported by the PathLAKE

digital pathology consortium, which is funded from the

Data to Early Diagnosis and Precision Medicine strand

of the government’s Industrial Strategy Challenge Fund,

managed and delivered by UK Research and Innovation

(UKRI). MB is funded by the UK Medical Research Coun-

cil (No. MR/P015476/1).

References

[1] Thomas J Fuchs, Peter J Wild, Holger Moch, and

Joachim M Buhmann. Computational pathology anal-

ysis of tissue microarrays predicts survival of renal

clear cell carcinoma patients. In International Con-

ference on Medical Image Computing and Computer-

Assisted Intervention, pages 1–8. Springer, 2008. 1

[2] Anant Madabhushi and George Lee. Image analysis

and machine learning in digital pathology: Challenges

and opportunities, 2016. 1

[3] Farzad Ghaznavi, Andrew Evans, Anant Madabhushi,

and Michael Feldman. Digital imaging in pathology:

whole-slide imaging and beyond. Annual Review of

Pathology: Mechanisms of Disease, 8:331–359, 2013.

1

[4] Alexander JJ Smits, J Alain Kummer, Peter C

De Bruin, Mijke Bol, Jan G Van Den Tweel, Kees A

Seldenrijk, Stefan M Willems, G Johan A Offerhaus,

Roel A De Weger, Paul J Van Diest, et al. The esti-

mation of tumor cell percentage for molecular testing

by pathologists is not accurate. Modern Pathology,

27(2):168–174, 2014. 1

[5] Hollis Viray, Kevin Li, Thomas A Long, Patricia Vasa-

los, Julia A Bridge, Lawrence J Jennings, Kevin C

Halling, Meera Hameed, and David L Rimm. A

prospective, multi-institutional diagnostic trial to de-

termine pathologist accuracy in estimation of percent-

age of malignant cells. Archives of Pathology and Lab-

oratory Medicine, 137(11):1545–1549, 2013. 1

[6] Neeraj Kumar, Ruchika Verma, Sanuj Sharma,

Surabhi Bhargava, Abhishek Vahadane, and Amit

Sethi. A dataset and a technique for generalized nu-

clear segmentation for computational pathology. IEEE

transactions on medical imaging, 36(7):1550–1560,

2017. 1

[7] Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao,

James E Davis, and Joel H Saltz. Patch-based con-

volutional neural network for whole slide tissue im-

age classification. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition,

pages 2424–2433, 2016. 1, 2

[8] Hamid Reza Tizhoosh and Liron Pantanowitz. Ar-

tificial intelligence and digital pathology: challenges

and opportunities. Journal of pathology informatics,

9, 2018. 1

[9] Andrew Janowczyk and Anant Madabhushi. Deep

learning for digital pathology image analysis: A com-

prehensive tutorial with selected use cases. Journal of

pathology informatics, 7, 2016. 1

[10] Peter Bandi, Oscar Geessink, Quirine Manson,

Marcory Van Dijk, Maschenka Balkenhol, Meyke

Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee,



Kyunghyun Paeng, Aoxiao Zhong, et al. From de-

tection of individual metastases to classification of

lymph node status at the patient level: the camelyon17

challenge. IEEE transactions on medical imaging,

38(2):550–560, 2018. 1

[11] Angel Cruz-Roa, Ajay Basavanhally, Fabio González,
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