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Abstract

Few of the recent deep learning models for 3D point sets

classification are dependent on how well the model captures

the local geometric structures. PointNet++ model made re-

markable progress in learning local geometric structures

than its predecessor PointNet. It recursively applies Point-

Net on nested partitions of the input 3D point set. Point-

Net++ model was able to extract the local region features

from points by ball querying the local neighborhoods. How-

ever, ball querying is less effective in capturing local neigh-

borhoods of high curvature surfaces or regions. In this pa-

per, we demonstrate improvement in the 3D classification

results by using ellipsoid querying around centroids, cap-

turing more points in the local neighborhood. We extend

the ellipsoid querying technique by orienting it in the direc-

tion of principal axes of the local neighborhood for better

capture of the local geometry. We then take the union of

points grouped by ball querying and ellipsoid querying with

re-orientation to improve the PointNet++ classification re-

sults by 1.1%. Furthermore, we demonstrate the impact

of re-oriented ellipsoid querying on a state-of-the-art ball

query-based model, Relation-Shape Convolutional Neural

Network (RS-CNN), with a 0.8% improvement in classifica-

tion accuracy on ModelNet40 dataset.

1. Introduction

Over the last decade, application of deep neural networks

to the field of computer vision evolved tremendously and

achieved state-of-the-art results for several computer vision

tasks that were previously addressed by traditional com-

puter vision algorithms. Few of the problems which have

received major attention include detection, classification,

tracking, and segmentation of real-world objects for 2D im-

ages as well as 3D datasets.

Convolution Neural Networks(CNNs) have been very

successful with 2D image datasets. Using convolutional fil-

ters, CNNs have achieved better generalization with a re-

duced number of parameters. CNNs could not be applied

Figure 1: Visualization of Input 3D point cloud (green col-

ored points), farthest point sampled (FPS) points (red col-

ored points), ball queried and re-oriented ellipsoid queried

points (blue colored points) at one of the FPS point on a 3D

point cloud object - an airplane.

directly to 3D datasets such as point sets because of their

inability to fit into lattice grids, unlike 2D images. 3D point

sets have several applications in the field of autonomous

driving, robotics, virtual reality applications, large scale 3D

reconstruction, etc. However, extracting features related to

the shape of an object from these point sets is challenging.

3D point sets are an unordered set of points that de-

mand permutation invariance for any learned representa-

tion. Transforming these 3D point sets to any other formats

such as multi-view images or voxels have proven to increase

complexity due to the sparse nature of volumetric datasets

and also would lose valuable inherent geometric features.

Another challenge is how to vary sampling density of the

points from the underlying shape in order to pick points to
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Figure 2: Visualization of ball querying followed by re-oriented ellipsoid querying. (a) Input points (green color) with two

centroid points (red color) (b) Ball query at two centroid points (c) Neighborhood points from ball querying (blue color) (d)

Re-oriented ellipsoid querying at the two centroid points (e) Neighborhood points from ellipsoid querying (blue+pink color).

generate 3D pointsets. Also, varying distribution of the 3D

point sets affects the robustness of the deep networks.

Recent deep neural network models such as PointNet [1]

started a trend in processing raw 3D point cloud data di-

rectly into multi-layer perceptrons (MLPs) and aggregate

global features using max-pooling for object classification

of 3D point sets. This model’s successor, PointNet++ [2]

partitions the input point sets and applies hierarchical struc-

turing to multiple subsets in the form of local neighborhood

captured around a set of points obtained by farthest point

sampling of the input point cloud and then uses MLPs with

max-pooling to extract global features.

Hierarchical structuring is achieved through multiple set

abstraction layers by processing point sets to produce new

but fewer points. Each of these set abstraction layers con-

sists of three layers: sampling, grouping, and pointnet layer.

The sampling layer uses farthest point sampling to select a

set of points called centroids of the local regions from input

points. Using these centroids and the original point sets,

grouping layer finds neighboring points around each of the

centroids capturing the local neighborhood. PointNet layer

encodes local region patterns from the grouped points into

feature vectors using a miniaturized Pointnet model.

Ball querying, defined in the grouping layer, is the cen-

tral idea that captures the local neighborhood around cen-

troids on the object surface. With each centroid point as the

center, a ball of radius r captures the local neighborhood

points. However, a sphere that lacks orientation gets re-

stricted from accessing the maximum overlap of the object

surface. In the case of rolling ball [3], few sample points

could not be reached by the pivoting ball when the curva-

ture of the manifold is more significant than a given thresh-

old. Visualization of grouping in PointNet++, as in figure 1,

shows fewer points captured by ball querying. An increase

in the radius to fetch more points around the centroid would

not improve overall classification accuracy, as we have tried

doing this in our experiments. This is most likely because

points far away from the centroid, not relevant to the local

shape are being picked due to increase in the ball size.

Alternatively, an ellipsoid, due to its shape, gives an ad-

vantage over a sphere if aligned correctly to the local neigh-

borhood. In this paper, we demonstrate how a re-oriented

ellipsoid querying around each of the centroids, increases

the capture of local neighborhoods. Our ellipsoid based

querying has captured more relevant neighborhood points

around a given centroid, as shown in figure 2. With a sam-

ple of two centroids, the ellipsoid with a different orienta-

tion at each centroid captures more points. The points from

the ball query determine the orientation of the ellipsoid.

Following two techniques are our key contributions to

achieve better 3D object classification accuracy for 3D point

sets. First technique queries the neighborhood only once,

while the second technique queries the neighborhood twice:

• Ellipsoid querying: capture points from the input

points around each centroid (sampled points) using el-

lipsoid for better capture of the local neighborhood.

• Re-oriented ellipsoid querying: capture points from

the input points around each centroid using the ball

or ellipsoid querying, compute principal axes from the

captured points, reorient input points and query again

for better capture of the local neighborhood.

2. Related Works

An increase in 3D point sets data has also increased the

focus on learning features from 3D point sets. Volumetric

model [4] has converted these 3D point sets into volumet-

ric grids in order to apply 3D convolution. However, such



conversion would result in the quantization of 3D points

because the 3D grid imposes lower resolution resulting in

quantization loss of the shape. Also, operations on the vol-

umetric grids would result in higher computational costs

mainly because the voxel-based representation of 3D data

is inefficient due to sparse occupancy of the voxels.

Despite the efforts from models such as OctNet [5],

which reduced the problem of sparse voxels, they still faced

higher memory occupancy problems. Deep neural network

models that used voxels as a replacement for 3D point sets

required high-resolution grids in order to keep quality rep-

resentation, suffering a higher memory consumption. Other

approaches [6, 7] that converted 3D data into 2D RGB with

depth image in order to exploit CNNs could not capture

proper geometric relationships between 3D points because

the neighboring pixels in the 2D format could be geometri-

cally away from each other in 3D format.

The PointNet [1] model was a pioneer in using a raw

3D point cloud without incurring any pre-processing over-

head. The model popularized the use of max-pooling in

deep learning models for 3D point set classification. Al-

though max-pooling failed to capture local features, it did

considerably good in capturing global features compared

to average pooling. The idea of using multi-layer percep-

trons (MLP) for 3D classification, originally proposed in

[8] proved to improve the results when combined with max-

pooling in PointNet model. However, neither application

of MLP to individual points nor max-pooling of features

would significantly capture neighborhood information.

Among the models [2, 9, 10] to better capture local

structures, PointNet++ [2] partitions the point sets to pro-

duce common hierarchical structures across the partitions,

and recursively applies pointnet as a local feature learner

to learn contextual representation. In a convolutional set-

ting, the pointnet shares local feature weights. This hier-

archy would segment a given point set into smaller clus-

ters before passing it on to the pointnet. For high di-

mensional features, pointnet is called recursively on these

smaller clusters. PointNet++ also uses max-pooling to ag-

gregate the features and employs single scale, multi-scale,

and multi-resolution grouping methods to extract features.

These methods start from small local regions and extend to

more significant regions or use different resolutions of the

regions to extract features. Max-pooling in PointNet and

PointNet++ limits PointNet’s ability to examine the contex-

tual neighborhood structure of the points.

PointGrid [11] uses less memory compared to volumet-

ric models and proposes an integrated point and grid hybrid

3D convolutional network model to represent the local ge-

ometry shape details better. Models such as [10], which

mined local structures, captured additional information of

neighborhood point’s type. E.g., if a given point is a corner

point or a convex point or a concave point or a planar point.

Use the concept of kernel correlation to measure the geo-

metric affinity of point sets. Construct k-nearest neighbor

graphs to utilize neighborhood information. On each of the

node’s neighborhood, they recursively apply max-pooling

with the insight that local points share similar geometric

structures improving results compared to PointNet.

To exploit surface deformations, a geometric approach

[12] uses different ways of applying convolution opera-

tions to point sets, especially to local regions called patches.

PointCNN [13] transforms the input points using a X -

operator. PointCNN simultaneously weighs and permutes

the input features associated with the points generalizing

CNNs. Although SPLATNet [14] loses geometric informa-

tion, it applies bilateral convolution to an input point cloud

with sparse and efficient lattice filters and computes hierar-

chical and spatially-aware features.

PCNN [15] uses an extended version of volumetric con-

volution on the point cloud, providing a flexible framework.

PCNN maintains the point cloud format and extend it over

an ambient space into a continuous volumetric function.

Deep parametric continuous CNNs [16] introduced a new

learnable operator called parametric continuous convolu-

tion. Its deep neural network is based on computable re-

lations among points, but the network does not explicitly

learn from local to global like classic CNN.

PointConv[17] performs convolution on 3D pointsets by

using non-uniform sampling and then compensates by using

a technique called PointConv, which uses an inverse density

scale in order to re-weight the continuous function learned.

PointCNN[13] is unable to achieve the desired permutation-

invariance, for point clouds. Deep kd-network models such

as [18] achieve results comparable to PointNet++[2] but are

memory inefficient mainly because they depend upon parti-

tioning the bounding volume instead of partitioning the lo-

cal geometric shape. PointWeb [19] uses the interaction be-

tween points in each local neighborhood region by exhaus-

tively capturing context information between all point pairs.

Although Dynamic Graph Convolutional Neural Networks

(DGCNNs) [20] captures better local geometric features by

an innovative approach called EdgeConv, in many cases, it

is unreliable in maintaining permutation invariance.

The geometry sharing method [21] uses the Eigende-

composition of grouped points. However, it restricts itself

to the Eigendecomposition of points queried by the kNN

method with fixed k value. For ball querying, the number

of points in each group varies, making it challenging to pro-

cess. State-of-the-art models such as Relation Shape CNN

[22] learn geometric topology constraint among points and

DensePoint [23] learns sufficient contextual semantic infor-

mation to get the grasp of the elusive shape of an object.

Structural Relation Network model [24] processes the sub

cloud features twice to reason between geometrical and re-

lational features.



Figure 3: Visualization of ball, random ellipsoid and re-oriented ellipsoid with the centroid (xj , yj , zj), given a = 2r and b =

c = r. The red point is the centroid, blue points are ball queried points, blue+brown points are queried by random orientation

ellipsoid, and blue+brown+pink points are captured by re-oriented ellipsoid. A random orientation ellipsoid represented by

dashed lines captures lesser points unless its orientation is the same as the re-oriented ellipsoid (Best viewed in color).

Since the inception of PointNet++, several models have

attempted to capture local geometry of 3D objects. How-

ever, the idea of capturing local geometry using geometric

shapes such as ellipsoid instead of using a ball sphere was

unexplored. Our paper focuses on enhancing the geomet-

rical aspect of capturing local geometry of objects by in-

vestigating the impact of ellipsoid based querying on the

3D point set for 3D object classification. The idea is to

exploit the ellipsoid’s re-orientation capability compared to

the uniform ball based querying, capturing more geometri-

cally meaningful points from the local neighborhood.

3. Our Method

A point (xi, yi, zi) is selected from the input point set

xyz1, if it lies on or within the surface of the ball sphere

with radius r and center (xj , yj , zj) (from the farthest point

set xyz2). Euclidean distance dsi of the point from the cen-

ter of the sphere is calculated using equation 1. When this

distance dsi is less than 1, the point is within the sphere, and

if the distance is equal to 1, then the point is on the surface

of the sphere. Such a point(xi, yi, zi) with distance dsi less

than or equal to 1 is selected.

dsi =

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

r2
(1)

Similarly, a point (xi, yi, zi) from the input point set

xyz1 within the volume of the ellipsoid with axis-lengths

a, b, c and center (xj , yj , zj) (from the farthest point set

xyz2) is selected by calculating the distance dei of the point

from the ellipsoid center using equation 2. All those points

whose distance value dei from the center of the ellipsoid is

less than 1 are within the ellipsoid and equal to 1 are on the

surface of the ellipsoid. Such a point with distance dei less

than or equal to 1 is selected.

dei =

√

(xi − xj)2

a2
+

(yi − yj)2

b2
+

(zi − zj)2

c2
(2)

The phrase “re-orientation of ellipsoid” is used, though

in reality the input points are rotated around the centroid

point. Using the ellipsoid formula (equation 2) these rotated

points are captured if they are within the ellipsoid. The ro-

tation matrix required to re-orient the ellipsoid in the prin-

cipal direction of the local neighborhood points Gj(x, y, z)
is obtained from the Eigenvectors of the co-variance ma-

trix cov(x, y, z)j , computed from the unique point sets

Nj(x, y, z) obtained by ball querying the local neighbor-

hood. After re-orientation of the ellipsoid using the rotation

matrix, the neighborhood is queried again enriching the lo-

cal neighborhood capture.

Choosing ellipsoid semi-axis lengths comparable with

the radius of the sphere ball, we first demonstrate an im-

provement in overall classification accuracy of the Point-

Net++ single scale model. Taking the improvement in ac-

curacy as motivation, we then propose our method to re-

orient the ellipsoid to capture maximum local neighbor-

hood. We take union of local points captured from both

queries. Each centroid point (xj , yj , zj) is used twice to

query points around it. The first query is either a ball or

an ellipsoid query whereas the second query is always a re-

oriented ellipsoid query.

Figure 3 shows the surface area of a 3D object that over-

laps the ellipsoid volume is greater than or equal to the sur-

face area overlapping the volume of the sphere. This is true

when we assume both the sphere and the ellipsoid are cen-

tered at the same point (xj , yj , zj). Also, at least two of

the axis-lengths of the ellipsoid are less than or equal to the

radius of the sphere irrespective of the ellipsoid orientation.

We keep this assumption of b=c=r and a=2r, where r is the



Figure 4: Ellipsoid querying for grouping in detail: Points selected by ellipsoid querying are used to create a co-variance

matrix. Eigenvectors are calculated from the co-variance matrix to derive a rotation matrix. Ellipsoid is re-oriented using

rotation matrix to re-capture more points. An union of points obtained by querying the local neighborhood twice is processed

by pointnet. More captured points (blue color) are visible on the bottom rightmost airplane (Best viewed in color).

radius of the sphere, in defining the axis-lengths of the ellip-

soid. For example as in figure 3, if the radius of the sphere

is r = 0.2 and the axis-lengths of the ellipsoid are a = 0.4, b
= 0.2 and c = 0.2 with the center of both the sphere and the

centroid as (xj , yj , zj), then the neighborhood around the

centroid queried by using ellipsoid querying is bigger than

or as big as the neighborhood queried by using the sphere.

With this understanding, we applied ellipsoid querying in

the local neighborhood around the centroid and observed

improvements in the accuracy.

The sphere with no specific orientation gets lesser over-

lap with the object to capture neighboring points around the

centroid. Ellipsoid unlike a sphere has orientation that can

be exploited to re-orient it in a way that maximum number

of points on the object overlaps within the volume of the el-

lipsoid for querying. Also, for each centroid the orientation

of the ellipsoid can be made different in order to maximize

the neighborhood coverage with more relevant points fur-

ther improving the 3D classification accuracy.

We adopted PointNet++ network as shown in figure 4

and further developed the grouping layer in the set abstrac-

tion levels. Our intuition is that the increase in the number

of points by using re-oriented ellipsoid boosts the existing

PointNet++ framework in learning a better representation.

The sampling layer employs farthest point sampling(FPS)

to sample out a fixed number of points from the original

point set (xyz1). These sampled points are called the cen-

troids (xyz2). The grouping layer uses the input point set

and the centroids for ball querying (equation 1). Querying

results in a subset of input 3D point set around each of the

centroid point representing its local neighborhood.

Although Pointnet++ limits the number of points (sam-

ples) for querying in the local neighborhoods, unlike k-

nearest neighbors (kNN) with k points queried every time,

the number of points queried by ball querying is not fixed.

Hence, grouping results in a range of [1, samples] of points.

Our work in this paper uses a re-oriented ellipsoid to in-

crease the number of relevant points queried from the lo-

cal neighborhood. For a single-scale model, each set ab-

straction layer queries points in two stages. In the first

stage, ball querying around a centroid (xj , yj , zj) gives a

subset of points Gj(x, y, z) from the input 3D point set

within the ball’s volume. At least three unique points are re-

quired to compute a 3x3 co-variance matrix. A co-variance

matrix cov(x, y, z)j is computed for each of the centroids

(xj , yj , zj) that have at least three unique queried points.

We also propose to adjust the co-variance matrix com-

putation function COVARADJMATX (algorithm 1). We

used centroid itself as the mean of the unique grouped

points Nj(x, y, z) if the Euclidean distance between the

centroid(xj , yj , zj) and actual mean (x̄j , ȳj , z̄j) of grouped

points is greater than or equal to one-fourth the length of



Algorithm 1 Compute Adjusted Co-variance Matrix

function COVARADJMATX(Gj(x, y, z), (xj , yj , zj), a)

⊲ Input Gj(x, y, z) , matrix of grouped points

⊲ Input xj ,yj ,zc is a centroid point

⊲ Input a is the major axis-length of the ellipsoid

⊲ Output cov(x, y, z)j is a 3x3 symmetrical matrix

Nj(x, y, z)← unique(Gj(x, y, z))
nj ← count(Nj(x, y, z))

x̄j , ȳj , z̄j ←
∑

n
i=1

xi

nj
,
∑

n
i=1

yi

nj
,
∑

n
i=1

zi
nj

disti ←
√

(x̄j − xj)2 + (ȳj − yj)2 + (z̄j − zj)2)
if disti ≥ a/4.0 then

N (xi, yi, zi)← N (xi, yi, zi)− (xj , yj , zj)
else

N (xi, yi, zi)← N (xi, yi, zi)− (x̄j , ȳj , z̄j)
end if

cov(x, y, z)j ←
N|(x,y,z)

T
∗N|(x,y,z)

nj−1 ⊲ * is matmul

return cov(x, y, z)j
end function

major axis as threshold else we used the actual mean of the

grouped points. The threshold can be greater than or equal

to half the radius (which is also one fourth the major-axis

length). If threshold is less than half the radius then the

actual mean of grouped points is closer to the centroid mak-

ing the adjustment and hence the ellipsoid re-orientation

less effective. The primary reason behind this adjustment

is to orient the ellipsoid in the direction of grouped points

Gj(x, y, z), mainly when all grouped points occur on one

side of the centroid. E.g., in the left part of figure 1, all

grouped points from the ball query (blue points) are to the

left of the centroid (red point). At this stage, each centroid

has a co-variance matrix cov(x, y, z)j . Eigenvalues and

Eigenvectors are computed by the Eigendecomposition of

the symmetric co-variance matrix using the Jacobi method

[25]. Eigenvectors corresponding to the descending ordered

Eigenvalues are used as the rotation matrix Rν to re-orient

the input points centered at the centroid (xj , yj , zj) using

equation 3 where xyz1 represents the input point cloud and

xyz2 are the centroids from the sampling layer. The second

stage captures re-oriented points that are on or inside the

ellipsoid.





x
′

i

y
′

i

z
′

i



= Rν





xi − xj

yi − yj
zi − zj



 i ∈ xyz1, for each j ∈ xyz2

(3)

Each centroid goes through the above-explained steps

(algorithm 2) i.e., ball/ellipsoid querying, co-variance ma-

trix computation, Eigendecomposition, rotation of input

points around the centroid, and capturing rotated points

within the ellipsoid. These newly captured points are ad-

ditional points to the first query points by taking a union set

that has all of the first ball/ellipsoid query points and few or

all of the re-oriented ellipsoid query points. If the total num-

ber of points in the union is less than or equal to the samples

requested in querying, then union set itself is the new query

points. However, if the total number of points in the union is

more than the samples requested, then the difference in the

number of samples and the number of ball query points are

added into the union from the re-oriented ellipsoid. These

enriched grouped points have a better representation of the

local neighborhood. Pointnet layer encodes these grouped

points into local feature vectors, used in classification.

Algorithm 2 Re-oriented Ellipsoid Querying

function ELLIPSOIDQRY((a, b, c), xyz1, xyz2, samples)

⊲ Input: ellipsoid semi-axis lengths (a,b,c), input point set

(xyz1), Farthest Point Sampled points(xyz2), samples
⊲ Output: idx, pcount

idx, pcount← query(a, b, c, xyz1, xyz2, samples)
G← group point(xyz1, idx)
for each centroid cj in xyz2 do

if pcounti ≥ 3 then

cov(x, y, z)j ← COVARADJMATX(Gj)
λ,Rν ← Eigendecompose(cov(x, y, z)j)
for each pi in xyz1: do

p
′

i = Rν ∗ (pi − cj)
T ⊲ * is matmul

de ←

√

p
′
xi

a2 +
p
′
yi

b2
+

p
′
zi

c2

if de ≤ 1.0 & pcount < samples then

idxc ← idxc ∪ idx(pi)
pcount← pcount+ 1

end if

end for

end if

end for

return idx, pcount
end function

4. Experiments

We evaluated the task of 3D point set classification on the

ModelNet40 benchmark dataset [26]. This data set has 40

categories of objects comprising of a total of 12,311 shapes.

The officially split of the benchmark dataset is 9843 objects

for training and 2468 objects for testing, respectively. We

have retained this split as is in training and testing our model

(PointNet++ model with re-oriented ellipsoid querying) for

a fair comparison with PointNet++[2] and other deep learn-

ing models such as Relation-Shape CNN [22]. These mod-

els uniformly sample 1,024 points from the 3D object into a

point cloud, i.e., (x,y,z) coordinates from the object’s mesh

faces. Mesh faces are discarded after sampling. The point

cloud is then re-scaled to fit into the unit sphere.



As a pre-requisite step, we reproduced the 3D classifica-

tion results of PointNet++ for single and multi-scale mod-

els. Following are the alternative techniques to ball query-

ing that we propose for the grouping layer of PointNet++.

• Firstly, use a fixed orientation ellipsoid for querying in

place of a sphere.

• Secondly, use a ball query-based re-oriented ellipsoid

querying. Then use re-oriented ellipsoid query points

for further processing, and discard ball query points.

• Thirdly, use a combination of a fixed orientation ellip-

soid (points discarded after computing rotation matrix)

with a re-oriented ellipsoid (similar to the second tech-

nique processed further).

• Fourth technique is similar to the second technique, ex-

cept the ball queried points considered as a primary set

of points, and points queried by the re-oriented ellip-

soid as additional points. i.e., perform a union of the

ball and re-oriented ellipsoid query points limited by

the number of samples of the set abstraction layer.

• Fifth technique is similar to the fourth but use fixed

orientation ellipsoid for the first querying, and the

re-oriented ellipsoid query points considered as addi-

tional points. All of the techniques except the first in-

volve the Eigendecomposition of the first query points.

• Sixth and Seventh techniques are similar to fourth and

fifth but with Eigenvalues as additional features.

The primary challenge in using ellipsoid querying for a

given model that previously used ball query with radius r is

in defining the axis-lengths (a,b,c) of the ellipsoid. We sim-

plified the problem in case of single-scale models by con-

sidering two of the three axis-lengths of the ellipsoid to be

equal to the radius of the ball (i.e., b=c=r). We followed the

technique of doubling the radius in PointNet++, and used

multiples of a, b, c from first set abstraction in the second set

abstraction. We used PointNet++ with a single scale group-

ing model to accommodate the ellipsoid querying technique

with ellipsoid axis-lengths as parameters, replacing the ra-

dius r from the ball querying method. Although, the archi-

tecture for single scale grouping has three set abstraction

layers, only the first two support sampling, and grouping.

Table 1 is our adaptation of the singe scale grouping

model in PointNet++. We have used the ellipsoid semi-axis

lengths b=c=r and a=2r where r is the radius used for ball

querying in PointNet++ while we doubled the sample sizes

in the set abstraction step. We also observed that doubling

the radius of the sphere (equal to major-axis of ellipsoid)

and doubling the sample size in the set abstraction layers of

PointNet++ single-scale model would not improve over the

classification accuracy of 90.7%.

SA FPS semi-axis[a,b,c] sample MLPs

1 512 [0.4, 0.2, 0.2] 64 [64,64,128]

2 128 [0.8, 0.4, 0.4] 128 [128,128,256]

Table 1: PointNet++ model with two set abstraction (SA)

layers for single-scale grouping with re-oriented ellipsoid.

Similarly, Relation-Shape CNN architecture has been

modified in the single scale grouping sections to accommo-

date ellipsoid querying with ellipsoid semi-axis lengths as

parameters, replacing the radius r from the ball querying

method. The architecture for single scale grouping (SSG)

has three set abstraction (SA) layers, with the first two sup-

porting sampling and grouping as described in table 2. For

Ellipsoid Querying in the single scale grouping of Point-

Net++, we have used a sample size twice the sample size

of the original PointNet++ SSG model, while we used the

same sample sizes in case of RS-CNN SSG model.

SA FPS semi-axis[a,b,c] sample MLPs

1 512 [0.25, 0.15, 0.15] 48 [inputc, 128]
2 128 [0.5, 0.3, 0.3] 64 [128,512]

Table 2: RS-CNN model with two set abstraction layers for

single-scale grouping with re-oriented ellipsoid.

During the training procedure, we retain the data aug-

mentation techniques of PointNet++ and RS-CNN in our

experiments involving the respective model, which are ran-

dom scaling of objects, perturbing the object and point lo-

cations. Size of input point cloud is 1024 points. A 50%

dropout rate is applied to fully connected layers. Both mod-

els use adam optimizer. During the testing phase, Point-

Net++ uses a majority voting of 12 votes while RS-CNN

uses 10 votes. The source code is available at https:

//github.com/VimsLab/EllipsoidQuery.

5. Evaluation and Results

Table 3 gives an overview of the comparison of our re-

sults with recent deep neural networks for classification of

3D point sets on ModelNet40, a benchmark dataset. Our

implementation of querying in PointNet++ with the union

of points from ellipsoid querying followed by re-oriented

ellipsoid querying with the concatenation of Eigenvalues

as additional features (i.e., seventh technique) performs

as good or even better than few of the models such as

[1, 2, 10, 18, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Pri-

marily, we borrowed the PointNet++ model architecture to

show how ellipsoid querying has improved 3D classifica-

tion results. A significant 1.1% increase in the accuracy

achieved for PointNet++ single scale grouping model. Fig-

ure 5 shows improvements in 3D classification results with

the seven techniques described in the experiments section.



Figure 5: Improvements in accuracy of PointNet++ (SSG

model). Two passes, P1: pass 1, and P2: pass 2.

We expected similar improvements for the deep learning

models which use ball querying in the grouping layer and

chose the state-of-the-art model Relation-Shape CNN [22]

to test. We observed a 0.8% improvement over the 92.7%

accuracy of RS-CNN for a single scale model, as shown in

figure 6. Ellipsoid based re-oriented ellipsoid querying im-

plementation of single scale grouping RS-CNN model out-

performs recent SSG models such as [21, 23]. For RS-CNN,

the accuracy did not improve by concatenation of Eigenval-

ues as additional features. For multi-scale models, the task

of finding axis-lengths for up to six ellipsoids is challenging

and remains open mainly because the number of combina-

tions of ellipsoid dimensions for different scales are more

and searching for the right combination requires a signifi-

cant number of trials, which is time and resource expensive.

Figure 6: Improvements in accuracy of Relation-Shape

CNN (SSG model). Two passes, P1: pass 1, and P2: pass 2.

Table 3: Few Recent Deep learning models with accura-

cies on ModelNet40 dataset for 3D Object classification.

Xindicates SSG model with ball querying.

Method SSG Acc

PointwiseCNN [32] X 86.1

Deep Sets [29] - 87.1

PointNet (vanilla) [1] - 87.2

PointNet [1] - 89.2

MO-Net [28] - 89.3

3D Capsule Networks [34] - 89.3

JustLookUp[30] - 89.5

Kd-Net(depth 10) [18] - 90.6

PointNet++ [2] X 90.7

MC Convolution [35] - 90.9

KCNet [10] - 91.0

SFCNN [31] - 91.4

SRN-PointNet++ [24] X 91.5

PAT [27] - 91.7

ConvPoint [33] - 91.8

Kd-Net(depth 15) [18] - 91.8

DGCNN [20] - 92.2

PCNN [15] - 92.3

PointWeb [19] - 92.3

Relation-ShapeCNN [22] X 92.7

KPConv(rigid) [36] - 92.9

InterpCNN [37] - 93.0

DensePoint [23] X 93.2

GS-Net [21] X 93.3

Geo-CNN [38] X 93.4

Ours

Ellipsoid PointNet++ X 91.0

Ellipsoid RSCNN X 93.0

Re-oriented Ellipsoid PointNet++ X 91.8

Re-oriented Ellipsoid RSCNN X 93.5

6. Conclusion

In this work, ellipsoid querying, a novel approach in cap-

turing local geometry of 3D point cloud objects, has been

proposed. We also introduced seven techniques that involve

ellipsoid querying for better coverage of the local neigh-

borhood. We have demonstrated that neighborhood query-

ing using the re-oriented ellipsoid gives better coverage of

local neighborhoods in the grouping layer of PointNet++

model than ball querying. Our re-oriented ellipsoid query-

ing also improved the classification results of the Relation-

Shape CNN model with single-scale grouping. With a boost

in the 3D classification accuracy for PointNet++ by 1.1%

and Relation-Shape CNN by 0.8%, our ellipsoid-based re-

oriented ellipsoid querying method is promising in improv-

ing the 3D point cloud classification results of models that

use ball querying.
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