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Abstract

We make an attempt to address topology-awareness for

3D shape reconstruction. Two types of high-level shape ty-

pologies are being studied here, namely genus (number of

cuttings/holes) and connectivity (number of connected com-

ponents), which are of great importance in 3D object re-

construction/understanding but have been thus far disjoint

from the existing dense voxel-wise prediction literature. We

propose a topology-aware shape autoencoder component

(TPWCoder) by approximating topology property functions

such as genus and connectivity with neural networks from

the latent variables. TPWCoder can be directly combined

with the existing 3D shape reconstruction pipelines for end-

to-end training and prediction. On the challenging A Big

CAD Model Dataset (ABC), TPWCoder demonstrates a no-

ticeable quantitative and qualitative improvement over the

competing methods, and it also shows improved quantita-

tive result on the ShapeNet dataset.

1. Introduction

Large progress in computer vision has been made for the

dense prediction tasks using end-to-end pixel-wise training

in a range of applications such as semantic segmentation

[32, 9], edge detection [61], depth estimation [31], image

denoising [65], super-resolution [27], medical image seg-

mentation [43, 19], and single-image 3D shape reconstruc-

tion [55]. These tasks have been carried out mostly in a

bottom-up fashion through a forward process. The visual

perception tasks have shown to engage as well top-down

knowledge [2] that provides strong regularities about the

scene layout, spatial configurations, and shape information

[21]. Top-down knowledge has been primarily viewed as

a prior in the non-deep-learning based algorithms [13, 67].

Attempts to explicitly introduce the top-down prior for se-

mantic labeling exist [60] but with multiple limitations and

requirements.

The literature of 3D reconstruction is very rich in pho-

togrammetry [30, 11] and computer vision [20, 33] rang-

ing from structure from motion [52], stereo [4], multiview
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Figure 1: Some examples from the ABC dataset [28] with

different number of genus g and connectivity c.

[38, 29], depth-sensor based [36, 68], large-scale computing

[1], single-image based [18], and hybrid approaches [39].

The 3D reconstruction tasks become particularly important

and useful in the modern big data era.

From a different angle, there has been a renewed interest

for automatic single-view 3D reconstruction [55, 66, 49, 25]

using convolutional neural networks for dense voxel-wise

prediction. On one hand, the reconstruction results from

2D single-view image on the 3D ShapeNet [58] are impres-

sive [55] and have seen a steady improvement [55, 57, 66]

over the time; on the other hand, state-of-the-art methods

[55, 62, 47] produce results that are still not satisfactory on

challenging datasets such as the ABC dataset [28] in which

objects exhibit a wide range of topological variations with

a varying number of holes and connected components (see

e.g. Figures 1 and 5). It is therefore important to move

beyond the current pixel-wise/voxel-wise learning frame-

works by jointly taking into account the voxel-wise recon-

struction difference and the high-level geometric and topo-

logical properties for the 3D objects.

In this paper, we make an attempt to address topology-

awareness for single-image 3D shape reconstruction by

proposing topology-aware shape autoencoder (TPWCoder)

that learns to approximate 3D topological functions.

Here we emphasize the need of engaging differentiable

structural and topological regularities that can be seam-

lessly combined with the current end-to-end deep learning

frameworks. This step will help improve the current results

for shape segmentation and reconstruction.

The main contributions of our work are listed below.



• Development of the topology-aware shape autoencoder (TP-

WCoder) to address high-level topological properties such as

genus and connectivity for 3D shape reconstruction.

• Design of differentiable topological loss to combine with an

end-to-end 3D reconstruction algorithm, MarrNet [55].

• Noticeable qualitative and quantitative improvement over the

state-of-the-art on the challenging ABC [28] dataset.

2. Related work

Reconstructing the 3D shape of an object from its single

2D image is challenging due to the intrinsic ambiguity and

the immensely large solution space for the problem. Owing

to the rapid development of 3D objects synthetic datasets

such as ShapeNet [6], ABC [28], effective algorithms have

been developed to approach objects reconstruction in voxel

as well as in point clouds [16] and octave trees [42, 48].

Single-image 3D Reconstruction. Early attempts using

non-deep learning based methods in 3D shape reconstruc-

tion have been extensively studied. Huang et al. [24] pre-

sented an assembly-based method to reconstruct 3D shape

by means of composing parts from existing 3D models.

This approach, however, strongly depends on the avail-

ability of initial segmentation of the existing 3D shapes.

Thanks to the significant progress made in deep learning,

researchers have built more neural networks [26, 50, 55, 57,

56, 64, 40, 59] to handle 3D reconstruction tasks while most

of these models only approach voxelized 3D objects and do

not explore the important role of topology playing in 3D

shape reconstruction.

Shape Geometry and Topology. Geometric and topolog-

ical data analysis [5, 7] has inspired abundant methods to

be developed in various directions and applications. Ge-

ometric and topological information extracted from object

structures provides whole new families of features and de-

scriptors of the data apart from the prior knowledge of 2D

images structure. Existing methods [44, 51] have demon-

strated effectiveness of geometry and topology components

when combined with domain information.

Geometric Constraints within Deep Learning. Many re-

cent studies [8, 23] have shown the potential and capabil-

ity of geometric and topological properties directly or in-

directly helping control and regularize the latent represen-

tations by incorporating the topology in meaningful man-

ners. Moreover, geometry-based distances have been re-

cently adopted in point-cloud based 3D object reconstruc-

tion [16], object localization [41], and skeleton extraction

[63]. While pointing to an important direction to study ge-

ometry beyond per-pixel reconstruction losses, these exist-

ing methods [16, 41, 63] have been focusing primarily on

adding distances such as the Hausdorff that only consider

coarse shape matching without an explicit representations

to account for fine-grained geometric properties.

Point-cloud and mesh-based approaches. Different from

MarrNet which is based on voxel-based output, another line

of research aims at producing point cloud (AtlasNet [17]),

mesh-based 3D (Pixel2mesh [53] and 3dn [54]), and im-

plicit function based (IM-NET [10], OccNet [34], DISN

[62]) reconstructions. While producing encouraging results

with a steady improvement, it is not clear how the above

methods can handle more topologically challenging data

like ABC [28]. For example, 3dn [54] requires an exist-

ing 3D template to start with, which is absent in ABC and

DISN [62] defines an implicit function for each 3D point

being inside, on, or outside the surface and then there exists

a potential barrier for DISN to deal with multiple discon-

nected components of an object. While Skeleton-bridged

Deep Learning Approach for Generating Meshes of Com-

plex Topologies [47], adopts different shape representations

of point cloud, volume and mesh to recover and refine

shapes, their method is not end-to-end trainable.

Relation to MarrNet and ShapeHD. TPWCoder builds

on top of MarrNet by adding a 3D autoencoder (AE) with

differentiable topological loss. In terms of both visual in-

spection and numeric metric measures, the improvement of

TPWCoder over MarrNet is evident. TPWCoder without

the topological loss part already improves over MarrNet.

This is understandable since the 3D AE acts as a regularizer,

which is lacking in MarrNet. Prior methods exist [37] which

use latent variables for feature disentanglement, but they

have different formulations and objectives than TPWCoder.

TPWCoder with the topological loss is able to correct large

errors made by MarrNet [55]. ShapeHD [57] introduces

a “naturalness loss” by adding an adversarial term which

classifies between real and fake samples. ShapeHD pro-

vided certain but limited improvement over MarrNet, which

is understandable since the adversarial term is itself not rich

enough to account for the explicit topological properties.

3. Method

To introduce a differentiable topological loss, we first

explain the topology awareness in general case and thus

specifically define two topological properties: genus and

connectivity under the ABC dataset [28] scenario. We then

introduce our TPWCoder that regularizes the reconstruction

shapes from MarrNet and refines local shape details by us-

ing topological loss.

3.1. Topological properties

Topology [3], in mathematics, concerns with geometric

properties of objects. It captures the key high-level char-

acterization about the 3D object shape and are vital to the

understanding and recognition of the object class. Existing

methods [16, 41, 63] adding the geometric constraints such

as the Hausdorff distances, perform coarse-level correction

which are not to maintain the intrinsic topological proper-



Figure 2: Pipeline of our proposed TPWCoder with decoder. We build our proposed TPWCoder with decoder upon the MarrNet [55].

ties of the objects. We pick two topological properties of

3D geometric objects to study: genus and connectivity.

Genus. The genus of the surface of an object refers to the

maximum number of holes, which can be mathematically

defined in terms of the Euler characteristic using the Euler’s

polyhedron formula [45].

V − E + F = 2− 2g (1)

where V , E, F are the number of vertices, edges and faces

of a 3D object respectively and g is the genus we want to

compute. In addition, if an object has more than one com-

ponent, the genus is defined as the summation of genus of

each component.

Connectivity. Connectivity refers to the number of con-

nected parts for the surface of a 3D object. We simply de-

fine the connectivity of 3D objects on ABC dataset [28] as

the number of connected group of vertices exist in mesh or,

in other words, the number of connected components.

Both “genus” and “connectivity” are well defined mathe-

matically [3, 45] and they can be explicitly computed given

a mesh-based representation using toolbox like Trimesh

[15]. Figure 1 shows some typical examples from the ABC

dataset [28] displaying a varying number of holes and con-

nected components. The main challenge is however the

computation of genus and connectivity is not differentiable

and thus they cannot be directly integrated into the current

end-to-end learning framework.

3.2. TPWCoder

To learn computing the topological properties such as

genus and connectivity, we propose an autoencoder [22]

structure with additional multi-layer neural networks taking

the latent variable z as the input to approximate the topolog-

ical functions. In [14], it is shown that adding a guidance

to the latent variables improves the transparency and dis-

entanglement in the representation learning of the VAE/AE.

Figure 4 gives a basic illustration for the architecture. There

are three main characteristics for the design of our proposed

autoencoder.

1. The latent variable z is learned as an abstraction for the

original 3D shape (in volume) to be used in a neural

network to approximate the topological functions that

are mathematically specific.

2. The decoder part still tries to reconstruct the original

data X to maintain the regularity of the 3D shape. One

could remove the decoder part but our experimental

results suggest that having the decoder part being a fa-

vorable choice, as seen in Table 1 for the comparison.

3. We call this autoencoder structure, TPWCoder, that

can be pretrained using the given 3D shape data and, is

differentiable and can be integrated into an end-to-end

learning framework as shown in Figure 2.

Figure 3: Illustration of our TPWCoder without the decoder.

We specifically design our TPWCoder in two ways: TP-

WCoder without decoder shown in Figure 3 and TPWCoder

with decoder shown in Figure 4.

TPWCoder without decoder. A encoder of five sets of

3D convolutions encodes a 128 × 128 × 128 voxel into a

400-d latent vector z. It is then directly projected to a 100-d

vector with a fully-connected layer followed by two sets of

25-way softmax layer for genus g and connectivity c. We

formulate the prediction of genus and connectivity as clas-

sification tasks in which we limit the value larger than 24
to be 24 for genus and the value larger than 25 to be 25 for

connectivity such that g ∈ [0, 24] and c ∈ [1, 25].



TPWCoder with decoder. Based on TPWCoder without

decoder shown in Figure 3, a decoder of five sets of 3D

transposed convolutions is built upon the latent vector z

such that it is upsampled back to 128 × 128 × 128 voxel

space for reconstruction purpose.

Figure 4: Illustration of our TPWCoder with the decoder.

3.3. End-to-end training

We briefly describe how TPWCoder is built on top of the

MarrNet [55], named MarrNet-TPWCoder, for end-to-end

training. Given a 2D input image I , our goal is to learn

making a prediction for the ground-truth X. Let the recon-

struction output of MarrNet be X̂ and the prediction of the

final reconstruction output be X̃. The learning process is

trying to minimize the loss:

L = Lreconstruction + αLtopology (2)

where the first and the second term refer to the reconstruc-

tion loss and the topological loss respectively and α is the

coefficient balancing the magnitudes of reconstruction loss

and topological loss. For reconstruction loss,

Lreconstruction = Dist(X, X̃) (3)

refers to the reconstruction loss trying to minimize the per-

voxel difference between the final reconstruction output X̃

and the ground truth X in MarrNet-TPWCoder with de-

coder architecture. Dist(·) denotes the binary cross-entropy

loss in both cases. For topological loss,

Ltopology = Dist(fg(z), g(X)) + Dist(fc(z), c(X)),

where g(X) and c(X) are respectively the real genus and

connectivity numbers for the ground-truth shape X, and

fg(z) and fc(z) are the predictions by the TPWCoder for

the genus and connectivity respectively. Dist(·) denotes the

cross-entropy loss in this case. The loss function L in Eq. 2

can be minimized via end-to-end training.

Combining TPWCoder with a state-of-the-art 3D shape

reconstruction method [55] yields a noticeable performance

gain, as shown in Figure 5 and Table 1. The main goal of

this paper is learning a faithful TPWCoder to approximate

the topological shape properties including but not limited

to genus and connectivity. We will try to introduce trans-

parency to the approximation function by studying aspects

from [35, 15].

3.4. Training details

We follow the two-step training paradigm described in

MarrNet [55] where 2D sketch estimator and 3D shape esti-

mator are trained individually in the first step. We also pre-

train our TPWCoder. We then fix the 2D sketch estimator

while only fine-tuning 3D shape estimator and TPWCoder

using reconstruction loss and topological loss.

2D sketch estimator. We well-train the 2D sketch estima-

tor using ground truth depth, normal and silhouette with L2
loss, a batch size of 64 and Adam optimizer with a learn-

ing rate of 10−3 for 200 epochs. Well-trained 2D sketch

estimator is then fixed during fine-tuning.

3D shape estimator. We pre-train the 3D shape estima-

tor using ground truth depth, normal, silhouette and ground

truth voxel as guidance with binary cross-entropy loss, a

batch size of 16 and Adam optimizer with a learning rate of

10−3 for 40 epochs.

TPWCoder. We pre-train our TPWCoder using ground

truth voxel, genus and connectivity along with 3D shape

reconstructions from MarrNet [55] and their correspond-

ing genus and connectivity as guidance with binary cross-

entropy loss and topological loss stated in Eq. (2). A batch

size of 32 and Adam optimizer with a learning rate of 10−4

are used for training 100 epochs.

At fine-tuning stage, we fix the 2D sketch estimator and

fine-tune the 3D shape estimator and TPWCoder with both

reconstruction loss and topological loss shown in Eq. (2).

We fine-tune the network using a batch size of 16 and Adam

optimizer with a learning rate of 10−4 for 80 epochs.

4. Experiments

In this section, we evaluate variants of MarrNet-

TPWCoder on ABC dataset [6] in our ablation study. We

then compare the reconstruction performance of MarrNet-

TPWCoder with MarrNet [55] and ShapeHD [57] quantita-

tively and qualitatively on ABC dataset [28] and ShapeNet

dataset [6]. We explore the effectiveness of our TPWCoder

in handling the topology on ABC dataset [28] at the end.

Datasets. In order to evaluate our TPWCoder in managing

topology and reconstruction, we use the ABC dataset [28]

which has rich topological features. For fair comparison,

we make use of ShapeNet datasets [6], specifically chair,

car and plane classes.

For the ABC dataset [28] where each object does not

have class property, we make use of 22826 objects and use

Blender [12] to render corresponding RGB, normal, depth

and silhouette of each object in viewer-centered. We also

use a mesh-based library, Trimesh [15], to generate the



ground truth voxel and corresponding genus and connec-

tivity of each object. We then randomly split 22826 objects

into 20544 objects for training and the rest for testing.

For the ShapeNet dataset [57], we adopt the exact same

rendering strategy as MarrNet [55] and ShapeHD [57].

Metrics. To fully evaluate the 3D shape reconstruction

quantitatively, we use three standard metrics: Intersection

of Union (IoU), Chamfer Distance (CD) and Earth Mover’s

Distance (EMD), for evaluating voxel-based reconstruction

and two self-defined metrics: Genus Number Error (GNE)

and Connectivity Number Error (CNE), for reconstructed

shape topology analysis.

For IoU, CD and EMD, we follow the same evaluation

details as the implementation in Pix3D [46]. We define the

Genus Number Error (GNE) and Connectivity Number Er-

ror (CNE) in terms of the genus and connectivity of recon-

structed object and its corresponding ground truth object:

E =
1

n

nX

i=1

|g(X̃i)− g(Xi)| (4)

where E denotes the GNE or CNE, g(X̃i) and g(Xi) are

genus/connectivity of reconstructed and ground truth object

respectively and n is the number of objects.

4.1. Results on ABC

We first quantitatively compare the reconstruction results

of MarrNet-TPWCoder without decoder and with decoder.

For each case, we choose to fix the TPWCoder and fine-tune

the TPWCoder with topological loss therefore forms four

comparison experiments. We set the coefficient α shown

in Eq. (2) as 10−3 for balancing the magnitudes of recon-

struction loss and topological loss. Table 1 provides quan-

titative comparison. Notice that for MarrNet-TPWCoder

without decoder, fine-tuning makes noticeable improve-

ment than without fine-tuning in CD, EMD and CNE, same

trend happens in MarrNet-TPWCoder with decoder as well.

Moreover, MarrNet-TPWCoder with decoder outperforms

without decoder significantly in IoU, CD, EMD and CNE

and improves GNE. We therefore make use of fine-tuned

MarrNet-TPWCoder with decoder to compare with Marr-

Net [55] and ShapeHD [57].

We then compare the MarrNet-TPWCoder with MarrNet

[55] and ShapeHD [57]. Additionally, we trained MarrNet-

TPWCoder without using topological loss for full compari-

son. The quantitative results comparison is provided in Ta-

ble 1. Note that MarrNet-TPWCoder outperforms MarrNet

[55] and ShapeHD [57] by a noticeable margin.

We also present qualitative results comparison in Fig-

ure 5. It is noticeable that both MarrNet-TPWCoder

without topology and MarrNet-TPWCoder with topology

produce much distinct structures, smoother surfaces and

cleaner edges than MarrNet [55] and ShapeHD [57]. In

particular, the reconstructed object surface generated by

MarrNet-TPWCoder with topology is visibly smoother than

MarrNet-TPWCoder without topology and more unneces-

sary particles are eliminated, producing cleaner reconstruc-

tion results.

Figure 5: Reconstruction results for 5 examples from the ABC

dataset [28] with different approaches: MarrNet, ShapeHD and

our method using TPWCoder without and with topological loss.

4.2. TPWCoder Topology-Awareness

We show the capability of our topology-aware TPW-

Coder in predicting genus and connectivity on ABC dataset

[28]. Figure 6 demonstrates the topology prediction error

along with the samples distribution of genus and connectiv-

ity on the testing set of ABC dataset [28].

Note that either the genus prediction error or connec-

tivity prediction error of each class is computed by sum-

ming up the distance between predicted class and ground

truth class of each object in that class. That is, the further

the prediction is away from truth value, the larger the error

would be. For the genus, we then compare the prediction

error with the error from all 0 predictions, similarly for the

connectivity, we compare the prediction error with the error

from all 1 predictions in that genus g = 0 and connectivity

c = 1 dominate the genus and connectivity respectively. As

shown in Figure 6, TPWCoder attempts to capture the topo-

logical information through encoder and latent representa-

tion and make prediction instead of randomly guessing or

predicting constant, especially when an object has genus or

connectivity less than 5.

Note also that for the connectivity, there are some predic-

tion faultages in few specific classes therefore the prediction

error curve overlaps with all 1 prediction error. This is be-

cause some classes only have very few samples or even no

sample in the testing set.

4.3. Results on ShapeNet

We now compare the reconstruction results of MarrNet-

TPWCoder with MarrNet [55] and ShapeHD [57] on



Table 1: Quantitative comparison on the ABC dataset [28]. IoU: Intersection over Union; CD: Chamfer Distance; EMD: Earth Mover’s

Distance; GNE: Genus Number Error; CNE: Connectivity Number Error. " means the higher the better; # means the lower the better.

METHODS IoU ↑ CD ↓ EMD ↓ GNE ↓ CNE ↓

MarrNet [55] - - 0.6132 0.0916 0.0957 16.0158 13.5215

ShapeHD [57] - - 0.6168 0.0858 0.0869 16.2551 13.0964

MarrNet-TPWCoder w/o Ltopology w Decoder w Fine-tune 0.6252 0.0770 0.0791 14.2940 11.6725

MarrNet-TPWCoder w Ltopology

w/o Decoder
w/o Fine-tune 0.5801 0.1508 0.1455 15.2117 20.3732

w Fine-tune 0.6023 0.1139 0.1160 15.6276 15.2421

w Decoder
w/o Fine-tune 0.6152 0.0930 0.0968 14.4729 13.9437

w Fine-tune 0.6313 0.0792 0.0784 14.5915 12.8067

Table 2: Quantitative comparison on the ShapeNet dataset [6]. IoU: Intersection over Union; CD: Chamfer Distance; EMD: Earth Mover’s

Distance. " means the higher the better; # means the lower the better.

METHODS
IoU ↑ CD ↓ EMD ↓

chair car plane chair car plane chair car plane

MarrNet [55] 0.4482 0.6542 0.4496 0.1838 0.0766 0.0810 0.1761 0.0803 0.0998

ShapeHD [57] 0.4056 0.6584 0.4676 0.1779 0.0776 0.0778 0.1624 0.0791 0.0989

MarrNet-TPWCoder w/o Ltopology (ours) 0.4327 0.6829 0.5502 0.2260 0.0716 0.0763 0.2072 0.0758 0.0931

MarrNet-TPWCoder w Ltopology (ours) 0.4360 0.6953 0.5488 0.2286 0.0681 0.0782 0.2086 0.0728 0.0968
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Figure 6: Performance of TPWCoder in predicting genus and

connectivity. Left: Genus prediction error curve and connectivity

prediction error curve. Right: Test sample distribution of genus

and connectivity.

ShapeNet dataset [6]. The coefficient α shown in Eq. (2) is

set to 10−3 for balancing the magnitudes of reconstruction

loss and topological loss.

The quantitative results are presented in Table 2. For

chair class, ShapeHD [57] yields better results than ours.

MarrNet-TPWCoder yields better results in both car and

plane class. Note, although, that the ShapeNet dataset

[6] does not have much topological information therefore

TPWCoder possibly does not well refine local details of

shapes, MarrNet-TPWCoder still produces better quantita-

tive results. We provide qualitative results in Figure 7.

Figure 7: Reconstruction examples from the ShapeNet dataset

[28] with different approaches: MarrNet, ShapeHD and our

method using TPWCoder without and with topological loss.

5. Conclusion

In this paper, we make an attempt to address topology-

awareness for 3D shape reconstruction by proposing

topology-aware shape autoencoder, TPWCoder, that learns

to approximate 3D topological functions as well as to re-

construct 3D shapes. We have shown how to combine

our TPWCoder with other architectures, i.e. MarrNet [55],

therefore could be built upon other architectures for dif-

ferent tasks with customized modification. Our ablation

study of variants of TPWCoder on the ABC dataset [28] has

shown that decoder architecture and fine-tuning stage are

both needed to produce better reconstruction results in that

TPWCoder is capable of regularizing global shape recon-

struction and topological loss helps in refining the local de-

tails. Our experiments on ABC dataset [28] and ShapeNet

dataset [6] have demonstrated that TPWCoder makes its at-

tempts to address topology-awareness and is able to refine

local details of reconstruction as well.
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[68] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Chris-

tian Theobalt, Matthias Nießner, Reinhard Klein, and An-

dreas Kolb. State of the art on 3d reconstruction with rgb-d

cameras. In Computer graphics forum, volume 37, pages

625–652. Wiley Online Library, 2018. 1


