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Abstract

We introduce a 3D generative shape model based on the

generalized autoencoder (GAE). GAEs learn a manifold la-

tent space from data relations explicitly provided during

training. In our work, we train a GAE for volumetric shape

generation from data similarities derived from the Cham-

fer distance, and with a loss function which is the com-

bination of the traditional autoencoder loss and the GAE

loss. We show that this shape model is able to learn more

meaningful structures for the latent manifolds of different

categories of shapes, and provides better interpolations be-

tween shapes when compared to previous approaches such

as autoencoders and variational autoencoders.

1. Introduction and related work

In recent years, significant research effort has been de-

voted to the development of generative models of 3D shapes

based on deep neural networks, since these models have

the potential of facilitating applications such as 3D object

recognition, 3D modeling, and shape completion. This re-

search effort has concentrated on investigating the two main

aspects of these models: (i) the representation used for en-

coding 3D shapes, and (ii) the neural network architecture

and learning framework for training the generative model.

Regarding the shape representation, previous work has

investigated different encodings for 3D objects such as vol-

umetric grids [3, 12, 22, 23], distance fields [5, 6, 14], point

sets [1], parameterization atlases [9], and part-based repre-

sentations [4, 11, 13, 24]. When considering specifically

volumetric shape representations, early work learned gen-

erative models with networks such as autoencoders (AEs)

or similar architectures [23], while subsequent efforts use

approaches more tailored towards generative tasks such as

variational autoencoders (VAEs) [3] and generative adver-

sarial networks (GANs) [22, 12].

This ongoing investigation raised the important question

of what constitutes a good 3D generative model, conclud-

ing that a generative model should not only be able to re-

construct well the shapes that were used for training the

model, but should also be able to generalize. Generaliza-

tion implies that the model should at least enable a mean-

ingful interpolation between shapes, possibly even synthe-

sizing shapes that are novel, i.e., surprisingly distinct from

the training shapes. Although work on generative models of

images has shown that architectures such as VAEs and even

GANs can mainly perform a form of extrapolation, gener-

ating new data with limited novelty [10], we can still lever-

age the interpolatory and extrapolatory capabilities of these

models for generating shapes distinct from the training data.

In this regard, AEs are easy to train and provide good-

quality reconstructions of the training shapes. However, in-

terpolation results are often not satisfactory, since there are

no constraints that lead to the learning of a meaningful la-

tent manifold of shapes. VAEs address this problem by ef-

fectively learning a probability distribution over a variable

rather than predicting single point estimates. However, the

synthesized shapes are commonly of low quality, similar to

the problem of blurry images sampled from VAEs [8]. On

the other hand, GANs learn models tailored to the genera-

tive task, but these models are difficult to train. The opti-

mization can easily get stuck in a local minimum, requir-

ing training the network multiple times until a satisfactory

model is learned. In addition, GANs can be easily sampled,

but the latent encoding of a shape cannot be easily derived

from the standard GAN architecture without an encoder.

In this paper, we investigate an alternative architec-

ture for volumetric 3D shape generation: the general-

ized autoencoder (GAE). Originally introduced by Wang et

al. [20], GAEs learn a latent manifold of the data from data

relationships explicitly provided during training. Specif-

ically, we consider data similarities along with a weight-

ing function in the loss function used for training the GAE.

GAEs have certain advantages over AEs, VAEs, or GANs,

such as the possibility of explicitly guiding the construction

of the latent manifold and being able to map input shapes

to this manifold. At the same time, like AEs, GAEs are

much easier to train, as they involve training only a simple

autoencoder architecture with a single loss function.

We use GAEs for 3D volumetric shape generation by es-

timating the similarity of data points with the Chamfer dis-



tance [7]. We also introduce a loss function that is a com-

bination of the traditional AE loss and the GAE loss [20].

With experiments on selected categories of shapes, we

demonstrate that the GAE loss enables learning a more

meaningful manifold for 3D shapes than the traditional AE

loss, while modifying the loss into the combined function

provides better reconstructions of the training shapes. Note

that we demonstrate the GAE in the context of shape gener-

ation with a volumetric grid. However, there are no inherent

limitations for applying this learning framework to autoen-

coders based on other shape representations.

In summary, our contributions are as follows:

• We introduce a 3D generative model based on the

GAE [20], which allows one to control the latent man-

ifold learned by the model.

• We guide the construction of a latent manifold of 3D

shapes with data similarities computed via the Cham-

fer distance, and train the model with a loss that is

the combination of the traditional AE and GAE losses.

We show that this model leads to more meaningful

manifold structures and better interpolations between

shapes when compared to previous approaches.

2. GAE for 3D shape generation

In this section, we introduce the 3D generalized autoen-

coder (3D-GAE). We first define the GAE [20], and then

explain how to adapt the GAE for 3D shape generation.

2.1. Generalized autoencoder (GAE)

The GAE, proposed by Wang et al. [20] as an extension

of the traditional AE, consists of an encoder and a decoder,

with the encoder mapping an input to a reduced latent rep-

resentation and the decoder reconstructing the input from

the learned latent representation. However, different from

traditional AEs, the GAE is able to learn a manifold latent

space by exploring data relations in the training set. Specif-

ically, the traditional AE learns how to reconstruct a single

instance xi according to the error ‖xi − xi
′‖2, where xi

′

is the reconstruction of xi. On the other hand, the GAE

uses each instance xi to reconstruct a set of instances Ωxi
,

called the reconstruction set of xi. The reconstruction er-

ror ‖xj − xi
′‖2 of each instance xj ∈ Ωxi

is weighted by

a relational weight si,j , called the reconstruction weight.

Thus, the reconstruction loss of GAE for each instance can

be written as:

LGAE(Ωxi
,xi

′) =
∑

xj∈Ωxi

si,j‖xj − xi
′‖2, (1)

where the reconstruction set Ωxi
and the reconstruction

weight si,j can be given by different schemes. Most of

the existing schemes attempt to replicate a dimensional-

ity reduction method, such as principal component anal-

ysis (PCA) [15], Isomap [19], locally linear embedding

(LLE) [17], or Laplacian eigenmaps (LE) [2].

2.2. 3D generalized autoencoder (3D­GAE)

Our 3D-GAE follows the architecture of a typical au-

toencoder, but adapted to 3D shape generation.

Input and output. The encoder of 3D-GAE takes volu-

metric shapes as input. Each input is represented as a set of

32 × 32 × 32 voxels. A voxel can be defined as either oc-

cupied (1) or empty (0). The encoder outputs a latent repre-

sentation z ∈ R
n of the shape. The decoder then translates

a latent vector back into a shape represented as a volume.

Given that the last layer of the decoder uses a sigmoid ac-

tivation function, each output voxel contains a real value in

the range [0, 1]. Thus, we transform each voxel into a bi-

nary value according to a threshold of 0.5, that is, the voxel

becomes 0 if the real value is below 0.5, or 1 otherwise.

Network architecture. We use a symmetric architecture

where the encoder and decoder have the same number of

layers. The encoder performs three levels of downsampling,

while the decoder performs upsampling also at three levels.

Specifically, the input is downsampled from 32 × 32 × 32
to 4 × 4 × 4 using three convolutional layers with a ReLU

activation function followed by a batch normalization layer

that helps the network to learn features independently from

the output of previous layers. The filter sizes of the three

convolutional layers are respectively 32, 16, and 8. We use

a kernel of size 4 × 4 × 4 and stride 2 for all the convo-

lutional layers. The output layer of the encoder is a fully-

connected layer which generates the latent vector z. We use

128 as the size of the latent vector, which provides a bal-

ance between the reconstruction error and the complexity

of the model. The decoder follows the inverse of this archi-

tecture for performing upsampling, with the exception that

the output layer uses a sigmoid activation function.

Low-dimensional embedding. In our 3D-GAE, we use

LE [2] as the parametric model to derive the reconstruction

set and the reconstruction weights. The reconstruction set

of an input shape xi is its k-nearest neighbors, i.e., Ωxi
=

Nk(xi). The reconstruction weight is computed as:

si,j = exp

(

−
‖xi − xj‖

2

t

)

, (2)

where xj ∈ Ωxi
and t is a tuning parameter. In our work,

we set t = 200, to give proportionally more weight to the

closest neighbors.



Figure 1. A collection of shapes synthesized by 3D-GAE via linear interpolation.

Similarity encoding. To derive the k-nearest neighbors

of each input shape, we use the Chamfer distance [7] to

compute the similarity of shapes. The Chamfer distance

can be seen as a simplified form of the Hausdorff dis-

tance. Thus, we assume that the input shapes are consis-

tently pre-aligned. Considering that our input is a set of vol-

umetric shapes, each shape xi can be denoted as a volume

Vi = (vp,q,r)32×32×32, with each entry vp,q,r ∈ {0, 1}. We

then convert the volume Vi to a point cloud Pi by collecting

the indices of occupied voxels in Vi, i.e., Pi = {(p, q, r) |
vp,q,r = 1}. After that, we can compute the Chamfer dis-

tance between any two point clouds Pi and Pj :

d(Pi,Pj) =
∑

a∈Pi

min
b∈Pj

‖a−b‖2+
∑

b∈Pj

min
a∈Pi

‖a−b‖2. (3)

With the pairwise Chamfer distances computed for the en-

tire input set, for each shape, we sort the remaining shapes

in the set in ascending order according to their Chamfer dis-

tances. We then select the top k shapes as the nearest neigh-

bors. In our work, we select k = 10.

Training and loss function. In practice, when training

deep neural networks, the training is carried out for batches

of data instead of individual instances, so that the model can

converge to global optima, where a batch is a group of in-

stances sampled from the training set. Thus, we also define

the loss function of 3D-GAE over batches. We first com-

pute the reconstruction error between each input batch B
and its reconstruction B′, and then sum up the GAE losses,

as given in Equation 1, per instance in the batch. The loss

function of 3D-GAE is thus:

L3D-GAE(B,B
′) = ‖B − B′‖2 +

∑

x∈B

LGAE(Ωx,x
′). (4)

3. Results and evaluation

We first explain the setup of our experiments, and then

analyze our results with different forms of evaluation.

Datasets. We use three sets of objects taken from the

COSEG [21] and ModelNet40 [18] datasets. Although

each of these datasets contains several categories of ob-

jects, we select the chair, lamp, and table categories from

these datasets since they have shapes with more pronounced

structural variations compared to other categories. Specifi-

cally, our selected datasets are composed of 400 chairs from

the COSEG dataset, and 100 lamps and 400 tables from

the Modelnet40 dataset. We voxelize all the shapes into

32× 32× 32 volumes. Each voxel contains either the value

0 or 1, representing an empty or occupied voxel. All the

volumes are consistently pre-aligned.

Training procedure. For training the 3D-GAE, we split

the datasets into training batches of 10 shapes each. We

adjust the learning rate according to the size of the datasets.

Specifically, we set the learning rate to 0.001 for both chairs

and tables, and 0.002 for lamps. We train the network for

200 epochs with the Adam optimizer. More details about

our implementation and training procedure of 3D-GAE can

be found in our code1.

Evaluation. To assess the quality of the latent manifolds

learned by the 3D-GAE, we evaluate two aspects of the re-

sulting model: (i) the interpolatory and extrapolatory capa-

bilities of the model, and (ii) the structure of the learned

latent space. We perform these two evaluations in a quali-

tative and quantitative manner by comparing our results to

two other baseline approaches: a volumetric autoencoder

(3D-AE) that uses the same network architecture as the 3D-

GAE, discussed in Section 2.2, but trained with the stan-

dard mean squared error (MSE) loss, and a volumetric vari-

ational autoencoder (3D-VAE), trained with the network

architecture and the weighted binary cross-entropy (BCE)

loss as introduced by Brock et al. [3].

1https://github.com/IsaacGuan/3D-GAE



Dataset Method Linear interpolations

Chair 3D-GAE

3D-AE

3D-VAE

Lamp 3D-GAE

3D-AE

3D-VAE

Table 3D-GAE

3D-AE

3D-VAE

Table 1. Linear interpolations of selected shapes obtained with different network architectures.

Generated shapes. In our evaluation, we linearly inter-

polate reference shapes to synthesize new shapes. Specif-

ically, we take the latent vectors z1 and z2 of two end-

point shapes and interpolate them with the formula zu =
(1−u) ·z1+u ·z2, where u is a scalar interpolation param-

eter. We then feed zu to the decoder to obtain a 3D shape. A

collection of shapes interpolated by the 3D-GAE is shown

in Figure 1, where we randomly select the reference shapes

and interpolation parameter, and handpick shapes with good

visual quality. Table 1 presents examples of shapes interpo-

lated with the 3D-GAE and the baseline approaches. The

left and right endpoint shapes of each row are reconstruc-

tions of two selected training shapes, while the shapes in

the middle of each row are obtained by linearly interpolat-

ing the latent vectors of the endpoint shapes by varying u in

steps of 0.1.

By examining the endpoint shapes in Table 1, we notice

how the reconstructions for the 3D-AE and 3D-GAE are

much sharper and better connected when compared to the

Dataset 3D-GAE 3D-AE 3D-VAE

Chair 3.09± 0.36 2.98± 0.41 2.92± 0.38
Lamp 1.57± 0.24 1.33± 0.31 1.19± 0.25
Table 2.45± 0.35 2.19± 0.28 1.78± 0.32

Table 2. Inception scores of results synthesized with different

methods, where higher values are better.

3D-VAE, without spurious blobs floating around the shapes.

Next, by examining the interpolated shapes, we see that the

shapes obtained with the 3D-GAE are in general also better

connected (e.g., the first row of chairs) and have less miss-

ing regions (e.g., the first row of tables). In addition, the

gradual interpolation looks slightly smoother for the 3D-

GAE than the 3D-AE (e.g., the lamp shades). Thus, the

3D-GAE provides reconstructions of quality similar to the

3D-AE, while at the same time providing better interpola-

tion than the 3D-VAE.



3D-GAE − + =

− + =

3D-AE − + =

− + =

3D-VAE − + =

− + =

Figure 2. Examples of extrapolation via shape arithmetic.

Moreover, Figure 2 shows a few examples of extrapola-

tion obtained with the 3D-GAE by applying arithmetic op-

erations to the latent vectors. For example, in the first row,

we take the input chair on the left and remove the compo-

nents of the latent vector corresponding to the back of the

chair. We accomplish this by subtracting the latent vector

of the shape in the center-left which has the same type of

back. Next, we add the latent vector of the shape in the

center-right with a different type of back. In this manner,

we exchange the type of back of the input shape, obtaining

the shape on the right. Note that the resulting shape does

not exist in the training set. The second row shows another

example of exchanging the back of a chair. However, in this

case, the resulting shape has a few visual artifacts since the

new back does not match the input so well. In comparison,

the same arithmetic operations carried out with the other

two networks provide results with worse visual quality.

For a quantitative evaluation of the quality of the interpo-

lated shapes, we automatically generate new sets of shapes

by sampling shapes interpolated with the three methods,

and compute their inception scores, which we report in Ta-

ble 2. Specifically, we choose 400 interpolated shapes for

chairs and tables, and 100 for lamps. We compute the incep-

tion scores with the method of Xie et al. [25] and the pre-

trained model of Qi et al. [16]. This method evaluates the

quality of the shapes according to the ModelNet40 dataset.

We compare the results of shapes interpolated with the 3D-

Figure 3. Multi-dimensional scaling diagram reflecting similarity

among latent vectors of training shapes for the set of chairs.

Distance Dataset 3D-GAE 3D-AE 3D-VAE

Chamfer Chair 0.6425 0.5018 0.4239
Lamp 0.8664 0.5281 0.6623
Table 0.7732 0.6984 0.6970

Euclidean Chair 0.7418 0.6408 0.5770
Lamp 0.9294 0.7330 0.5485
Table 0.8449 0.7277 0.8305

Table 3. Pearson correlation coefficients between shape distances

and latent spaces learned by the different methods.

GAE to the baselines, where we generate sets with the same

endpoint shapes for these approaches. We observe that the

scores provided by the 3D-GAE are higher than the scores

of 3D-AE and 3D-VAE, which indicates that the synthe-

sized shapes generated by the 3D-GAE are classified better

than the others, and likely of higher quality.

Latent spaces. We evaluate the quality of the latent

spaces learned with a qualitative and quantitative evalua-

tion. Figure 3 shows a multi-dimensional scaling (MDS)

plot of the latent space of the set of chairs, based on the

L2−norm computed between all pairs of latent vectors. We

observe in this example how shapes with similar structure

are grouped closely together in the same region of the plot,

reflecting a meaningful grouping in the latent space.

To evaluate the latent spaces in a quantitative manner, we

compute the correlation between all the pairwise shape dis-

tances and all the pairwise distances of the corresponding

latent vectors. The shape distances are computed according

to the Chamfer distance and Euclidean distance of the vol-

umes. The correlation of pairwise distances is a simplified

form of the residual variance measure proposed by Tenen-



Dataset 3D-GAE 3D-GAE* 3D-AE 3D-VAE

Chair 0.0058 0.0068 0.0034 0.0128
Lamp 0.0079 0.0095 0.0034 0.0174
Table 0.0098 0.0106 0.0065 0.0193

Table 4. Average reconstruction errors after training the models.

Dataset 3D-GAE 3D-AE 3D-VAE

Chair 504.75 221.25 406.21
Lamp 134.32 59.65 109.42
Table 526.97 221.69 407.55

Table 5. Training time of the three networks (in seconds).

baum et al. [19] for evaluating the quality of an embedding.

Table 3 shows that our method provides the highest cor-

relation coefficients among all the methods for both types

of shape distance, where higher coefficients indicate higher

correlation. On one hand, this result is expected, as the 3D-

GAE optimizes the network according to the Chamfer dis-

tances, while the other networks do not directly optimize

this objective. On the other hand, this result confirms that

the 3D-GAE indeed allows one to better control the latent

manifold learned by the network.

Reconstruction error and loss function. Table 4

presents the final average reconstruction errors of all train-

ing shapes for all the networks. We notice that, as ex-

pected from results reported by previous work, the 3D-AE

has lower reconstruction errors, while the other networks

provide better interpolation at the expense of higher recon-

struction errors. The 3D-GAE sits in-between the 3D-AE

and 3D-VAE. In addition, 3D-GAE* denotes the 3D-GAE

trained only with the original GAE loss rather than the com-

bined loss. We notice how the reconstruction errors for this

network are slightly higher than the network with the com-

bined loss. The main reason is that, with the combined loss,

batches are taken into consideration during training, making

the model more efficiently converge to a global optimum.

Although the difference between the reconstruction errors

of 3D-GAE and 3D-GAE* is small, we conjecture that the

combined loss may have more impact on larger datasets.

Execution time. The deep networks are trained with an

NVIDIA GeForce GTX 1070 Ti GPU with 8GB of memory

and CUDA version 10.0. Table 5 presents the training time

for each type of network. We see that the 3D-GAE takes

around 2.4 and 1.3 times longer to train than the 3D-AE and

3D-VAE, respectively, given that its loss function considers

a neighborhood of data points for each training sample.

4. Conclusion, limitations, and future work

In this paper, we introduced the 3D-GAE, a generative

model of 3D shapes based on the GAE [20]. We demon-

strated that the 3D-GAE is able to learn a meaningful la-

tent manifold by exploring shape relations derived from the

Chamfer distance. We showed that the latent manifold leads

to better-quality interpolation and extrapolation of shapes.

Despite its advantages over AEs and VAEs, the 3D-GAE

also has certain limitations. First, the training time of 3D-

GAE is relatively longer than that of previous methods,

since its loss function considers the neighborhood of each

training sample. For similar reasons, the 3D-GAE requires

the construction of a larger tensor graph for training. Thus,

it requires more memory than other types of networks, and

with the current hardware capabilities, it would be difficult

to adapt the 3D-GAE to volumes with higher resolution,

such as volumes with 64× 64× 64 voxels.

Given these limitations, one direction for future work is

to base the generative model on a more suitable represen-

tation for shapes, such as an implicit representation [5, 14],

which leads to a sparser input. A more natural shape repre-

sentation would likely also lead to shapes with better visual

quality. In addition, it would be interesting to explore other

data relationships beyond the Chamfer distance for learning

application-specific latent manifolds. For example, seman-

tic relations or part structures could be considered in the

loss function used for training.
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