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Abstract

3D object instance reconstruction from a cluttered 2D

scene image is an ill-posed problem. The main challenge is

posed by the lack of geometric information in color images

and heavy occlusions that lead to incomplete shape details.

To deal with this problem, existing works on 3D instance re-

construction directly learn the mapping between the inten-

sity image and the corresponding 3D volume model. Differ-

ent from these works, we propose to explicitly incorporate

2.5D geometric cues, such as the surface normal, relative

depth, and height, while generating full 3D shapes from 2D

images. With an intermediate step focused on estimating

these 2.5D geometric features, we propose a novel convolu-

tional neural network design that progressively moves from

2D to full 3D estimation. Our model automatically gener-

ates instance-specific surface normal maps, relative depth,

and height that are compactly encoded within our network

design and consequently used to improve the 3D instance

reconstruction. Our experimental results on the large-scale

synthetic SUNCG dataset and the real-world NYU depth v2

dataset demonstrate the effectiveness of the proposed ap-

proach where it beats the state-of-the-art Factored3D net-

work [15].

1. Introduction

3D instance reconstruction provides valuable informa-

tion about an object’s shape and pose in the real-world.

Such details are fundamental to scene understanding that,

in turn, helps a diverse set of important applications such

as robotic navigation, object grasping, context-aware digital

assistants, and augmented reality. 3D reconstruction from a

single monocular image is, however, an ill-posed problem

that is further complicated by the heavy occlusions, clut-

tered regions, illumination variation, and the diverse range

of object types commonly present in indoor scenes.

Recent research proposes to solve this problem by first

performing 2D object detection followed by 3D single in-

stance reconstruction [15]. They leverage the large-scale

synthetic dataset SUNCG [14] with its abundant 3D anno-

Figure 1. Illustration of the geometric cues (top) and an overview

of our approach (bottom). The geometric cues we propose to use

are (a) depth map, (b) height map, and (c) surface normal map.

Our network architecture shown in (d) compactly encodes geo-

metric and object features to estimate 3D instance shape and pose.

tations to learn their predefined 3D object pose and shape

parameters. However, they do not ‘explicitly’ consider any

geometric cues, which are essential for 3D reconstruction.

In the literature, 2.5D geometric representations have been

identified as informative cues to better constrain the recon-

struction task [10]. In this work, we propose an efficient

way to use geometry-driven representations as complimen-

tary features for 3D object instance reconstruction. First,

since the surface shape is a view-invariant geometric repre-

sentation for 3D objects, here we select surface normals to

distinctly characterize the 3D surfaces. In contrast to the tra-

ditional generation of surface normal approximation from

the depth image, we utilize 3D mesh models to generate

an accurate surface normal. The features based on surface

normals are efficiently computed from the input monocular

images and subsequently used for improved 3D reconstruc-

tion. Second, the importance of object height and depth for

object reconstruction in human vision has been advocated

by [10, 17]. Motivated by Marr’s work [10], we compute

relative height and depth as additional geometric cues in-
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Figure 2. Comparison between geometric images obtained from real (a-d) and synthetic (e-h) data. For real data, NYU depth v2 [13] is

used, (b) is the raw depth image, (c) is generated from depth image through a least-square solution [16], (d) is a more smoothed version

using depth [8]. For synthetic data SUNCG [14] is used, (e) is the RGB image, (f) surface normal, (g) depth and (h) height map.

stead of absolute height and depth for 3D object instance

reconstruction from a cluttered scene.

The key features of our work are: (1) We propose a way

to generate and model surface normals, relative height, and

depth as latent features to ensure that the reconstructed 3D

shape implicitly conforms with the local geometry. (2) The

surface normals, relative height, and depth are only required

at training time, not inference time, and do not require man-

ual labeling. (3) Experimental results show that our method

reduces 3D shape uncertainty as well as improves pose es-

timation accuracy over the state-of-the-art methods.

2. Related Work

Several works have proposed to use geometry informa-

tion for vision problems. [3, 18] recommended using stereo

left-right geometry consistency constrains for single view

depth estimation. However, the stereo setting is quite sen-

sitive to texture and lighting. To reconstruct 3D vertices

of a non-rigid surface from a single view, [11] proposed to

combine the estimation of 2D depth and 3D vertices through

the Procrustes transformation. However, their methods only

deal with the non-rigid surfaces, like paper sheets, while in-

door object instances are usually with planar surfaces [9, 4]

and have a compact form in the 3D space. [12] tries to learn

depth and surface normal estimation in a cyclic style to reg-

ularize the rough estimates with the local tangent surface

consistency. However, this method requires a reasonable

initial depth and surface normal estimation first.

3. Our Approach

In this work, we demonstrate the importance of geo-

metric information, encoded in the form of explicit feature

maps, as shown as (a-c) in Fig. 1, for 3D object instance re-

construction from a single color image of a cluttered scene.

Specifically, we investigate the use of a surface normal map,

relative height, and depth as the geometric primitives for the

representation of a 3D surface. The main challenge is how

to effectively use surface normals, relative height, and depth

information for the generic object instance reconstruction

task. To this end, we propose an efficient architecture that

explicitly learns a 2.5D mapping that is subsequently used

for an improved 3D reconstruction. Our network design re-

quires no extra annotation and needs only a single intensity

image to infer a complete 3D shape.

Below, we first elaborate on our geometric features, fol-

lowed by the network architecture and the training strategy.

3.1. Geometric Features

Previous works [6, 7, 16, 5, 12] deal with surface nor-

mal estimation based on real datasets. They capture real

depth images by laser scanners, commodity depth sensors,

or stereo cameras. However, all these captured depth con-

tain noise or scarcity, and an error will be accumulated after

local surface normal approximation through a least-square

calculation. Even though [8] proposed to denoise local sur-

face normal estimation through optimization to keep surface

edges, the method still has high computation cost and prob-

lems with reflective surfaces and insufficient local neighbor

depth measurement. In contrast, we utilize synthetic data to

efficiently generate more accurate and smooth surface nor-

mal, depth, and height images. To illustrate this discrep-

ancy, we show some geometric image examples in Fig. 2.

3.1.1 Instance-centered Surface Normal

The surface shape is a view-invariant geometric primitive

for a 3D object. The surface normal per 2D pixel is an ef-

ficient denotation of the surface compared to complex sur-

face representations such as a 3D mesh representation (3D

vertices, edges, and faces). We propose to harness readily

available synthetic data to obtain the exact surface normal

maps using a surface mesh technique. Hence the surface

normal maps we use are more accurate than the previously

used least-square solution. Furthermore, to exclude influ-

ences from each other, we obtain the normalized instance-

centric surface normal vector !n ∈ R
3 for each instance.

3.1.2 Instance-centered Relative Height

As described by the Manhattan world assumption [2],

human-made environments exhibit a regular structure, e.g.,

most objects lie in parallel to the ground surface. Here, we

design a height above ground feature h ∈ R to emphasize

on the 3D space organization from the top view for each

visible pixel. However, direct use of an absolute height



Figure 3. The complete network architecture of our work. Input is a single cluttered scene RGB image. Blue branch is for Instance-centered

geometric feature estimation and encoding, namely, surface normal, relative depth or height. Yellow branch is for ROI pooled features.

Red branch is for bounding box features. Green branch for coarse feature extraction. All the above features are concatenated to a latent

feature space. Then shape and pose predictors estimate 3D instance shape and pose separately. Better seen in color.

measure does not provide a sound geometric feature due to

the changes in viewpoint across different scenes. For single

object reconstruction, we argue that relative height per ob-

ject is a more proper geometric cue instead of the absolute

height. Specifically, each object’s height is normalized by

the total height variation of itself in a scene. We compute

the relative height h = (h−min(h))/(max(h)−min(h))
from mesh model of synthetic data.

3.1.3 Instance-centered Relative Depth

As a complementary feature to h, depth d ∈ R captures the

3D organization from the camera view. For objects in a clut-

tered scene, the original absolute depth is not that important

for 3D reconstruction, while relative depth d of object in-

stance is more helpful, here we propose to encode depth to

relative depth d = (d−min(d))/(max(d)−min(d)) as the

depth offset normalized by object size.

3.2. Network Architecture

We treat instance object reconstruction from a single im-

age of a cluttered scene as a combination of 2D object

detection and 3D reconstruction tasks, following the ini-

tial network design of Factored3D [15]. To add geomet-

ric cues into this architecture, we propose three branches,

respectively, for surface normal, height, and depth estima-

tion and encoding. The complete network architecture is

shown in Fig. 3. Our model consists of the following

parts: (1) Global and local feature extraction, (2) Instance-

centered feature extraction, (3) Geometric cues estimation

and encoding, (4) Bounding box encoding, and (5) 3D ob-

ject shape and pose prediction. Here, we only focus on the

surface normal, relative height and depth estimation and en-

coding part, please refer [15] for details on other parts.

Based on the ROI pooled instance-centered features, we

first estimate 2D object structure using a surface normal es-

timator network and then compactly represent it through an

encoder stage. The surface normal estimator can be under-

stood as a decoder (or a generator) that contains one layer

of 2D up-convolution, one layer of 2D convolution, and one

sigmoid layer towards the end. It generates a three-channel

instance-centered surface normal map !n. In the next stage,

the surface normal encoder projects the estimated normal to

a latent surface normal feature. Precisely, the encoder con-

sists of two convolution and two 300-unit fully-connected

layers. The network architecture of height and depth esti-

mator is similar to the surface normal network, except the

final map predicted by the decoder is one channel.

For object-centric features, bounding box features, and

coarse object features, we follow the architectures proposed

in [15]. Afterwards, all the features are concatenated.

3.3. Network Training

We train our proposed network design in two stages. The

first stage is for training the geometric cue estimators sep-

arately with the corresponding losses. The second is for

training all feature branches, as in Fig. 3 with instance,

shape and pose losses, training together with the other parts.

For 3D instance, shape, and pose output, we follow the ob-

ject shape normalization and relative pose configuration in

[15]. We explore each surface normal, depth, and height

features separately. The objective functions used for the

training are explained below.

Surface Normal Estimation Loss: For surface normal

learning, we use a cosine angle loss Eq. 1 between the

predicted instance-centered surface normal and the ground-

truth. The loss is given by:

Ln = 〈!n, !̂n〉, (1)

where, !n is ground-truth instance-centered surface normal,



Figure 4. Visualization of 3D reconstruction with ground-truth bounding boxes on the SUNCG test dataset. Each row is one comparison

between our surface normal branch and [15]. Our predicted shape has better object shape, pose estimations, more details in Section 4.4

qualitative part. Instance color is only to distinguish between object instances.

!̂n is the estimated surface normal.

Height Estimation Loss: For relative height loss, we

utilize a mean square error loss Eq. 2 between the predicted

instance-centered relative height and the ground-truth,

Lh =
1

N

∑

i

(hi − ĥi)
2. (2)

Depth Estimation Loss: For relative depth loss, we uti-

lize a mean square error loss Eq. 3 between the predicted

instance-centered relative depth and the ground-truth,

Ld =
1

N

∑

i

(di − d̂i)
2. (3)

3D Shape Loss: We use a voxel representation V =
{vi} for 3D shape, where vi ∈ {0, 1}. v̂i is the predicted

voxel occupancy probability for voxel at location i. We treat

shape estimation as a voxel-level binary classification prob-

lem, so we apply a voxel-level cross entropy loss Eq. 4 to

learn this representation,

LV =
1

N

∑

i

(vi log v̂i + (1− vi) log(1− v̂i)). (4)

3D Pose Loss

• Rotation. Our objective loss for rotation is the negative

logarithm likelihood loss Eq. 5 for the predicted prob-

ability of the ground-truth class q̂g . q̂ is the predicted

probability over all 24-bin classes,

Lq = − log(q̂g). (5)

• Scale. We use squared Euclidean distance Eq. 6 be-

tween predicted scale values ŝ and ground-truth s.

This distance is calculated in the logarithm space to

reduce the influence of magnitude,

Ls = ‖log(s)− log(ŝ)‖
2

2
. (6)

• Translation. Translation loss is depicted as Euclidean

loss Eq. 7 between predicted t̂ and ground-truth t.

Lt =
∥

∥t− t̂
∥

∥

2

2
. (7)

Training: We train geometric cue estimation with its

correspondent estimation loss first, and then train the ge-

ometric cue estimator and encoder with all other modules

together using weighted 3D shape and pose loss,

L =
∑

b∈B+

(wV LV + wqLq + wsLs + wtLt − ln(f))

+
∑

b∈B−

ln(1− f). (8)

Here wV , wq, ws, wt are the loss weights and B+,B−
means positive and negative bounding boxes, respectively.

4. Experiments

Here, we show our experimental results for 3D object in-

stance reconstruction from a single cluttered image. We use

the SUNCG [14] synthetic indoor scene dataset for network

training as there are complete 2D and 3D annotation of ob-

jects. To explore our method’s generalization ability to a

real scenario, we show the evaluation results on the NYU

depth v2 dataset [13]. As we show in Fig. 2, there exist a lot

of noise in the surface normal and depth images from the

real dataset. Hence, for NYU depth v2 dataset, we fine-tune

the whole network trained on SUNCG dataset. We com-

pare our method with others both qualitatively and quanti-

tatively on the SUNCG dataset and NYU depth v2 datasets.



Figure 5. Visualization of 3D reconstruction with ground-truth bounding boxes on NYU depth v2 test set. Each row is one comparison

between our surface normal branch and [15]. Our predicted output has better object shape, pose estimations, more details in section

qualitative text part of Sec. 4.4. Instance color is only to distinguish between object instances.

We investigate the effectiveness of each of the three geo-

metric cues. We follow the evaluation criteria from [15] for

a fair comparison. The qualitative and quantitative results

under these criteria show that our method performs better

than state-of-the-art methods.

4.1. Dataset

SUNCG Dataset: This is a large-scale synthetic indoor

scene dataset [14], containing 45,622 3D houses, 2644 ob-

ject instance CAD models over 84 object categories. It

is composed of simulated rooms and furniture from [1].

This furniture is well selected and arranged to simulate

real scenes so that 3D object shape and pose are credi-

ble. For a fair comparison, we select the same six ob-

ject categories - bed, chair, desk, sofa, table, television

as [15]. We use the same split 70/10/20 train/test/val as

[15]. Surface normal generation: Thanks to synthetic

data, we calculate surface normal directly from the ob-

ject CAD models. Specifically, for each surface pixel, we

have a corresponding 3D triangle polygon and its normal.

We make sure each normal orientation is consistent with

view point angle, otherwise we flip it to ensure consistency.

Height generation: For relative height generation, in the

synthetic dataset like SUNCG, we can obtain the ground

height, as the dataset is designed to meet the Manhanttan

assumption, therefore the y axis of real world coordinate

(X,Y, Z) is along the gravity direction. So absolute height

for each 3D point (x, y, z) could be calculated by the sub-

traction hab = y − yg between y and ground floor height

yg . Then the relative height per each object h is calcu-

lated by h = (hab − min(hab))/(max(hab) − min(hab)).
Depth generation: To generate relative depth d, we calcu-

late d = (d − min(d))/(max(d) − min(d)). This depth d

Dataset Method
Shape(IoU)

Median IoU ↑ Mean IoU ↑ %(IoU > 0.25) ↑ %(IoU > 0.5) ↑

SUNCG
Factored3D 0.48 0.49 75.06 47.49

surface normal 0.61 0.594 81.29 59.64

height 0.61 0.588 80.66 60.19

depth 0.61 0.587 81.04 59.74

NYUv2
Factored3D 0.48 0.53 77.37 49.17

surface normal 0.51 0.52 78.56 50.96

height 0.53 0.52 77.37 51.75

depth 0.51 0.51 78.29 50.69

Table 1. 3D shape estimation results with ground-truth bounding

boxes on the test set of SUNCG dataset and NYU depth v2 dataset.

Factored3D is the work from [15].

can be directly calculated by the distance between the 3D

point of camera and each point from synthetic dataset.

NYU depth v2 Dataset: [13] uses a Kinect sensor to

capture a variety of indoor scenes. There are 1449 images

with camera information, with 795 images for training and

654 images for testing. Guo et al. [4] offer 3D surface mesh

annotation for object instances. We select the same object

categories as we do for the SUNCG dataset. Since then, we

have the 3D annotations to make a quantitative and qualita-

tive comparison on this dataset. We fine-tune the network

trained on SUNCG and show our approach’s generality.

4.2. Evaluation Criteria

As object instance reconstruction from cluttered scenes

is a composition of 2D object detection and 3D object shape

and pose estimation, we need to evaluate object detection,

single object shape, or 6D pose estimation separately for

each result along with ground-truth bounding boxes. So for

each result with shape (V ) and pose (quaternion q, scale s,

and translation t) estimation, we make a separate evaluation

over them through different thresholds δ. We follow the

basic settings of [15]. Besides, we found these thresholds



Dataset Method
Translation (meters)

MedErr ↓ MeanErr ↓ %(Err < 1.) ↑ %(Err < 0.5) ↑ %(Err < 0.1) ↑

SUNCG
Factored3D 0.303 0.578 91.09 74.46 6.80

normal 0.267 0.463 93.22 78.81 9.66

height 0.261 0.461 92.99 78.76 9.97

depth 0.265 0.466 93.03 78.85 9.46

NYUv2
Factored3D 0.55 0.71 79.42 44.14 1.46

normal 0.56 0.75 76.97 44.01 1.59

height 0.56 0.75 77.56 42.95 1.46

depth 0.56 0.75 77.23 43.35 1.85

Dataset Method
Rotation (degrees)

MedErr ↓ Mean Err ↓ %(Err<30) ↑ %(Err < 10) ↑ %(Err< 5) ↑

SUNCG
Factored3D 5.02 31.80 77.90 70.77 49.87

normal 4.41 24.61 83.83 77.14 55.12

height 4.382 24.29 84.07 77.44 55.51

depth 4.385 24.45 83.92 77.35 55.31

NYUv2
Factored3D 15.92 43.43 62.87 32.23 9.07

normal 14.82 41.40 66.51 34.35 9.53

height 15.19 41.00 65.32 33.69 8.54

depth 14.98 42.26 65.25 32.69 8.54

Dataset Method
Scale

MedErr ↓ Mean Err ↓ %(Err<0.5) ↑ %(Err<0.3) ↑ %(Err<0.2) ↑

SUNCG

Factored3D 0.1208 0.2263 87.67 75.79 64.43

normal 0.1051 0.1978 90.40 79.60 68.38

height 0.1058 0.1995 90.28 79.48 68.69

depth 0.1041 0.1977 90.44 79.63 68.67

NYUv2
Factored3D 0.39 0.422 68.96 33.55 14.76

normal 0.39 0.43 67.17 33.16 16.15

height 0.39 0.43 67.37 32.69 14.16

depth 0.38 0.421 70.68 35.14 16.02

Table 2. 3D pose estimation results with ground-truth bounding

boxes on the test set of SUNCG dataset and NYU depth v2 dataset.

Factored3D is the work from [15].

are a little loose and added more strict settings for them. We

will denote all the details in the quantitative part.

4.3. Implementation Details

For the model trained on the SUNCG dataset, we train

with ground-truth bounding boxes for four epochs and pro-

posals [19] with one epoch for each geometric cue estima-

tor. Then, we train each estimator separately with an en-

coder and other network parts together with ground-truth

bounding boxes for four epochs and object proposals for

five epochs. We fine-tune the network parts from [15]

and fine-tune the shape decoders during the second train-

ing stage. We keep the hyper-parameter settings as [15].

Then for the NYU depth v2 dataset, since in real scenario,

objects are much more cluttered than synthetic datasets, we

only fine-tune the models trained on SUNCG with ground-

truth boxes and their corresponding 3D annotation. For the

SUNCG trained models, we use batch size 8, while for the

model fine-tuned on the NYU depth v2, we use batch size

16. For all other parameters we follow [15].

4.4. Compare with State-of-the-art

To analyze 3D instance reconstruction and 2D object de-

tection from a cluttered scene image separately, we directly

use the ground-truth bounding boxes to evaluate reconstruc-

tion performance.

Qualitative results: For qualitative results, we show

some examples from surface normal cue as ours indicator

in Fig. 4 on SUNCG dataset and Fig. 5 on NYU depth v2

dataset. Object instance reconstruction results are repre-

sented by volume, and a voxel size of each volume denotes

objectiveness occupancy as [15]. Each row is a result rep-

resentation for one single cluttered scene image. To have a

comprehensive comparison, we show 2D rendered images

of 3D object instances in two views, namely, camera view

column (b-d) and top view column (e-g). First, our methods

have better object shape detail estimation. For example, in

row 2, the reconstructed table leg from ours is more simi-

lar to the ground-truth than the ones from [15]. Also, our

method has better small object estimation quality, as shown

in rows 3; better pose estimation quality as shown in row 1;

better estimation quality from bad lighting image as shown

in row 1. We will show quantitative results in the following

quantitative analysis section to clarify our advantages of all

geometric cues.

Quantitative Results: We evaluate the 3D shape and

pose estimation based on the evaluation criteria given in

Sec. 4.2.

(a) Shape evaluation: We evaluate shape estimation on

criteria of the median and mean IoU, and precision % based

on two thresholds %(δV = 0.25, 0.5). From Table 1, we

can see that the joint modeling of object and surface nor-

mal has led to a substantial improvement, especially under

the more strict threshold. These results demonstrate that

the geometric cues help reduce the 3D shape estimation un-

certainty. Besides, we found all these geometric cues do

improve the baseline method, while the surface normal is

slightly better or at least comparable to others.

(b) Pose evaluation: We evaluate rotation, translation,

and scale estimation and show results in Table 2. Our work

outperforms [15] both in terms of error and precision mea-

sures for rotation, translation, and scale estimation. Specif-

ically, for rotation, the fine-tuned model on NYU depth v2

shows surface normal is better than other geometric cues.

For scale, interestingly, we found the depth cue works bet-

ter than other geometric cues, we assume this is due to the

its relevance to object size. For translation, we found that

the existing Factored3D model works pretty well.

5. Conclusion

We present an effective way to generate accurate geo-

metric cues, specifically, surface normals, height, and depth

maps. To include these geometric cues in 3D instance re-

construction from a single image, we propose an efficient

way to encode latent features to concatenate with other fea-

tures for 3D instance reconstruction. We find this strat-

egy improves the baseline method. For shape, rotation,

and scale, there is a clear improvement. In summary, for

3D reconstruction, we find that training using geometric

cues from synthetic data improves results for learning-based

methods. For future work, we will explore the use of geo-

metric cues in the 3D output space directly.
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