
Mesh Variational Autoencoders with Edge Contraction Pooling

Yu-Jie Yuana,b, Yu-Kun Laic, Jie Yanga,b, Qi Duand, Hongbo Fue and Lin Gaof,a,b*

aBeijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, CAS
bUniversity of Chinese Academy of Sciences

cSchool of Computer Science and Informatics, Cardiff University, UK
dSenseTime Research

eCity University of Hong Kong
fShenzhen Research Institute of Big Data, Shenzhen 518172

Abstract

3D shape analysis is an important research topic in com-

puter vision and graphics. While existing methods have

generalized image-based deep learning to meshes using

graph-based convolutions, the lack of an effective pooling

operation restricts the learning capability of their networks.

In this paper, we propose a novel pooling operation for

mesh datasets with the same connectivity but different ge-

ometry, by building a mesh hierarchy using mesh simplifica-

tion. For this purpose, we develop a modified mesh simpli-

fication method to avoid generating highly irregularly sized

triangles. Our pooling operation effectively encodes the

correspondence between coarser and finer meshes in the hi-

erarchy. We then present a variational auto-encoder (VAE)

structure with the edge contraction pooling and graph-

based convolutions, to explore probability latent spaces of

3D surfaces and perform 3D shape generation. Our net-

work requires far fewer parameters than the original mesh

VAE and thus can handle denser models thanks to our new

pooling operation and convolutional kernels. Our evalua-

tion also shows that our method has better generalization

ability and is more reliable in various applications, includ-

ing shape generation and shape interpolation.

1. Introduction

In recent years, 3D shape datasets have been increas-

ingly available on the Internet. Consequently, data-driven

3D shape analysis has been an active research topic in com-

puter vision and graphics. Apart from traditional data-

driven works such as [7], recent works attempted to gener-

alize deep neural networks from images to 3D shapes such

as [30, 31, 18] for triangular meshes, [24] for point clouds,

*Corresponding Author: gaolin@ict.ac.cn (Lin Gao)

[35, 21] for voxel data, etc. In this paper, we concentrate on

deep neural networks for triangular meshes. Unlike images,

3D meshes have complex and irregular connectivity. Most

existing works tend to keep mesh connectivity unchanged

from layer to layer, thus losing the capability of increased

receptive fields when pooling operations are applied.

As a generative network, the Variational Auto-Encoder

(VAE) [16] has been widely used in various kinds of gen-

eration tasks, including generation, interpolation and ex-

ploration on triangular meshes [31]. The original Mesh-

VAE [31] uses a fully connected network that requires a

huge number of parameters and its generalization ability

is often weak. Although the fully connected layers allow

changes of mesh connectivity between layers, due to irreg-

ular changes, such approaches cannot be directly general-

ized to convolutional layers. Some works [18, 9] adopt

convolutional layers in the VAE structure. However, such

convolution operations cannot change the connectivity of

the mesh. The work [26] introduces sampling operations in

CNNs on meshes, but their sampling strategy does not ag-

gregate all the local neighborhood information when reduc-

ing the number of vertices. Therefore, in order to deal with

denser models and enhance the generalization ability of the

network, it is necessary to design a pooling operation for

meshes similar to the pooling for images to reduce the num-

ber of network parameters. Moreover, it is desired that the

defined pooling can support further convolutions and allow

recovery through a corresponding de-pooling operation.

In this paper we propose a VAE architecture with newly

defined pooling operations. Our method uses mesh simpli-

fication to form a mesh hierarchy with different levels of

details, and achieves effective pooling by keeping track of

the mapping between coarser and finer meshes. To avoid

generating highly irregular triangles during mesh simpli-

fication, we introduce a modified mesh simplification ap-

proach based on [11]. The input to our network is a vertex-

based deformation feature representation [8], which unlike

3D coordinates, encodes deformations using deformation

gradients defined on vertices. Our framework uses a col-

lection of 3D shapes with the same connectivity to train the

network. Such meshes can be easily obtained through con-

sistent remeshing. Also, we adopt graph convolutions [6]

in our network. In all, our network follows a VAE architec-

ture where pooling operations and graph convolutions are

applied. As we will show later, our network not only has

better generalization capabilities but also can handle much

higher resolution meshes, benefiting various applications,

such as shape generation and interpolation.

2. Related Work

Deep Learning for 3D Shapes. Deep learning on 3D

shapes has received increasing attention. Boscaini et al. [2,

3] generalize CNNs from the Euclidean domain to the non-

Euclidean domain, which is useful for 3D shape analysis

such as establishing correspondences. Bronstein et al. [5]

give an overview of utilizing CNNs on non-Euclidean do-

mains, including graphs and meshes. Masci et al. [20] pro-

pose the first mesh convolutional operations by applying

filters to local patches represented in geodesic polar coor-

dinates. Maron et al. [19] parameterize a surface to a planar

flat-torus to define a natural convolution operator for CNNs

on surfaces. Wang et al. [33, 34] propose octree-based con-

volutions for 3D shape analysis. Unlike local patches, pla-

nar flat-tori, or octrees, our work performs convolutional

operations using vertex features [8] as input.

To analyze meshes with the same connectivity but differ-

ent geometry, the work [31] first introduced the VAE archi-

tecture to 3D mesh data, and demonstrates its usefulness us-

ing various applications. Tan et al. [30] use a convolutional

auto-encoder to extract localized deformation components

from mesh datasets with large-scale deformations. Gao et

al. [9] propose a network that combines convolutional mesh

VAEs with CycleGAN [37] for automatic unpaired defor-

mation transfer. Their follow-up work [10] further proposes

a two-level VAE for generating 3D shapes of man-made ob-

jects with fine geometry details and complex structures. The

works [30, 9] apply convolutional operations to meshes in

the spatial domain, while the works of [6, 13] extend CNNs

to irregular graphs by construction in the spectral domain,

and show superior performance when compared with spatial

convolutions. Following [6, 36], our work also performs

convolutional operations in the spectral domain.

While pooling operations have been widely used in deep

networks for image processing, existing mesh-based VAE

methods either do not support pooling [31, 9], or use a sim-

ple sampling process [26], which is not able to aggregate all

the local neighborhood information. In fact, the sampling

approach in [26], although also based on a simplification

algorithm, directly drops vertices, and uses the barycen-

tric coordinates in triangles of the coarse mesh to recover

the lost vertices by interpolation. In contrast, our pool-

ing operations can aggregate local information by record-

ing the simplification procedure, and support direct reversal

of the pooling operation to effectively achieve de-pooling.

More recently, Hanocka et al. [12] proposed MeshCNN,

containing a dynamic mesh pooling operation, which con-

ducts mesh simplification according to specific tasks. On

the contrary, we define our pooling based on a static mesh

simplification algorithm, aiming for generating high quality

meshes. The static algorithm ensures consistent hierarchies,

so better preserves geometric details and is more robust.

Uniform Sampling or Pooling Methods. Taking point

clouds as input, PointNet++ [25] proposes a uniform sam-

pling method for point cloud based neural networks. Us-

ing the same idea, TextureNet [14] also conducts uniform

sampling on the vertices of a mesh. This kind of sampling

method destroys the connection between vertices, turning

mesh data into a point cloud, which cannot support further

graph convolutions. In contrast, simplification methods can

build mesh hierarchies, so can help us perform mesh pool-

ing operations. However, most simplification methods, such

as [11], are shape-preserving, but vertices on the simplified

meshes can be highly non-uniform. Remeshing operations

such as [4], on the other hand, can build uniform simpli-

fied meshes, but lose the correspondence between meshes

in the hierarchy. We propose a modified mesh simplifica-

tion method based on the classic method [11] to simplify

meshes more uniformly and record the correspondences be-

tween the coarse and dense meshes for newly defined mesh

pooling and de-pooling operations.

3. Our Framework

In this section we introduce the basic operations and net-

work architecture used in our framework.

3.1. Mesh Simplification

We use mesh simplification to help build reliable pool-

ing operations. For this purpose, mesh simplification not

only creates a mesh hierarchy with different levels of de-

tails, but also ensures the correspondences between coarser

and finer meshes. Our simplification process is based on

the classical method [11], which performs repeated edge

contraction in an order based on a metric measuring shape

changes. However, the original approach cannot guarantee

that the simplified mesh contains evenly distributed trian-

gles. To achieve more effective pooling, each vertex in the

coarser mesh should correspond to a similarly sized region.

Our observation is that the edge length is an important

indicator for this process. To avoid contracting long edges,

we incorporate the edge length as one of the criteria to order

pairs of points to be simplified. The original work defines

the error at vertex v = [vx, vy, vz, 1]
T to be a quadratic

İ N (0,I)

Dense Coarse

DenseCoarse

Feature
Graph Convolution
Batch Normalization
Tanh
(De-)Pooling

Reshape

Fully Connected

Pooling

De-pooling

Figure 1. Our network architecture. ǫ is a random variable with a Gaussian distribution with 0 mean and unit variance.

Figure 2. Comparison of the mesh simplification algorithm [11]

and our modified version. (a) the original mesh with 12,500 ver-

tices, (b) a result of [11] with 6,251 vertices, and (c) our result with

6,250 vertices.

form vTQv, where Q is the sum of the fundamental error

quadrics introduced in [11]. For a given edge contraction

(v1,v2) → v̄, they simply choose to use Q̄ = Q1 + Q2

to be the new matrix which approximates the error at v̄.

So the error at v̄ will be v̄TQ̄v̄. We propose to add the

new edge length to the original simplification error metric.

Specifically, given an edge (vi,vj) to be contracted to a

new vertex v̄k, the total error is defined as:

E = v̄T

k Q̄kv̄k

+ γmax{Lkm, Lkn|m ∈ Ni, n ∈ Nj ,m 6= j, n 6= i},
(1)

where Lkm (resp. Lkn) is the new edge length between ver-

tex k and vertex m (resp. vertex n). Ni (resp. Nj) is the set

of neighboring vertices of vertex i (resp. vertex j), and λ
is a weight. Note that we only penalize the maximum edge

length around newly created vertices v̄k to effectively avoid

triangles with too long edges. In our experiments, we con-

tract half of the vertices between adjacent levels of details

to support effective pooling. A representative simplification

example is shown in Fig. 2, which clearly shows the effect

of our modified simplification algorithm. The advantage of

our modified simplification algorithm over the original one

on pooling and thus shape reconstruction will be discussed

in Section 4.1.

3.2. Pooling and De­pooling

Mesh simplification is achieved by repeated edge con-

traction, i.e., contracting two adjacent vertices to a new ver-

tex. We exploit this process to define our pooling operation,

in a way similar to image-based pooling. We use average

Simplify

Figure 3. We use a simplification algorithm to introduce our pool-

ing operation on meshes. The red vertices are simplified to the

green vertex by edge contraction and the features of the red ver-

tices are averaged to give the feature of the green vertex.

pooling for our framework (and alternative pooling opera-

tions can be similarly defined). As illustrated in Fig. 3, fol-

lowing an edge contraction step, we define the feature of a

new vertex as the average feature of the contracted vertices.

This ensures that the pooling operation effectively operates

at relevant simplified regions. This process has some ad-

vantages: It preserves a correct topology to support multi-

ple levels of convolutions/pooling, and makes the receptive

field well defined.

Since our network has a decoder structure, we also need

to properly define a de-pooling operation. We similarly

take advantage of simplification relationships, and define

de-pooling as the inverse operation: the features of the ver-

tices on the simplified mesh are equally assigned to the cor-

responding contracted vertices on the dense mesh.

3.3. Graph Convolution

To form a complete neural network architecture, we

adopt the spectral graph convolutions introduced in [6]. Let

x be the input and y be the output of a convolution opera-

tion. x and y are matrices where each row corresponds to a

vertex and each column corresponds to a feature dimension.

Let L denote the normalized graph Laplacian. The spectral

graph convolution used in our network is then defined as

y = gθ(L)x =
H−1∑

h=0

θhTh(L̃)x, (2)

where L̃ = 2L/λmax − I, λmax is the largest eigenvalue,

θ ∈ R
H is polynomial coefficients, and Th(L̃) ∈ R

V×V is

the Chebyshev polynomial of order h evaluated at L̃.

3.4. Network Structure

As illustrated in Fig. 1, our network is built on our

average pooling operation and convolutional operation,

with a variational auto-encoder structure. The input to

the encoder is the preprocessed ACAP (As-Consistent-As-

Possible) features [8] with each dimension linearly scaled

to [−0.95, 0.95] to allow using tanh as activation function,

which are shaped as X ∈ R
V×9, where V is the number

of vertices and 9 is the dimension of the deformation repre-

sentation. The representation effectively encodes local de-

formations and copes well with large rotations.

Unlike the original mesh VAE [31], which uses fully

connected layers, the encoder of our network consists of

two graph convolutional layers and one pooling layer fol-

lowed by another graph convolutional layer. The output of

the last convolutional layer is mapped to a mean vector and

a deviation vector by two different fully-connected layers.

The mean vector does not have an activation function, and

the deviation vector uses sigmoid as the activation function.

The decoder mirrors the encoder steps. However, we use

different convolutional weights from the corresponding lay-

ers in the encoder, with all layers using the tanh output ac-

tivation function. Corresponding to the pooling operation,

the de-pooling operation as described in Section 3.2 maps

features in a coarser mesh to a finer mesh. The output of

the whole network is X̂ ∈ R
V×9, which has the identi-

cal dimension as the input, and can be rescaled back to the

deformation representation and used for reconstructing the

deformed shape.

In order to train our VAE network, we use the mean

squared error (MSE) as the reconstruction loss. Combined

with the KL-divergence [17], the total loss function for the

model is defined as

L =
1

2M

M∑

i=1

‖Xi − X̂i‖2F + αDKL(q(z|X)‖p(z)), (3)

where Xi and X̂i represent the preprocessed features of

the ith model and the output of the network. ‖ · ‖F is the

Frobenius norm of matrix, M is the number of shapes in

the dataset, α is a parameter to adjust the priority between

the reconstruction loss and KL-divergence. z is the latent

vector, p(z) is the prior probability, q(z|X) is the posterior

probability, and DKL is the KL-divergence.

3.5. Conditional VAE

When the VAE is used for shape generation, it is often

preferred to allow the selection of shape types to be gen-

erated, especially for datasets containing shapes from dif-

ferent categories (such as men and women, thin and fat,

see [23] for more examples). To achieve this, we refer

to [28] and add labels to the input and the latent vectors

to extend our framework. In this case, our loss function is

changed to

Lc =
1

2M

M∑

i=1

‖Xi
c − X̂i‖2F + αDKL(q(z|X, c)‖p(z|c)),

where X̂ is the output of the conditional VAE, and p(z|c)
and q(z|X, c) are conditional prior and posterior probabili-

ties, respectively.

3.6. Implementation Details

In our experiments, we contract half of the vertices with

γ = 0.001 in Eq. 1 and set the hyper-parameter H = 3 in

graph convolutions, α = 0.3 in the total loss function. The

latent space dimension is 128 for all our experiments. We

also use L2 regularization on the network weights to avoid

over-fitting. We use Adam optimizer [15] with the learning

rate set to 0.001.

4. Experiments

4.1. Framework Evaluation

To compare different network structures and settings, we

use several shape deformation datasets, including SCAPE

dataset [1], Swing dataset [32], Face dataset [22], Horse and

Camel dataset [29], Fat (ID:50002) from the MPI DYNA

dataset [23], and Hand dataset. For each dataset, it is ran-

domly split into halves for training and testing. We test the

capability of the network to generate unseen shapes, and

report the average RMS (root mean squared) errors.

Effect of Pooling. In Table 1 (Columns 3 and 8) we com-

pare the RMS errors of reconstructing unseen shapes with

and without pooling. The RMS error is lower by an average

of 6.92% with pooling. The results show the benefit of our

pooling and de-pooling operations.

Ablation Study. We compare spectral graph convolutions

with alternative spatial convolutions, both with the network

as shown in Fig. 1. The comparison results are shown in Ta-

ble 1 (Columns 2 and 3). One can easily find that spectral

graph convolutions give better results. Moreover, to demon-

strate the benefit of our simplification-based pooling oper-

ation, we compare our pooling with the original simplifi-

cation algorithm [11] for pooling, a representative uniform

remeshing method [4] for pooling, the existing graph pool-

ing method [27], and the mesh sampling operation [26]. Our

method aims for a uniform, but also shape-preserving sim-

plification, which leads to better generalization ability. The

results are shown in Table 1.

Comparison with State-of-the-Art. In Table 2, we com-

pare our method with the state-of-the-art mesh-based auto-

encoder architectures [9, 26, 31] in terms of RMS errors

of reconstructing unseen shapes. We also compare with

MeshCNN [12] in Table 3. We modify the segmenta-

tion network of MeshCNN for the encoding-decoding task.

Thanks to spectral graph convolutions and our pooling, our

method consistently reduces the reconstruction errors of un-

seen data, showing superior generalizability. We further

show qualitative reconstruction comparison with [9] and

[26] in Fig. 4. It shows that our method leads to more accu-

Dataset
Only Only Pooling Uniform Graph Mesh Our

Spatial Conv. Spectral Conv. with [11] Remeshing Pooling Sampling Method

SCAPE 0.1086 0.0825 0.0898 0.0813 0.0824 0.0831 0.0763

Swing 0.0359 0.0282 0.0284 0.0281 0.0292 0.0298 0.0268

Fat 0.0362 0.0267 0.0285 0.0305 0.0253 0.0289 0.0249

Hand 0.0300 0.0284 0.0271 0.0280 0.0306 0.0278 0.0260

Table 1. Comparison of RMS (root mean square) reconstruction errors for unseen data using our network with pooling (‘Our Method’),

without pooling (‘Only Spectral Conv.’), without pooling and with an alternative spatial convolution operator (‘Only Spatial Conv.’), with

original simplification [11]-based pooling, with uniform remeshing [4], with graph pooling [27] and with mesh sampling [26].

Dataset #. Vertices
Tan Gao Ranjan

Ours
2018 2018 2018

SCAPE 12500 - 0.1086 0.1095 0.0763

Swing 9971 - 0.0359 0.0557 0.0268

Fat 6890 0.0308 0.0362 0.0324 0.0249

Hand 3573 0.0362 0.0300 0.0632 0.0260

Face 11849 - 1.0619 1.1479 0.7257

Horse 8431 - 0.0128 0.0510 0.0119

Camel 11063 - 0.0134 0.0265 0.0115

Table 2. Comparison of RMS reconstruction errors for unseen data

using different auto-encoder frameworks proposed by Tan et al.

[31], Gao et al. [9], and Ranjan et al. [26]. ‘-’ means the corre-

sponding method runs out of memory (largely due to the use of

fully connected networks).

Dataset SCAPE Swing

Method MeshCNN Ours MeshCNN Ours

dihedral angle 0.0690 0.0006 0.0506 0.0003

inner angle 1 0.3245 0.0614 0.3713 0.0421

inner angle 2 0.3100 0.0529 0.2964 0.0402

edge-length ratio 1 0.3806 0.0661 0.3645 0.0537

edge-length ratio 2 0.3668 0.0649 0.3523 0.0475

Table 3. Comparison of MAE (mean absolute error) reconstruction

errors with MeshCNN [12]. We use MAE of the five edge features,

which are the inputs of MeshCNN, as the metric.

Figure 4. Qualitative comparison of reconstruction results for un-

seen data with [9] (left) and [26] (right). Reconstruction errors are

color-coded on the left and the results on the right also show close-

up views for more details. It can be seen that our method leads to

more accurate reconstructions and the method of [26] suffers from

easily noticeable artifacts.

rate reconstruction results than [9, 26]. We also perform an

experiment to illustrate that our network requires far fewer

parameters than the original MeshVAE. For Fat dataset with

6890 vertices for each shape, the original MeshVAE needs

129, 745, 920 parameters, while ours needs 7, 941, 042.

4.2. Generation of Novel Models

Once our network is trained, we can use the latent space

and decoder to generate new shapes. We use the stan-

dard normal distribution z ∼ N(0, I) as the input to the

trained decoder. It can be seen from Fig. 5 that our net-

work is capable of generating reasonable new shapes. To

prove that the generated shapes do not exist in the model

dataset, we find the nearest shapes based on the average

per-vertex Euclidean distance in the original datasets for vi-

sual comparison. It can be seen that the generated shapes

are indeed new and different from any existing shape in the

datasets. To show our conditional random generation abil-

ity, we train the network on the DYNA dataset from [23].

We use BMI+gender and motion as the condition to train

the network. As shown in Fig. 6, our method is able to

randomly generate models that are conditioned on the body

shape ‘50007’ – a male model with BMI 39.0 and condi-

tioned on the action with the label ‘One Leg Jump’ includ-

ing lifting a leg.

4.3. Mesh Interpolation

Our method can also be used for shape interpolation.

This is also a way to generate new shapes. We linearly in-

terpolate between the latent vectors of two shapes and the

probabilistic decoder outputs a 3D deformation sequence.

We compare our method on the SCAPE dataset [1] with

a state-of-the-art data-driven deformation method [7], as

shown in Fig. 7. We can see that the results by the data-

driven method of [7] tend to follow the movement se-

quences from the original dataset which has similar start and

end states, leading to redundant motions such as the swing

of right arm. In contrast, our interpolation results give more

reasonable motion sequences. We show more interpolation

results in Fig. 9, including sequences between newly gener-

ated models and models beyond human bodies.

We compare our network with MeshVAE [31] to show

the ability of our network for processing denser meshes. A

comparison example for interpolation is shown in Fig. 8.

5. Conclusions

In this paper we introduced a newly defined pooling op-

eration based on a modified mesh simplification algorithm

and integrated it into a mesh variational auto-encoder ar-

Figure 5. Randomly generated new shapes using our framework, along with their nearest neighbors (NN) in the original datasets.

Figure 6. Conditional random generation of new shapes using our

framework.

Figure 7. Comparison of mesh interpolation results with [7] (1st

row). The models in the leftmost and rightmost columns are the

input models to be interpolated.

chitecture, which uses per-vertex feature representations as

inputs, and utilizes graph convolutions. Through extensive

experiments we demonstrated that our generative model

has better generalization ability. Compared to the origi-

nal MeshVAE, our method can generate high quality de-

formable models with richer details. Our experiments also

show that our method outperforms the state-of-the-art meth-

Figure 8. Interpolation comparison between MeshVAE [31] and

our method. The original elephant model [29] has 42,321 vertices,

which cannot be handled by MeshVAE due to memory restriction

and therefore a simplified mesh with 5,394 vertices is used instead.

Our method operates on the original mesh model and produces

results with more details.

Figure 9. More interpolation results. (a)(b) more diverse shapes

other than human bodies. (c) results interpolated between newly

generated shapes.

ods in various applications including shape generation and

shape interpolation. One of the limitations of our method

is that it can only process homogeneous meshes. As future

work, it is desirable to develop a framework capable of han-

dling shapes with different topology as input. As our pool-

ing is based on mesh simplification, it is not suitable for the

cases that mesh simplification fails to generate reasonable

outputs, such as non-watertight meshes and highly irregu-

lar mesh input. Further research on mesh simplification is

required to deal with such cases.

Acknowledgement

This work was supported by National Natural Sci-

ence Foundation of China (NSFC) (No. 61872440 and

No. 61828204), Beijing Municipal Natural Science Foun-

dation (No. L182016), Beijing Program for International

S&T Cooperation Project (No. Z191100001619003), New-

ton Advanced Fellowship of Royal Society (No. 192151),

SenseTime Research Fund and Open Project Program of the

National Laboratory of Pattern Recognition (NLPR) (No.

201900055) and Open Research Fund from Shenzhen Re-

search Institute of Big Data (No. 2019ORF01013).

References

[1] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-

bastian Thrun, Jim Rodgers, and James Davis. SCAPE:

shape completion and animation of people. ACM Transac-

tions on Graphics (TOG), 24(3):408–416, 2005. 4, 5

[2] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and

Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. In NIPS, pages

3189–3197, 2016. 2

[3] Davide Boscaini, Jonathan Masci, Emanuele Rodolà,

Michael M Bronstein, and Daniel Cremers. Anisotropic dif-

fusion descriptors. Computer Graphics Forum, 35(2):431–

441, 2016. 2

[4] Mario Botsch and Leif Kobbelt. A remeshing approach to

multiresolution modeling. In SGP, pages 185–192, 2004. 2,

4, 5

[5] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric deep learning:

going beyond Euclidean data. IEEE Signal Processing Mag-

azine, 34(4):18–42, 2017. 2

[6] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in NIPS, pages

3844–3852, 2016. 2, 3

[7] Lin Gao, Shu-Yu Chen, Yu-Kun Lai, and Shihong Xia. Data-

driven shape interpolation and morphing editing. Computer

Graphics Forum, 36(8):19–31, 2017. 1, 5, 6

[8] Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Leif

Kobbelt, and Shihong Xia. Sparse data driven mesh defor-

mation. IEEE Transactions on Visualization and Computer

Graphics, 2019. 2, 4

[9] Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul Rosin,

Weiwei Xu, and Shihong Xia. Automatic unpaired shape de-

formation transfer. ACM Transactions on Graphics (TOG),

37(6):1–15, 2018. 1, 2, 4, 5

[10] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-

Kun Lai, and Hao Zhang. SDM-NET: Deep generative net-

work for structured deformable mesh. ACM Transactions on

Graphics (TOG), 38(6), Nov. 2019. 2

[11] Michael Garland and Paul S. Heckbert. Surface simplifica-

tion using quadric error metrics. In ACM SIGGRAPH, pages

209–216, 1997. 1, 2, 3, 4, 5

[12] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar

Fleishman, and Daniel Cohen-Or. MeshCNN: A network

with an edge. ACM Transactions on Graphics (TOG),

38(4):90:1–90:12, 2019. 2, 4, 5

[13] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convo-

lutional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015. 2

[14] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser,

Matthias Niessner, and Leonidas J. Guibas. TextureNet:

Consistent local parametrizations for learning from high-

resolution signals on meshes. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 2

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 4

[16] Diederik P. Kingma and Max Welling. Auto-encoding vari-

ational Bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[17] Solomon Kullback and Richard A. Leibler. On informa-

tion and sufficiency. The annals of mathematical statistics,

22(1):79–86, 1951. 4

[18] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh

Makadia. Deformable shape completion with graph convolu-

tional autoencoders. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 1

[19] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,

Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lip-

man. Convolutional neural networks on surfaces via seam-

less toric covers. ACM Transactions on Graphics (TOG),

36(4):71, 2017. 2

[20] Jonathan Masci, Davide Boscaini, Michael Bronstein, and

Pierre Vandergheynst. Geodesic convolutional neural net-

works on Riemannian manifolds. In ICCV workshops, pages

37–45, 2015. 2

[21] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional

Neural Network for Real-Time Object Recognition. In IROS,

2015. 1

[22] Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus

Wacker, Marcus Magnor, and Christian Theobalt. Sparse

localized deformation components. ACM Transactions on

Graphics (TOG), 32(6):179, 2013. 4

[23] Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and

Michael J. Black. Dyna: A model of dynamic human

shape in motion. ACM Transactions on Graphics (TOG),

34(4):120, 2015. 4, 5

[24] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 1

[25] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. PointNet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in NIPS, pages

5099–5108. Curran Associates, Inc., 2017. 2

[26] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J. Black. Generating 3D faces using convolutional

mesh autoencoders. In European Conference on Computer

Vision (ECCV), pages 725–741. Springer International Pub-

lishing, 2018. 1, 2, 4, 5

[27] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-

ing point cloud local structures by kernel correlation and

graph pooling. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), volume 4, 2018. 4,

5

[28] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning

structured output representation using deep conditional gen-

erative models. In Advances in NIPS, pages 3483–3491,

2015. 4

[29] Robert W. Sumner and Jovan Popović. Deformation transfer

for triangle meshes. ACM Transactions on Graphics (TOG),

23(3):399–405, 2004. 4, 6

[30] Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong

Xia. Mesh-based autoencoders for localized deformation

component analysis. In AAAI, 2018. 1, 2

[31] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Vari-

ational autoencoders for deforming 3D mesh models. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 1, 2, 4, 5, 6

[32] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan

Popović. Articulated mesh animation from multi-view sil-

houettes. ACM Transactions on Graphics (TOG), 27(3):97,

2008. 4

[33] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-CNN: Octree-based Convolutional Neu-

ral Networks for 3D Shape Analysis. ACM Transactions on

Graphics (TOG), 36(4), 2017. 2

[34] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. Adaptive O-CNN: A Patch-based Deep Rep-

resentation of 3D Shapes. ACM Transactions on Graphics

(TOG), 37(6), 2018. 2

[35] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-

man, and Joshua B Tenenbaum. Learning a Probabilistic La-

tent Space of Object Shapes via 3D Generative-Adversarial

Modeling. In Advances in NIPS, pages 82–90, 2016. 1

[36] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-

SpecCNN: Synchronized spectral CNN for 3D shape seg-

mentation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2282–2290, 2017. 2

[37] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017. 2

