
Neurodata Lab’s approach to the Challenge on Computer Vision for

Physiological Measurement

Mikhail Artemyev1, Marina Churikova1,2, Mikhail Grinenko1, and Olga Perepelkina1

1Neurodata Lab LLC, Miami, USA
2Lomonosov Moscow State University, Faculty of Biology, Department of Higher Nervous Activity,

Moscow, Russia
m.artemyev@neurodatalab.com, m.churikova@neurodatalab.com, m.grinenko@neurodatalab.com,

o.perepelkina@neurodatalab.com

Abstract

This paper introduces the Neurodata Lab’s approach pre-

sented at the 1st Challenge on Remote Physiological Signal

Sensing (RePSS) organized within CVPR2020. The RePSS

challenge was focused on measuring the average heart rate

from color facial videos, which is one of the most fundamen-

tal problems in the field of computer vision.

Our deep learning-based approach includes 3D spatio-

temporal attention convolutional neural network for pho-

toplethysmogram extraction and 1D convolutional neural

network pre-trained on synthetic data for time series analy-

sis. It provides state-of-the-art results outperforming those of

other participants on a mixture of VIPL and OBF databases:

MAE=6.94 (12.3% improvement compared to the top-2 re-

sult), RMSE=10.68 (24.6% improvement), Pearson R =
0.755 (28.2% improvement).

1. Introduction

The 1st Challenge on Remote Physiological Signal Sens-

ing (RePSS) in CVPR2020 was organized by X. Li et al. [9].

Remote detecting of physiological parameters from videos

is a promising and noninvasive method that enables to un-

dertake ubiquitous monitoring of humans in natural living

conditions [13].

Heart rate (HR) is one of the most important physiolog-

ical parameters that let us evaluate an individual’s health

and affective state [15]. The HR can be measured both

with contact and contactless methods. Compared with com-

mon electrocardiography (ECG) and photoplethysmography

(PPG) measurements which require direct contact of spe-

cific sensors with a subject’s skin, remote PPG (rPPG) is a

contactless technique for HR monitoring that requires only

ambient light and a digital camera. Due to this circumstance,

this method has many potential applications including those

in sports and fitness, individual healthcare, patient/driver sta-

tus monitoring [4], etc. For this reason, a facial video-based

rPPG technique has attracted significant attention in the last

few years, and the number of published papers on this sub-

ject is growing every year. Yet there is a lack of high-quality

publicly available rPPG databases which complicates further

development of this research area.

Organizers of the 1st RePSS Challenge have provided

a large benchmark dataset that consists of two sets – train-

ing and test sets. The training set contains 2500 pieces of

10s videos of 500 persons (i.e. 5 videos for each person)

from VIPL-HR V2 database, and the test set contains 1000

pieces of 10s videos of 200 persons (100 from VIPL-HR V2

database, and 100 from OBF database) [9].

2. Related works

In recent years, there has been proposed a number of

video-based HR estimation methods that can be divided into

three large groups: (a) those based on blind signal separation

(BSS), (b) those based on optical model, and (c) data-driven

methods [11]. In this section, we review mostly the recent

deep learning approaches for remote HR measurement.

The first approach in this group that involves deep con-

volutional network is DeepPhys – an end-to-end system

for video-based HR measurement originally proposed by

W. Chen and D. McDuff [3]. R. Spetlik et al. [16] designed

the HR-CNN which remotely detects HR using a two-step

convolutional neural network (CNN) using aligned face im-

ages. Niu et al. designed a method to obtain a large volume

of synthetic PPG signals to train a deep heart rate estimator

specifically for cases where data is limited [12]. Furthermore,

they also proposed a novel effective approach that applies
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data augmentation to overcome the limitation of training

data [11]. Besides, F. Bousefsaf et al. [2] proposed a 3D

CNN trained only on synthetic data. The authors used a

public UBFC-RPPG dataset [1] to validate this network and

prove that it can accurately measure heart rate from videos.

3. Our method

Our pipeline (see Fig. 1) includes:

1. Video pre-processing and training set augmentation.

2. Deep learning-based heart rate estimation.

3. Post-processing of test set predictions which is specific

to the “CVPM2020 challenge: The 1st Challenge on

Remote Physiological Signal Sensing” dataset struc-

ture.

This section describes these steps in detail.

3.1. Training set augmentation

We change video frame rate, while leaving the original

frames sequence unchanged to perform speed-up and slow-

down video augmentation. We use it to increase size of both

the training dataset and variance of the reference heart rate

distribution. The reference heart rate (in beats per minute)

has log-normal distribution with µ = ln(85) and σ = 0.25
after the augmentation. The standard deviation of the refer-

ence heart rate in the augmented dataset is larger than in the

original dataset. This should improve the performance of the

algorithm, especially for subjects with very low or very high

heart rate.

We use horizontal flip augmentation during training as

well.

3.2. Video preprocessing

First, our method detects faces using a RetinaNet network

[10] with MobileNet backbone [7] trained with focal loss

[10]. In order to simplify the following method description,

we assume that there is only one person in the video. Then

we perform affine face alignment based on facial landmarks

detection [5] for each face. An example of region of interests

(ROI) is shown in the Fig. 2.

Figure 2: An example of ROI visualisation.

We use ROI average pooling [14] to resize facial areas

to the size of W × H for the heart rate estimation neural

network, where W = H = 36. After that, resampling to

25 fps by cubic interpolation is performed. Bandpass finite

impulse response (FIR) filter with a length of 2 seconds and

(45 beats per minute (bpm), 180 bpm) cutoff frequencies is

applied for each (pixel, channel) pair independently in order

to filter out signals not related to pulse cycles.

3.3. Heart rate estimation neural network

We train a convolutional neural network (see Fig. 3 (a))

to estimate median heart rate in 10-second video fragments

(8 seconds or T = 200 frames after bandpass filtering). A

common way to obtain a PPG signal using the given ROI is

to compose global spatial average pooling with signal source

separation methods. While global pooling is an efficient

way of getting rid of noise, it can corrupt the signal if a

face moves or if ROI is covered by a foreign object (such

as hair or hands); such artifacts may be difficult to filter out

during the subsequent steps. We use 3D spatio-temporal

attention neural network (see Fig. 3 (b)) prior to the global

pooling to address this issue. We call this network a 3D

CNN (see section 3.4). It enables us to do three things

simultaneously: to choose the ROI that best suits the purpose

of heart rate detection in each frame, to select the optimal

nonlinear function of color channels, and to complete signal

filtering using temporal information.

Unlike most computer vision tasks, frequency analysis

of temporal signal is critical for the rPPG analysis, while

each frame itself does not contain information about the

target variable. To address this issue, we include a separate

1-dimensional convolutional part (1D CNN, see section 3.5)

in our network architecture, and pre-train it to evaluate heart

rate on synthetic PPG-like curves (see section 3.6).

3D CNN outputs 32 time series, one for each channel of

the last convolutional layer. Each time series is processed

with a pre-trained 1D CNN. Therefore, we get 32 heart rate

estimations, which are combined into a single output with a

2-layer perceptron.



VIPL-HR V2 and 

MoLi-ppg databases

frequency morphing

face detection and 

alignment

bandpass FIR 

filter

3D attention 

CNN

1D CNN

synthetic

PPG curves

end-to-end  3D + 1D CNN 

grouping 

videos by 

subjects

subject 

median 

pulse

output 

pulse

pre-train 1D CNN

diff

frames

masks

Figure 1: Neurodata Lab’s solution pipeline.

3.4. 3D spatiotemporal attention neural network

3D CNN has 3 inputs:

• diff input is a discrete time derivative of the pre-

processed frame sequence described above. Its size

is batch size × T ×W ×H × 3. We use diff as the

main source of pulse information in our network.

• frames input of size batch size × T × W × H × 3
consists of the pre-processed frames themselves.

• masks input of size batch size×T×W×H×1 consists

of frame-wise facial masks. We build a facial mask for

each frame first, with the value of each pixel being

equal to 0 if the corresponding pixel in the ROI belongs

to eyes or mouth or does not belong to the facial area

at all; otherwise, its value is considered equal to 1. In

order to evaluate mask input tensor, we apply ROI mean

pooling to the facial mask. Facial landmarks detection

[5] is used for face, mouth and eye area localization.

Diff input goes through two 3D convolutional blocks with

subsequent average pooling layers. The first block has 16

channels with a kernel size of 3× 3× 3 , and ends with an

average pooling layer with kernel size and stride of 1×2×2;

the second one has 32 channels with a kernel size of 5×3×3
and ends with a global average pooling layer.

Each convolutional block (“3D Conv Block” at Fig. 3

(b)) with kernel size t×w×h and c channels has sequential

structure and consists of the following layers:

· 3D Convolution, c channels, kernel size = 1× w × h

· ReLU activation

· 3D Convolution, c channels, kernel size = t× 1× 1
· Batch Normalization

· ReLU activation

· 3D Convolution, c channels, kernel size = 1× w × h

· ReLU activation

· 3D Convolution, c channels, kernel size = t× 1× 1
· Batch Normalization

· ReLU activation

· Dropout layer (p = 0.25)

We also tried to use 3D convolutions with kernel size t×

w×h, but a model with separable convolutions (1 × w × h

and t × 1 × 1) performed slightly better in our experiments.

We use mask data in two ways. First, it is concatenated

to diff tensor in channels’ axis. Second, after each convolu-

tional block, all elements of the internal representation of diff

channel are multiplied by zero if any of the corresponding

mask values is not equal to 1. This way we get rid of possible

influence of the background on pulse estimation. In order

to choose parts of a face most suitable for pulse tracking at

every particular moment, we use attention mechanism (see

Fig. 3 (c, d)).
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Figure 3: a) Heart rate estimation neural network (see section 3.3) consists of three parts. The first part is a 3D spatio-temporal

attention CNN for nonlinear color fusion and weighted average pooling over rPPG-relevant face regions. The second part is a

1D CNN that was pre-trained to evaluate average heart rate using synthetic PPG curves. The said 1D CNN is applied to each

channel of the 3D CNN independently. The third part is a 2-layer perceptron which aggregates the heart rate estimations. b)

3D CNN (see 3.4) uses diff input for pulse rate evaluation. Diff goes through the two spatio-temporal convolution blocks, each

of which is followed by attention-based rPPG-relevant region selection and average pooling. Frames and masks inputs are

used for attention weights evaluation. c), d) represent attention blocks. The normalization in these blocks is a division of the

value in every pixel by mean value in the corresponding frame

We use (pre-processed) RGB frames in attention blocks,

since they are commonly acknowledged to be suitable for

detecting face parts and foreign objects. We divide attention

weights by their mean value over W,H dimensions in the

end of Attention blocks.

3.5. Time Series analysis network

In order to obtain heart rate values from the time series

extracted from one of the 3D CNN channels, we use 1D

CNN with the following sequential architecture:

· Instance Normalization

· 1D Conv, 16 channels, kernel size = 3
· ReLU activation

· 1D Conv, 16 channels, kernel size = 3
· Batch Normalization

· ReLU activation

· Max Pooling, kernel size = 2, stride = 2
· 1D Conv, 32 channels, kernel size = 3, dilation = 2
· Batch Normalization

· ReLU activation

· Max Pooling, kernel size = 2, stride = 2
· 1D Conv, 64 channels, kernel size = 3, dilation = 2
· Batch Normalization

· ReLU activation

· Max Pooling, kernel size = 2, stride = 2
· 1D Conv, 128 channels, kernel size = 3, dilation = 2
· Batch Normalization

· ReLU activation

· Global Max Pooling

· Fully Connected Layer, 30 neurons



· tanh activation

· Fully Connected Layer, 30 neurons

· tanh activation

· Fully Connected Layer, 1 neuron

3.6. Synthetic PPG curves

We use synthetic data to pre-train the 1D CNN part of the

network. We sample PPG curves with the following formula:

s(t) = A sin

(

2π

∫ t

0

hr(τ)dτ + φhr

)

+

A2 sin

(

4π

∫ t

0

hr(τ)dτ + φhr

)

+

B sin

(

2π

∫ t

0

br(τ)dτ + φbr

)

+ Cn(t),

where hr(τ) is an instantaneous heart rate value, br(τ) is

an instantaneous breath rate value, φhr is an initial phase of

the heart cycle, φbr is an initial phase of the breath cycle,

A is a magnitude of the pulse signal, A2 is a dicrotic pulse

magnitude, B is a breath signal magnitude, n(τ) is a white

noise sample, and C is the standard deviation of the noise.

hr(τ) can be sampled from a uniform distribution hr0 ±

δhrhr0, where hr0 is a reference heart rate on the segment,

and δhr refers heart rate variability (we use, δhr = 0.05). In

the same way we introduce breath rate variability parameter

δbr = 0.1. Amplitudes of the signals are sampled from

uniform distributions A ∼ [0.2, 0.7], A2 ∼ [0, 0.3], B ∼

[0.3, 2]. We use C = 0.05.

A sampled curve example is shown in Fig. 4.

Figure 4: Examples of synthetic PPG signal with heart rate

= 51 bpm.

3.7. Training procedure

First, we perform Xavier initialization [6] with a magni-

tude = 2.34 for all of the model weights.

We pre-train the 1D CNN network for the task of heart

rate value estimation by PPG curve. For this purpose, we syn-

thesise 106 PPG curves as described in section 3.6 with a ref-

erence pulse rate uniformly distributed in [45bpm,180bpm]

interval. We use Adam [8] to optimize MSE loss with respect

the 1D CNN model weights. We train the model for 100

epochs with batch size = 32, learning rate = 3× 10−5.

After that, we train the network end-to-end on MoLi-ppg

(see section 4.1) video sequences, with l2 regularization co-

efficient equal 10−5 using Adam optimizer with the learning

rate exponentially decreasing from 10−4 to 10−5 with batch

size= 16 during 200 epochs.

Finally, we train the network end-to-end on VIPL-HR V2

set (see section 4.1) video sequences with the same parame-

ters, except for constant learning rate = 10−5 and number

of epochs = 900.

We have implemented our heart rate estimation pipeline

using MXNet framework (https://mxnet.apache.

org). The network was trained on 1 NVIDIA GeForce

GTX 1080Ti GPU. Our implementation can be tested via

API 1.

3.8. The 1st Challenge on RePSS predictions post
processing

There are 5 video fragments featuring each subject in the

RePSS challenge dataset. According to the training set, these

5 fragments have nearly the same reference heart rate for

most of the subjects. Let (p1, p2, p3, p4, p5) be the neural

network outputs on these fragments for some subject. Then

our final heart rate estimation of a video fragment is:

fi = 0.01× pi + 0.99× median(p1, p2, p3, p4, p5).

The fragments were not grouped by subjects in the test set.

We match each video with other videos of the same subject

to evaluate median value. For this purpose, we first eval-

uate a simple embedding of the first frame for each video.

This embedding for VIPL dataset videos consists of RGB

colors of pixels of two 100 × 150 rectangles (top-left and

top-right), each resized to 10 × 15. So, each of the VIPL

videos embeddings consists of 2×10×15×3 = 900 integer

values in the range [0, 255] and represent background color

information. All OBF videos have the same background, for

this reason we used chest area (bottom 420 × 1080 pixels

rectangle resized to 8× 20) as a color embedding for OBF

videos. We use 1−R(a, b) as a distance metric on the em-

beddings described above, where R is a Pearson correlation

coefficient. Videos were grouped by subjects using an itera-

tive DBSCAN procedure as follows. First we set ε = 0.01

1https://api.neurodatalab.dev



in DBSCAN, and then gradually increase it up to 0.4. If

there are any clusters of the size 5 on each iteration, we as-

sume that each of these clusters corresponds to videos of one

subject. These videos are not considered in the subsequent

clustering iterations.

4. Experiments

4.1. Datasets

We used three datasets for training (Motion and Light

photoplethysmography (MoLi-ppg-1) dataset, the MoLi-

ppg-2 dataset, and the VIPL-HR V2), and two datasets for

testing (VIPL-HR V2 and OBF) [9]. The latter two were

provided by the organizers of this challenge.

MoLi-ppg-1 and MoLi-ppg-2 rPPG datasets are new and

include videos recorded in complicated and close to natural

conditions; in particular, they feature movements, speech,

different lighting, various equipment etc.

The first of these three datasets contains 8 hours of video

recordings of 25 subjects. The videos were recorded with

the following webcams: Logitech C920, Logitech C270, and

an HD video camera Canon LEGRIA HFG40. The second

dataset was recorded with different cameras and different

subjects. It contains 3,5 hours of video recordings of 15

new subjects. The videos were recorded with a webcam

Canyon 720p, and an HD video camera Panasonic. The

ground truth data collected by contact PPG (cPPG) for both

datasets was obtained with an optical pulse sensor Shim-

mer3 GSR+ (www.shimmersensing.com) attached to

subjects’ fingers (sampling rate = 256 Hz), and the data

was synced with the video recording. The videos from the

webcams were in uncompressed bitmap format with either

800x600 or 1280x720 pixel resolution, and 25 fps frame

rate. The videos from HD cameras were in uncompressed

bitmap format with 1920x1080 pixel resolution and 50 fps.

A total of 35 subjects aged 18-35 - both males and females -

took part in the experiments. Subjects were lit by fluorescent

ceiling lamps and were sitting in front of the cameras at a

distance of about 1m from them.

Three first dataset was recorded in three types of condi-

tions (MoLi-ppg-1):

1. Static. The subjects were recorded in varying lighting

conditions (90-300 lux) while they were sitting natu-

rally in front of the webcam. In particular, they were

recorded in the lighting conditions of a) only fluores-

cent ceiling lamps, b) fluorescent ceiling lamps with an

additional spotlight, and c) fluorescent ceiling lamps

accompanied by a turned on computer monitor that

played videos.

2. Movements. Three cases of videos with head mo-

tions recorded in standard conditions included large

and small movements as well as speech. In the first two

cases, the subjects were instructed to perform various

types of head movements: left-right, up-down and in

circular motion. The amplitude of these movements

measured from the position of straight head posture had

to be no more than 45 degrees for the task with small

head movements, and no more than 80 degrees for the

one with large head movements. As for the speech sub-

category, the participants were asked to sit facing the

cameras and read a text out loud without moving their

heads at all.

3. Recovery after physical stress. To obtain more broad

distribution of heart rate, each subject was asked to do

20-30 squats and was recorded immediately after that.

The second dataset (MoLi-ppg-2) also included three

categories of videos:

1. Static. The subjects were recorded in varying lighting

conditions (20-300 lux): a) daylight without lamps, b)

fluorescent ceiling lamps with an additional spotlight,

c) fluorescent ceiling lamps accompanied by a turned

on computer monitor that played videos.

2. Speech. This category includes videos featuring small

natural head motions during speech.

3. Recovery after physical stress. Each subject was

asked to do 20-30 squats and was recorded immedi-

ately after that, just like in the first dataset.

VIPL-HR V2 is a large dataset that served as a benchmark

for this competition. The train set contains 2500 pieces of

10s videos of 500 persons, and the test data – 1000 pieces

of 10s videos of 200 persons (100 from VIPL-HR, 100 from

OBF) [9].

4.2. Evaluation Metrics

To evaluate the performance of our approach on the VIPL-

HR V2 database, the following metrics were used:

• Mean Absolute Error (MAE) in beats per minute

(bpm) is calculated as the mean difference be-

tween the pulse obtained from rPPG signals

and the pulse obtained from cPPG signals with
∑

v∈videos

∑Tv
k=1

|rPPGv,k−cPPGv,k|
∑

v∈videos Tv
, where Tv is the

number of frames in the video v.

• Root mean square error (RMSE) =
√

∑

v∈videos

∑Tv
k=1

(rPPGv,k−cPPGv,k)
2

∑

v∈videos Tv
.

• Pearson correlation coefficient (R) =
∑

[

(rPPGv,k−
∑

rPPGv,k

Tv
)(cPPGv,k−

∑

cPPGv,k

Tv
)
]

√

∑

(

rPPGv,k−
∑

rPPGv,k

Tv

)2
∑

(

cPPGv,k−
∑

cPPGv,k

Tv

)2



5. Results

We trained the proposed CNN to perform rPPG monitor-

ing from videos on MoLi-ppg-1, MoLi-ppg-2, and VIPL-HR

V2 databases as described above (see section 3.7), and tested

(see section 3.8) it on the 1st RePSS Challenge test set. It

contains samples from VIPL-HR V2 and OBF databases (see

[9]). In this test, our approach has outperformed the meth-

ods of other participants as we have achieved MAE = 6.94

(12.3% improvement compared to the challenge top-2 result),

RMSE = 10.68 (24.6% improvement), Pearson R = 0.755
(28.2% improvement).

6. Conclusion

In this paper, we proposed Neurodata Lab’s approach

to rPPG monitoring from video. Heart rate data estimated

with this method was submitted for the 1st Challenge on

RePSS organized within CVPR2020. Challenge organizers

provided a large-scale dataset (500 and 200 subjects for train-

ing and testing, respectively, with 5 videos for each subject)

with different recording scenarios e.g. talking, moving, with

different lighting or video frame rate. The amount and diver-

sity of training videos encourage the development of deep

learning-based heart rate recognition approaches.

Our data-driven approach includes 3D spatio-temporal

attention CNN for PPG extraction, and 1D CNN pre-trained

on synthetic data for time series analysis. We believe that

our architecture and the way we train the network is specific

for the rPPG analysis and heart rate recognition, even though

3D CNN and attention networks are widely used in computer

vision. Our method has shown state-of-the-art results in the

Challenge. We consider MAE values of 6.94 bpm a good

result for “in the wild” videos processed with a mosaic filter.
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