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Abstract

Remote photoplethysmography (rPPG) is a recent tech-

nique for estimating heart rate by analyzing subtle skin

color variations using regular cameras. As multiple noise

sources can pollute the estimated signal, post-processing

techniques, such as bandpass filtering, are generally used.

However, it is often possible to see alterations in the filtered

signal that have not been suppressed, although an experi-

enced eye can easily identify them. From this observation,

we propose in this work to use an LSTM network to filter the

rPPG signal. The network is able to learn the characteristic

shape of the rPPG signal and especially its temporal struc-

ture, which is not possible with the usual signal processing-

based filtering methods. The results of this study, obtained

on a public database, have demonstrated that the proposed

deep-learning-based filtering method outperforms the regu-

lar post-processing ones in terms of signal quality and ac-

curacy of heart rate estimation.

1. Introduction

Heart rate (HR) measurement has made it possible to

monitor the behavior of the heart in humans, and analyze

physiological conditions. There are mainly two ways to

measure HR, by means of electrocardiography (ECG) and

photoplethysmography (PPG). ECG measures the electri-

cal field induced by the heart activity in the chest, and

PPG measures reflection and absorption of light on skin tis-

sues, which indirectly captures the blood volume variations

caused by the periodic beating of the heart. During cardiac

contraction (systole), the volume of blood increases, and

during the cardiac relaxation (diastole), the volume of blood

decreases. These contact-based HR measurement methods

may cause discomfort, hygiene issue, or even be impossible

on fragile skins [22].

Verkruysse et al. [26] demonstrated that these perfusion

variations, associated with heartbeats are not noticeable by

the naked eye, but can be measured from a standard video

camera to measure PPG signals remotely, using ambient

light as an illumination source. This remote Photoplethys-

mography (rPPG) technique is a low-cost and noninvasive

way to measure HR. RPPG aims to estimate color changes

in the frames. It is also worth mentioning here that there is

another technique to obtain the HR remotely using a cam-

era, by Ballistography (BCG) such as in [21]. BCG mea-

sures the periodic head movements due to ejections of blood

into great vessels along with each heartbeat and, that way

extracts HR signals.

With PPG or rPPG measurement, several biomedical pa-

rameters can potentially be computed: vascular occlusion,

peripheral vasomotor activity, breathing rate, blood pres-

sure by pulse transit time estimation, blood oxygen level,

heart rate variability (HRV), and obviously heart rate [1].

As a consequence, the applications are numerous, including

control of vital signs in the elderly and newborns, mixed re-

ality, lie detection in criminals, physiological measurements

of drivers, face anti-spoofing, and automatic skin detection,

to mention a few [6, 4, 1]. First of all, it can be noted

that the advent of non-contact measurements has opened

the way to many new applications. Secondly, it is also im-

portant to note here that many of these applications use a

fairly advanced analysis of the temporal signal (e.g. de-

tection of systolic and diastolic peaks [17]), which is con-

siderably more complex than frequency analysis over long

periods (usually ten to twenty seconds to measure heart rate

for example).

In the literature, multiple ways of rPPG estimation can

be found. Initially, only the green channel was used [27].

Later approaches can be categorised in two groups: the

first ones are based on Blind Source Separation techniques

(BSS): ICA [12], PCA [14], PVM [15], EVM [30]. The

second ones are based on a light interaction model to de-

termine a projection vector: CHROM [9], POS [29], PBV

[10]. Readers interested in learning more about these tech-

niques can refer to the state of the art reviews presented in

[16, 11, 24]. End-to-end approaches based on deep learn-

ing have also been used recently [7, 22, 6, 4, 32]. One of



the main advantages of these CNN-based measurements is

that it allows achieving good results without the need for

the designer to analyze the problem in depth [33]. In addi-

tion, it is no longer necessary to use a pipeline-based frame-

work where regions of interest (ROI) are first detected and

tracked over frames, RGB channels are then combined to

estimate the pulse signal, which is filtered and analyzed to

extract physiological parameters such as heart rate or respi-

ration rate. As a consequence, CNN-based approaches are

less prone to error propagation in the pipeline. However,

as noted in [33], recent works in this field have focused on

performance rather than understanding. Consequently, it is

often hard to predict the limitations of the system, and it is

well known that the training dataset used is critical.

RPPG signals estimated from a video usually contain

some noise due to motion, illumination variations, internal

noise of the digital camera, and also due to the estimation

technique. This generally calls for post-processing steps

to smooth the signal and remove unnecessary information,

such as frequencies out of the regular physiological range of

interest. This smoothing operation is habitually performed

by a bandpass filter (e.g. in [18]). Some works also used

wavelet filters [3, 15] or Singular Spectrum Analysis (SSA)

[28]. Although these filtering methods do smooth the sig-

nals, they do not necessarily eliminate particular signal al-

teration, which can, however, be easily identified by experts.

An example of one rPPG signal extracted and filtered by a

band pass filter and a wavelet filter is presented in figure 1.

RPPG signals filtered by both methods show significant al-

terations compared with their PPG ground truth signal. This

kind of noise may alter the accuracy of heart rate measure-

ment but more gravely prevent further advanced analysis of

the rPPG signals that are based on pulse shape character-

istics or peak detection on the temporal signal. For exam-

ple, it has been shown that even a single heart period ar-

tifact, within a 2-minutes recording, can lead to errors of

heart rate variability features that are considerably larger

than typical effect size in psychological studies [2]. There-

fore, in this work, we want to benefit from the advantages

of deep learning-based methods to improve the filtering of

rPPG signals while relying on a handcrafted pipeline thanks

to which it is possible to control the system limits better.

Recurrent Neural Networks (RNNs) have been used in

numerous applications with sequential information as in-

puts, like Natural Language Processing (NLP) and speech

processing. RNNs are relevant in applications where the

structure embedded in the data sequence transfers valuable

knowledge, much like an expert would do to identify the

wrong peaks in an rPPG signal. However, these networks

show a problem during backpropagation: they are sensitive

to vanishing and exploding gradients. This implies that the

gradients can fade or explode as a consequence of the multi-

plication of many small or large derivatives during training.

Figure 1. Example of noise in two remote photoplethysmographic

signals after bandpass and wavelet filtering. The PPG ground truth

signal is presented in red while the filtered rPPG signal is pre-

sented in black.

As a result, although their goal is to learn long-term de-

pendencies, literature shows that RNNs cannot store infor-

mation for very long. Long Short-Term Memory networks

(LSTMs), on the other hand, provide memory blocks in its

recurrent connections, storing more information for a longer

period of time and avoiding the problem presented in RNN

networks [13, 4]. This kind of networks have already been

used for biomedical signal analysis. For example, Oh et al.

[19] proposed a CNN-LSTM model to detect five different

classes of arrhythmias. Yildirim [31] a bidirectional LSTM

to classify ECG signals. Tan et al. [25] used convolutional

neuronal networks (CNNs) and LSTMs to classify normal

versus coronary artery disease ECG signals, the CNN is ap-

plied to reduce the number of data points in 5-second ECG

signals, and the LSTM is applied to extract the temporal

features of the signals. Thus, RNNs are indeed capable of

handling of heartbeat-related signals.

To the best of our knowledge, no deep learning approach

has been used to filter biomedical signals and especially to

filter rPPG signals. In this article we propose an LSTM-

based deep-filter to reduce noise in rPPG signals, to im-

prove signal quality and in consequence, improve HR or

HRV measurement. We validate our methodology using the

public database Multimodal Spontaneous Emotion Corpus

- Heart Rate database (MMSE-HR) [34].

This paper is organized as follows: In section 2 an

overview of the methods used are presented, the Periodic

Variance Maximization (PVM) used to acquire rPPG sig-

nals from video, and the Long Short-Term Deep-Filter

(LSTM-DF). In section 3 the experiments implemented are

explained, with the specification of the LSTM-DF architec-

ture and its hyperparameters. In section 4 a comparison

is made between band pass filtering, wavelet filtering and

LSTM-DF filtering. Finally, conclusions and perspectives

are presented in section 5.



2. Method

The proposed method aims to filter rPPG signals with the

implemented LSTM-DF filter. The workflow of the proce-

dure is presented in Figure 2. The first step consists of the

rPPG signal estimation from a video sequence. As a second

step, the rPPG signals are filtered with our LSTM-DF filter.

The main components of the framework are explained in the

following subsections.

2.1. rPPG signal estimation

The first step of the rPPG signal extraction procedure

consists in the selection of the Region Of Interest (ROI).

For each video frame, face is detected and tracked using the

reduced ResNet-10 model and the MedianFlow Tracker of

the OpenCV library [5]. Skin detection, as formulated by

Conaire et al. [8], is then performed to select the skin pix-

els, which subsequently are spatially averaged to obtain a

triplet of RGB values per frame and concatenated to obtain

the RGB temporal trace. The RGB temporal traces are then

preprocessed to remove the DC component of the signals

dividing samples by their mean over a temporal interval.

DC-normalized RGB signals are then band-pass filtered us-

ing Butterworth filter (with cut-off frequencies of 0.7 and

3.5Hz).

Then, we decided to use the recently proposed PVM al-

gorithm to estimate the rPPG signals because of its effi-

ciency and good performances. The PVM method has been

extensively described and evaluated in [15]; we preset be-

low the main concepts. The algorithm extracts the rPPG

signal by estimating the time period τ∗ that maximizes the

periodic information embedded in the temporal mixture x,

of size 3×M , obtained by spatial averaging of RGB video

frames over a temporal window of M samples. τ∗ is in turn

found by searching for the optimum 3× 3 weighting matrix

W that maximizes periodicity over the range of different

lags τi corresponding to the human heart rate in the range

[.7 3] Hz. The ideal weighting matrix Wτi at each τi is es-

timated by performing GEVD on the pair of the covariance

and lagged covariance matrices Cx = xxT and Px = xxT
τ

respectively. Here xτ is the signal mixture x lagged by τ

samples, representing the original signal mixture x evolved

over time. The 3×1 generalized eigenvector w correspond-

ing to the strongest generalized eigenvalue is used to extract

the temporal signal y(t), represented as the vector y of size

1×M , using y = wTx.

This formulation is based on the fact that the similarity

between the quasi-periodic y and its lagged version yτ is

strongly related to its periodicity and can be expressed in

terms of a periodicity metric given by

P(τ,w)
.
=

yyT
τ

yyT
=

wTPxw

wTCxw
. (1)

2.2. Long ShortTerm DeepFilter (LSTMDF)

In order to train the LSTM-DF network that will filter

rPPG signals, we have created a data matrix Y composed

of a set of rPPG signals with a fixed length. The same pro-

cess is applied on the corresponding PPG signals to create

the ground truth data matrix Ŷ. yi is the rPPG signal of

the video i with length Ti, where i ∈ [1, N ] and N is the

number of videos in the database, and therefore the number

of rPPG signals. Y and Ŷ are created with a simple sliding

window procedure; the algorithm is presented in Algorithm

1, with L being the length of the sliding window and s being

the step size.

Algorithm 1: RPPG training dataset building

count← 1;

N ← 79;

L← 5;

s← 0.04;

for i← 1 : N do

for t← 1 : s : Ti − L do
Y(count)← yi,train(t : t+ L);

Ŷ(count)← ŷi,train(t : t+ L);
count = count+ 1;

end

end

A filtered rPPG signal ỹ is predicted by the LSTM-DF

from an rPPG signal y, this is carried out as a regression

problem. An LSTM network is composed of an input, a

memory block, and an output layer. The input is the rPPG

signal y. The memory block consists of: one input gate that

learns which information should be stored in the memory

block, a forget gate that learns how much information must

be forgotten or withheld from the memory block, and an

output gate that takes care of learning when the collected

information can be used. The architecture of the LSTM-

DF is shown in Figure 3 where b is the batch size, L is the

length of y, and Return Sequence (RS) is an argument that

decides whether a layer outputs each time step or its final

time step. The size of the input signal is defined to be b ×

L×1. The output size of the first two layers remains b×L×

125 due to their number of units and their return sequence

argument. The third and fourth layers decrease the output to

b×L×1 representing, as a result, the predicted filtered rPPG

signal ỹ. A dropout step is done on the first three layers

to avoid the overfitting problem. The mean squared error

(MSE) metric is chosen as the loss function for measuring

the difference between ỹ and ŷ. The batch size b and the

length of the signals L are discussed in the experimental

section.



Figure 2. System framework: rPPG signal estimation is done in a sequence of videos using face and skin detection followed by the PVM

algorithm [15]. Then an rPPG data set for training LSTM-DF network is built, concatenating fixed-length rPPG signal windows. Finally,

LSTM-DF is compared with bandpass and wavelet fiters in rPPG filtering application. A cross-validation procedure is used to assess the

performance of the LSTM-DF.

Figure 3. LSTM-DF architecture. Where numbers in red represent

the size of each data. RS=Return sequences, T=True, F=False.

3. Experiments

3.1. Database

The LSTM-DF was trained and tested using the database

Multimodal Spontaneous Emotion Corpus - Heart Rate

database, which was made with emotion recognition in

mind, so the videos include a large number of facial move-

ments and expressions.The length of each video is between

30 to 60 seconds with a resolution of 1040 × 1392 pixels

and a frame rate of 25 fps. The ground truth signal is the

PPG signal with 1 kHz of sampling rate, obtained by the

BIOPAC 150 data acquisition system [34]. N = 79 videos

were used in our experiments with a 5-fold cross validation

procedure.

3.2. Metrics

We compare our proposed filtering method with two

classical approaches, namely a bandpass (BP) filtering with

cutoff frequencies in 0.7 and 3.5 Hz, and a wavelet (WV) fil-

tering technique using the same parameters as in [15]. For

all the experiments, we evaluate the performance of our al-

gorithm in terms of the quality of the heart rate estimation

and also in terms of the quality of the estimated rPPG sig-

nal. Therefore, we use Mean Absolute Error (MAE) in beats

per minute (bpm) and Pearson’s correlation coefficient (r)

to evaluate the heart rate estimation performance and Sig-

nal to Noise Ratio (SNR) and Template Matching Corre-

lation (TMC) [20] to evaluate the quality of the estimated

signal. Metrics are calculated using heart rates estimated

from the PPG signal and the filtered rPPG signals by the

three filtering methods. 15-second window length was used

to compute HR.



3.3. LSTMDF setup

The proposed method was implemented on a Windows

PC equipped with Intel Xeon 2.4 GHz CPU, with a RAM of

16GB, and with a NVIDIA GeForce RTX 2070 GPU, using

the Keras (v.2.2.4) library with the Tensorflow (v.2.0) back-

end. LSTM layers were set with default hyperbolic tangent

activation function, and the dense layer with a linear acti-

vation function. The first two LSTM layers had a dropout

equal to 0.2, the loss function was mean squared error, and

the Adam optimizer was set with a learning rate of 0.002.

The random weights initialization were made with the Glo-

rot uniform initializer, also called Xavier uniform initializer

with seed=1.

First, we conducted an experiment to determine the best

hyperparameters of our network varying the batch sizes and

the number of epochs. Table 1 presents the results of this

experiment using the architecture proposed in Figure 3 with

a 5-fold cross validation procedure. Results given in the ta-

ble are the average of the 5 folds. For these experiments, it

is possible to observe that the obtained results are quite sta-

ble. Therefore, in all the following experiments, we decided

to use a batch size of 32 and a number of epochs of 100.

Batch size No. epochs HR-MAE SNR TMC

8 30 1.50 9.69 0.71

32 30 1.51 9.59 0.70

32 100 1.32 9.44 0.72

64 100 1.32 9.50 0.70

Table 1. Results obtained varying the batch size and number of

epochs of the LSTM network.

3.4. LSTMDF filtering

A re-sampling procedure on ŷ from 1 KHz to 25 Hz was

required in order to match with y, albeit without any inter-

polation or perturbation in the signal shape, as 25 Hz is a

multiple of 1 KHz. Each signal was also normalized be-

tween -1 and 1. Then, Algorithm 1 is applied with ytrain,i

and ŷtrain,i signals to create the matrices Y and Ŷ, with a

L = 5 seconds and s = 0.04 seconds (c.f. the rPPG train-

ing dataset building section in Figure 2) . For each of the 5

folds a Y and Ŷ was used to train the LSTM-DF network.

Then, filtered rPPG signals ỹtest,i are obtained by filtering

ytest,i with the deep filter. The number of rPPG signals

used for training and testing in fold number 1 was 64 and

15 respectively, while for folds from 2 through 5, it was 63

and 16 respectively.

4. Results and discussion

We compare in Table 2 our filtering method with a band-

pass filter (BP) and a wavelet filter (WV). The results are

presented as the average of each measure for the 5 folds,

the last row of the table is the average of all values in the

5 folds. The best result for each metric and each fold are

depicted in bold.

As mentioned previously, we use MAE to evaluate the

heart rate estimation performance along with SNR and

Template Matching Correlation (TMC) to evaluate the sig-

nal quality. First, it is possible to observe that the wavelet

and bandpass filtering methods show very similar resluts

in terms of MAE and that these results are already quite

good, with MAE below 2bpm in average. Interestingly,

the proposed method presents the lowest MAE values for

all the folds as well as in average. This observation confirms

that our LSTM-DF improves the accuracy of the heart rate

measurements. This is probably due to the removal of false

peaks in the rPPG signals (as seen in Figure 5), allowing the

FFT method to find the dominant frequency more precisely.

Figure 4 shows the correlation plots of the HR estima-

tions for the three filtering methods. Pearson correlation

metric r is also presented in the figure. Similar conclusions

can be drawn with these correlation plots. Even if the dis-

tribution of the HR estimations of BP and WV are already

quite good, the results of LSTM-DF is even better with a fit-

ting line closer to the 45◦ line as compared to BP and WV.

The Pearson correlation coefficient is also improved with

LSTM-DF from 0.88 and 0.89 for BP and WV to 0.96.

With respect to the evaluation of the signal quality, Ta-

ble 2 shows the SNR and the TMC metrics. Regarding

to SNR, the wavelet filter shows a slight signal quality im-

provement over the bandpass filter. The LSTM-DF filter,

on the other hand, presents a considerable improvement in

the SNR metric with respect to the other two methods for

all the folds as well as their average. The same behavior

is present in the results of the TMC metric, where the pro-

posed method surpasses the other filtering methodologies in

all the folds, and therefore in their average.

With the proposed method of filtering, rPPG signals are

smoothed in a different way than with wavelet or bandpass

filers. To be more specific, in Figure 5, three filtered rPPG

signals are depicted, the first one was filtered by BP, the

second one by WV, and the last one by our LSTM-DF. WV

and BP filtering methods, give a filtered rPPG signal with

a good approximation of the number of peaks present in

the PPG signal. However, it can be seen that these meth-

ods also remove the characteristic shape of the PPG signal,

specifically, its dichrotic notch [23]. Consequently, rPPG

signals filtered by BP and WV filters appear to be sinu-

soidal in shape. On the other hand, LSTM-DF allows not

only to preserve the frequency and the number of peaks of

the PPG signal, but also preserves the characteristic shape

of the ground truth PPG signal, which is also quantified by

the TMC metric in Table 2. In Figure 5, it is possible to

see that the characteristic dichrotic notch is preserved with



Fold

HR measurement Signal Quality

HR-MAE [bpm] SNR [dB] TMC [%]

BP WV LSTM-DF BP WV LSTM-DF BP WV LSTM-DF

1 1.53 1.52 0.53 7.41 7.44 10.47 0.49 0.50 0.82

2 2.82 2.61 2.24 5.54 5.63 8.42 0.49 0.50 0.64

3 1.80 1.79 1.43 6.52 6.61 9.95 0.32 0.33 0.71

4 0.99 1.00 0.84 7.04 7.20 9.59 0.64 0.65 0.75

5 2.31 2.40 1.38 4.88 4.92 9.00 0.43 0.44 0.65

Average 1.88 1.85 1.31 6.27 6.36 9.44 0.48 0.49 0.71

Table 2. 5-fold cross validation comparison in HR-measurement and signal quality improvement in rPPG signals filtered by: Bandpass

filter (BP), Wavelet filter (WV), and the method proposed (LSTMD-F).

Figure 4. Correlation plots of the HR estimation obtained with (from left to right) bandpass filtering, wavelet filtering and the proposed

LSTMD-DF filtering.

the the LSTM-DF filtering (c.f. the blue circles).

5. Conclusions and perspectives

The Long Short-Term Memory Deep-Filer (LSTM-DF)

was presented in this paper to filter rPPG signals as an al-

ternative to conventional signal processing techniques that

cannot encapsulate the characteristic shape of the PPG sig-

nal neither its temporal structure. We have demonstrated, on

a public database, that the LSTM-DF increases the accuracy

of heart rate measurements as well as the quality of the es-

timated signal. Interestingly, the LSTM-DF filter preserves

the characteristic shape of a PPG signal and paves the road

to an advanced analysis of the temporal signal. It is impor-

tant to note that the same methodology can be applied to the

filtering of other temporal signals with characteristic shapes

(e.g. ECG signals).

However, there is still a lot of experimentation to be car-

ried out to validate our methodology further. For example, it

would be interesting to validate our work on other databases

and to evaluate the robustness during a cross-database vali-

dation. Finally, even if we postulate that our filtering better

preserves the shape of the PPG signal and thus allows to

estimate more easily advanced temporal characteristics, it

now seems necessary to validate this assertion experimen-

tally.
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