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Abstract

Automatically detecting vital signs in videos, such as the

estimation of heart and respiration rates, is a challenging

research problem in computer vision with important appli-

cations in the medical field. One of the key difficulties in

tackling this task is the lack of sufficient supervised training

data, which severely limits the use of powerful deep neural

networks. In this paper we address this limitation through

a novel deep learning approach, in which a recurrent deep

neural network is trained to detect vital signs in the infrared

thermal domain from purely synthetic data. What is most

surprising is that our novel method for synthetic training

data generation is general, relatively simple and uses al-

most no prior medical domain knowledge. Moreover, our

system, which is trained in a purely automatic manner and

needs no human annotation, also learns to predict the respi-

ration or heart intensity signal for each moment in time and

to detect the region of interest that is most relevant for the

given task, e.g. the nose area in the case of respiration. We

test the effectiveness of our proposed system on the recent

LCAS dataset and obtain state-of-the-art results.

1. Introduction

Vital signs monitoring is an important part of the medi-

cal field, at the intersection between medicine and the fast

development of technology. It is no longer a topic that

is only available in hospitals, as significant technical im-

provements in wearable devices make it suitable for every

day use at home. Moreover, advancements in cameras and

other devices, in combination with powerful vision and ma-

chine learning algorithms, prove that emerging smart medi-

cal technologies are able to provide measurements that meet

or even surpass the traditional medical gold standards [1, 2].

Part of the wide variety of camera sensors, thermal cam-

eras, which sense the skin temperature distribution, which is

correlated with various other body signals, could also con-

stitute a good source for estimating breathing patterns [3,4],

pulse [5] and even stress levels [6]. A specific vital sign rate

is measured as the number of cycles per unit of time (usu-

ally per minute). Normal vital sign rates vary according to

multiple factors, such as age, psychical fitness and health is-

sues, leading to wide ranges of normal vital signal rates. For

example, in the case of adults, normal respiratory rates lie

within 12 and 20 breaths per minute, and normal heart rates

between 60 to 100 beats per minute. Besides the normal

sign pattern, abnormal patterns may also occur [7], as tem-

porary cessation (Apnea), abnormally low rate (Bradypnea)

or abnormally high rate (Tachypnea). All these factors of

variation make the task difficult, while powerful deep learn-

ing models, which could address such challenges, cannot be

easily used due to lack of supervised training data.

Vital signals can be detected using multiple cues. A stan-

dard signal source for estimating breathing rate, in the ther-

mal domain, is the variation in heat around the nose due

to inhaling cold air and exhaling hot air [8] - but for that

approach we would need to know where the nose is in the

image. In the case of heart rate signal, information about

the signal of interest can be detected by slight variation in

face color [9] or superficial blood vessels [33], but there are

many unrelated factors (e.g. illumination changes and other

noises) that can affect these.

In our work, we propose to address all these limitations

via a deep learning approach, with a recursive neural net-

work, termed VSignNet, which learns, from synthetic data

alone and without any human supervision, to predict both

vital sign intensity and the corresponding regions of inter-

est in thermal videos. Our method, to the best of our knowl-

edge, is the first of its kind on this task, and achieves top

results on the recent LCAS dataset [10], which is one of the

very few ones available for this problem. VSignNet is ap-

plied directly on the input of thermal frames and predicts

for each frame, along two output pathways, the value of the

signal of interest and the region of interest that is likely to

be the most important source of the signal e.g. the nose area

for respiration.

The main contributions introduced are:

1. A novel deep learning approach trained without human

supervision on synthetic data for detecting heart and
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Figure 1: The four stages of our approach: the first stage consists of determining the frequency range of interest, either by

using dataset statistics or domain knowledge. The second stage is the generation of synthetic training data samples. The third

stage is the training of the model. At the final, inference stage, an additional post-processing step detects the peaks of the

signal, on which we base our output average signal rate.

respiratory signs in thermal videos with state-of-the-

art performance on the LCAS dataset [10].

2. Our deep-synthetic model is a able to estimate not only

the vital sign rate, but is also learns, without any hu-

man supervision, to detect the intensity of the signal in

every moment of time as well as the region of interest

in the image corresponding to the signal.

3. A general method for synthetic training data gener-

ation which uses minimal medical information and

anatomical cues and no strong prior knowledge of the

target signal frequency.

2. Scientific context and a baseline

Important work has been developed for vital sign mea-

surement in the RGB domain.In [28,29] authors present re-

mote physiological measurement algorithms using signal

analysis.In [30] authors introduces an algorithm using In-

dependent Component Analysis to extract a signal of in-

terest for heart rate, heart rate variability and breathing

rate estimation. In [31] a Color Distortion Filter is intro-

duced, which showed improved results when used as a pre-

processing step with existing remote Photoplethysmogra-

phy methods.In [32] introduce a novel convolutional atten-

tion network which recovers blood volume pulse and res-

piration signals from video, applicable on both RGB and

Infrared.

The current literature for vital sign detection in thermal

videos seems to revolve around a common experimental

paradigm [10-12,14]. Usually, in the experimental setup, a

small number of subjects is filmed with a thermal sensor.

For example, in recent work [10], 5 videos are recorded

of 5 subjects are sitting in front of the thermal camera.

The environment in which the experiment is performed is

mostly constrained, being indoors and lacking variability.

Of course that such a small sample size and relatively lim-

ited experimental setup make it difficult to train powerful

deep neural networks for vital sign monitoring. That jus-

tifies our approach of designing a method to synthetically

generate training data, which would enable the training of

large deep networks. The most common approach in the

literature defines a pipeline with three steps:

The first step: is the detection of a region of interest

(ROI), from which the signal of interest is extracted at each

frame. For example, the approach in [12] detects the ROI

(nostril region) in the first frame and tracks the correspond-

ing ROI in the next frames using the Median Flow algo-

rithm [13]. They provide three possible ways for detect-

ing the nostril region in the first video frame: by manual

initialization, by applying the method from [14] using hu-

man anatomy queues in the thermal image, or by cross-

correlation between the thermal image and a database of

nostril ROI’s. Alternatively, the method in [10] first seg-

ments the face in order to build a box around it, and then

uses a pretrained landmark detector to find the position of

the ROI (nostril region).

The next two steps: are signal extraction and frequency

computation. For signal extraction, recent methods [10,14]

compute the mean pixel value inside the ROI, after the first

ROI detection step. In [11] pixel-wise signals are extracted

to find the final breathing time series, whereas in [12] au-

thors consider the ROI pixels as voxels and compute the

volume of the resulting shape at each frame. For frequency

computation, the approaches in [11, 12] perform spectral



Figure 2: Synthetically generated training data: target signal of interest SI (top row); corresponding input frames (middle

row) and ground truth ROI segmentations (bottom row), sampled every 10 frames. Input frames are created by combining

objects of interest ”I” (with intensity varying w.r.t SI ), distractor objects ”D” (with intensity varying w.r.t their own signal

Sk
D

) and varying background βBG. Finally, the synthetic frame is smoothed with a Gaussian (GBσ) and Salt-and-Pepper

noise (βSP ) is added.

analysis in the Fourier domain and, in [11], the authors de-

tect peaks in the time series to find inhalation onsets.

Creating a strong baseline: In order to study the limita-

tions of the ROI detection approach for breathing rate com-

putation, we implemented a baseline method and tested it

on the LCAS dataset, provided in [10]. For ROI detection

we used RetinaFace [15], a publicly available state-of-the-

art face detector, trained on the WIDER FACE dataset[16].

RetinaFace outputs a bounding box and 5 facial landmarks

for each face in the image. Out of the 5 landmarks, two are

for the left and right eye, two for the corners of the mouth

and one for the tip of the nose. In order to extract the nostril

region, we select a box 8 times smaller than the face bound-

ing box around the nose tip landmark (number determined

experimentally). In this way the variance of the extracted

signal does not change significantly when the person moves

closer or farther away from the camera. We noticed that

ROI detection can introduce noise into the extracted signal

due to inaccurate detection, fluctuating in size from frame

to frame. The accuracy of methods based on ROI (nostril)

detection is also sensitive to different cases that may ap-

pear in real life. For example, switching from a frontal pose

to an extreme lateral head pose might cause the ROI area

to contain background that will suddenly shift the signal’s

amplitude, introducing unwanted frequencies. This case is

problematic as it propagates errors in the breathing rate es-

timation. To overcome these kind of errors and set a perfor-

mance upper bound, we also test the case when we manu-

ally fit the nostril bounding boxes around the ROI areas pro-

vided by [1]. Even though this removes the aforementioned

problems, motion blur and human error during annotation

might still propagate errors to the following steps. The sen-

sitivity of methods based on ROI detection and the need for

manual annotation during training, strongly justify our au-

tomatic learning approach, which does not require human

supervision and is applied directly to the full input frames.

For our baseline signal extraction and breathing rate esti-

mation we adopt a method similar to [10]. First we compute

the mean pixel value in the ROI at each frame of the video.

Having a signal of sufficient length (e.g. 1000 frames) we

automatically remove peaks and edges that might appear

due to noisy detections and movement by applying a Dif-

ference of Gaussians filter on the whole signal, then sub-

tracting the filtered signal from the original one. We then

normalize the resulting signal by subtracting its mean and

dividing it by its standard deviation. After normalization we

again filter it with a band-pass filter, so that only frequencies

between 0.1 Hz and 0.8 Hz remain. Finally, we compute the

absolute value of the Discrete Fourier Transform and obtain

the maximum response in frequency, which gives the final

breathing rate. Please see Table 2 for the results of our hu-

man made ROI and RetinaFace detected ROI methods.

3. Our Deep-Synthetic Approach

Next we present our novel approach to detect vital signs

in thermal videos based on VSignNet - a deep neural ar-

chitecture, which learns from pure synthetic data and with-

out human annotation to predict both the intensity of the

vital sign (heart or respiratory rate) and the region of inter-

est. Explained in detail in the next Sections, the synthetic

data is generated elegantly and generally, requiring minimal

domain knowledge, namely a very loose target frequency

range. Our experiments also show strong robustness to this

prior knowledge,with different ranges giving similar results.

One key novelty of our approach in the context of vi-

tal sign detection comes from learning only from synthetic

data. There is an increasing number of works in com-

puter vision, which learn from synthetic data, but on other

tasks, such as: motion magnification[17], optical flow es-

timation[18], text localization in images [24], object detec-

tion [25,26], estimate depth and safe landing areas for UAVs

[27]. Our synthetic data generation algorithm was inspired



by approaches [10-12,14], which relied on the fluctuations

on pixel intensities around the nostril area during inspira-

tion and expiration. Surprisingly, the same procedure used

for breathing rate estimation, with absolutely no modifica-

tion, was able to generalize very well to the other task of

heart beat detection from thermal videos - by only changing

the prior target frequency range for generating the synthetic

training data.

3.1. Synthetic Data Generation

The key motivation behind generating a fully synthetic

training data set is the little publicly available data for re-

search in the domain of vital sings monitoring. As we show

next, our generated training videos are very different from

the target domain. However, they are capable of captur-

ing the quintessential elements of the targets, which makes

training feasible and efficient.

The basis of synthetic frames creation: The genera-

tor is designed around the initial idea of producing data

sequences that imitate thermal images containing a nostril

area, as it changes in size and location over time while the

person breathes. This area is considered a region of interest

in many methods for respiratory signal detection[10-12,14].

Later the same generator proved effective in other learning

tasks, such as heart rate prediction. Thus, the generator cre-

ates an input sequence of synthetic grayscale frames, which

represent a disjointed linear combination (explained next)

of three layers: 1) a layer (I) containing the region(s) of in-

terest - one or several blobs fluctuating in intensity, size and

location over time according to a random target frequency

within a given range, 2) a random noise layer (N) and 3)

a distractor layer (D) - containing distractor blobs that be-

have similarly to the target ROIs, but at a frequency outside

the prior target range. Each synthetic training input frame

is paired with a synthetic ground truth tuple, containing: 1)

the signal of interest, as a function of time 2) the average

rate of the signal and 3) a sequence of binary maps contain-

ing the interest blobs, exactly as they appear in layer I (point

1, from the synthetic input given).

An example synthetic training input sequence can be ob-

served in Figure 2. Thus, the input data is a sequence of

grayscale frames, containing one or several regions (ob-

jects) of interest whose pixel intensities fluctuate between

a minimum and a maximum value - interval chosen at ran-

dom in [0,1], in the same rhythm as the target signal: e.g.

object is of intensity A at the maximum of the signal, and

intensity B at the minimum of the signal. The objects of

interest are ellipses of different sizes scattered around the

image, all being in sync with the same signal.

Formally, each training videos is a sequence of T frames.

For every moment t a frame, F (t) (Eq. 1) is a combina-

tion of signals SI and Sk
D

, belonging to objects of interest

in the set I and distractor objects in the set D. The value

Figure 3: Examples of generated frmes, varying according

to the different types of signal of interest, which dictates

the intensity of the regions of interest (I).

of the signal is multiplied with binary position masks Mk
I

and Mk
D

, and then combined with a gradually shifting back-

ground, constructed based on the background mask MBG.

The background mask is the complement of the union of

all the other masks MBG(t) = C⋃
i∈I∪D

Mk(t), and back-

ground intensities βBG, which are sampled from interval

U [0, 1]. We first form an image of lower resolution of back-

ground intensities, which we then upsample before forming

the final background mask MBG. Then the resulting frame

is first filtered with a Gaussian parameterized by σ, Gσ , be-

fore a final salt and pepper noise βSP is added.

The nature of the signal of interest SI is sam-

pled from a selected family of cyclic functions

[Sin,Step,Triangle,Gaussian], with a cycle period sam-

pled from U [minI ,maxI ]. The distractor signals are

constructed similarly, sampled from U [R \ [minI ,maxI ]]

F (t) =Gσ(
∑

k∈I

(SI(t)M
k
I (t)) +

∑

k∈D

(Sk
D(t)Mk

D(t))

+ βBG(t)MBG(t)) + βSP (t)

(1)

Objects and distractors moving in time and space:

The masks are generated by drawing ellipses (origi-

nally inspired from nostrils’ shapes). The ellipses from

the first frame is parameterized by a position (pk0 , p
k
1)

sampled from U [(0, Dim0
Frame

), (0, Dim1
Frame

)], a pair



Figure 4: A high level overview of our architectural layout, displaying the general structure and shapes of tensors. While the

specifics of each module are flexible, a key element of the architecture is the special attention towards temporal information

by processing at two scales, with a local and a global temporal processing pathway.

of dimensions for the axes (dk0 , d
k
1) sampled from

U [(1, Dim0
Frame

/4), (1, Dim1
Frame

/4))], and a rotation

angle α sampled from U [0, 360]. A secondary position

is sampled as well, which represents the final destination

of the ellipse, (fpk0 , fp
k
1). Afterwards, at each frame, a

new size is calculated by applying slight fluctuations to

the previous size dki (t) = dki (t − 1) ∗ δ, δ being sampled

from N (1, 0.1). The new angle is calculated by similarly,

αk(t) = αk(t − 1) ∗ δ, δ being sampled from N (1, 0.1).
The new position is calculated as the weighted average be-

tween start position and end position, over which a position

noise,δ, is added pki (t) =
T−t

T
pki (t− 1) + δ + t

T
fpki .

Mk(t) =Ellipse((pk1 , p
k
2), (d

k
1 , d

k
1), α

k) \
⋃

i∈I∪D
oi<ok

M i(t)

(2)

Modeling the target signal: The target signal is com-

posed of periodic functions (Fig. 3) with values between

0 and 1, and a function period sampled from the interval

of interest specific to the task at hand. This interval of in-

terest represents the prior of the synthetic data generation

method. It is key to selecting the signal source from among

other candidates irrelevant to our task.

Synthetic data generation summary: Along with the

object of interest, the input data also contains the following

forms of augmentation and noise, designed to make the net-

work robust and generalize beyond the particular shape and

appearance of the regions of interest in the ground truth:

1. Background level augmentations specific to the target

domain: salt and pepper noise, designed to mimic the

camera noise and a smoothly varying background, de-

signed to mimic slight local changes.

2. Object level augmentations were used: size noise, de-

signed to simulate slight changes in scale; position

noise, designed to simulate slight movements of the

head and position change, designed to simulate big

movements, such as head rotations.

3. Signal level augmentations are applied as well: signal

noise, designed to emulate different noise type present

in the real domain and signal flattening, designed to

emulate periods when the vital signs are missing. This

augmentation has the effect of smoothing and cleaning

the prediction of the network.

4. An important augmentation of the data is the addition

of distractor objects, which look the same as the ob-

ject of interest, but the signal frequencies are sampled

from very different frequency intervals. This is a key

component when dealing with the presence of multiple

different signals in a video.

3.2. VSign­Net: Our Deep Learning Architecture

We propose VSignNet, our deep learning architecture

(Fig. 4), which captures the temporal dimensions of the data

on two levels, starting from a first local one and followed

by a second, global one. The data pipeline is composed

of 5 types of components: Temporal Convolutional En-

coder [19], Bidirectional LSTM [20], Fully Connected Pre-

dictor,Temporal Convolutional Decoder [20], Signal Anal-

ysis Module. The Fully Connected Predictor and Temporal



Figure 5: Selection of frequency range priors (of the sig-

nal of interest) used for synthetic data generation. Red lines

represent intervals [mindataset,maxdataset], blue lines rep-

resent intervals calculated based on medical domain knowl-

edge, while black lines represent intervals constructed by

expanding and shrinking the red interval.

Convolutional Decoder are both present before and after the

bidirectional LSTM, capturing temporality on both a local

and a global scale.

Temporal Convolutional Encoder. Applied on the se-

quence of input frames, it encodes spatial and temporal in-

formation together, creating a powerful embedding contain-

ing information about the slight fluctuations of the input.

Designed with a relatively small temporal receptive field,

it is capable to capture local data evolution, as indicated

by the values of the auxiliary local temporal loss. In our

experiments a simple encoder was employed, consisting

of 6 blocks containing Conv3D(kernel:3,stride:2,filters:64)-

RELU-BatchNorm [21]-Dropout [22].

Bidirectional LSTM. Applied on the embedding result-

ing from the temporal encoder, it has the role of aggregating

global temporal information and correcting the local infor-

mation aggregated by the encoder. In our experiments two

stacked bidirection LSTMs with 512 units each were used.

Fully Connected Modules. Present twice in the archi-

tecture, before and after the LSTMs, having the role of

transforming the embedding of each frame in a single nu-

merical value representing the magnitude of the vital sign

at each frame. Our experiments used 3 Fully Connected

layers, with 32, 8 and respectively 1 unit.

The first is applied on the embedding resulted from the

temporal encoder, containing only local temporal informa-

tion. The second is applied on the embedding resulted from

the LSTMs, containing global temporal information.

Temporal Convolutional Decoder. Present twice in the

architecture, before and after the LSTMs, having the role

of transforming the embedding of each frame in a heatmap

encoding the location of the signal source.

The first one is applied on the embedding resulted

from the temporal encoder, containing only local tem-

poral information. The second one is applied on the

embedding resulted from the LSTMs, containing global

temporal information. In our experiments a simple en-

coder was employed, consisting of 6 blocks contain-

ing TransposedConv3D(kernel:3,stride:2,filters:64)-RELU-

BatchNorm-Dropout.

Signal Analysis Module. Applied on the predicted sig-

nal based on global temporal information, it converts the

signal to a numeric value representing the frequency of the

target signal.

Given the smoothness of the network’s predictions, a

peak detector based on local maxima was sufficient, hav-

ing the advantage of its decisions being more transparent.

As in [11], we set a minimum distance between peaks, hav-

ing selected 40 frames, which is far bellow the average of an

adult breathing rate. Another eligible candidate was Fourier

frequency analysis[23], as applied in other methods[10,12].

4. Experimental Analysis

Our method has been evaluated on the LCAS thermal

dataset ([10]). We perform an ablation study regarding the

sensitivity of the prior on this dataset as well as experimen-

tal comparisons with our strong baseline and the methods

published in the literature. LCAS consists of 5 videos of

5 subjects, who exhibit a regular breathing pattern. Each

videos has about 2 minutes in length, captured at a 27 Hz

sampling rate, with a resolution of 382 x 288. The sub-

jects sit still in front of the camera for approximately half

the length of the video, and for the second half they start

moving closer and further, and change their head pose to

extreme positions. The videos have ground truth annota-

tions for breathing rate and heart rate. Breathing rate ground

truth has inspiration start moments annotated, and heart rate

ground truth is provided by a heart rate monitoring device.

Evaluation has been done in the same manner as in [10],

by counting the number of vital sign cycles in a window

of time. For respiration rate, the window is of length 1000

frames, and for heart rate it is of 250 frames, representing

about 36 and 9 seconds, respectively. The evaluation is split

in two sections, moving and still, depending on the head

movement of the subjects. The standard evaluation metrics,

also used in LCAS[10], are Mean Absolute Error (MAE)

and its Standard Deviation (STD), reported per windows of

a minute or 1620 frames. We also evaluate the temporal lo-

calization of our respiratory signal prediction, by measuring

the distance between the predicted inspiration peaks (which

can be easily detected) and the human annotated inspiration

start points on LCAS (Table 3 and Figure 7).

We also introduce an in-house dataset, displaying dif-

ferent breathing patterns, absent in LCAS[1]. The per-

son presents four breathing patterns, Normal Nose Breath-

ing, from frame 1 to 1740, Hold Breath, from frame 1741

to 2610, Mouth Breathing, from frame 2611 to 3480 and

Mouth and Nose Breathing, from frame 3480 to 4350. Re-

sults on this dataset are presentented in Section 4.2.



Figure 6: Example breathing signal predicted on a video

featuring different breathing patterns. Changes in the pre-

dicted signal patterns could be observed for different kinds

of breathing (Nose breathing, Hold breath, Mouth breath-

ing, Mouth and Nose breathing).

4.1. The effect of prior target frequency range

Considering the importance of the frequency range prior,

an ablation study have been done to test the impact of the

precision of the frequency prior, knowing from annotations

the frequency intervals of interest in the LCAS[10] dataset

case. At the same time priors based on domain knowledge

information, agnostic of dataset, have been tested.

As it can be observed from the results of the ablation

study regarding the quality of the prior in Table 1, obtaining

a good prior can improve the performance of our method.

At the same time, less precise priors, with wider or smaller

ranges than the range of the distribution of frequencies ob-

served in the data, still obtain good results, indicating an

ability of generalization to proximal, but unseen frequen-

cies. The superior results on Moving section could be at-

tributed to the improved visibility of superficial blood ves-

sels [33] in lateral views.

4.2. Predicting different breathing patterns

In order to test the behaviour of our method when en-

countering the edge case of persons not breathing, we used

an in-house thermal video. As seen in Fig. 6, the variance of

the signal is much lower on the second region (not breath-

ing), making it possible to detect periods of time with no

inspirations. Also, the predictions on the third and fourth

periods, mouth breathing, mouth and nose breathing, re-

spectively, are similar in quality to the ones predicted over

the first region (nose breathing), making the the model ro-

bust to all types of breathing.

4.3. Experimental comparisons on LCAS dataset

As seen in Table 2, our method outperforms LCAS[10]

and the baselines by a good margin. Note that M ROI base-

line uses manually annotated regions during both testing

and training, while RF ROI uses instead the automatic Reti-

naFace detector both for training and testing. Our VSignNet

uses no detector and takes as input raw full thermal images.

Figure 7: Top row: respiratory signal prediction as a func-

tion of time. In our case, the peaks of the signal (green

dots) represent the moments when the inspiration reaches

its maximum. The manually annotated ground truth (red

dots) mark the starts of these periods of maximum inspira-

tion, as seen by the human annotator (as expected, there is a

slight misalignment between these two moments). Bottom

row: ROI segmentation prediction in red - the region in the

image likely to contain the source of the respiration signal.

Respiration Rate (BPM)

Trained Freq.

Interval

Still Moving

MAE STD MAE STD

[0.30, 0.45] Hz 1.75 ±1.6 2.24 ±1.7

[0.24, 0.50] Hz 2.10 ±1.7 3.13 ±2.5

[0.24, 0.54] Hz 1.12 ±1.3 2.62 ±2.0

[0.20, 0.67] Hz 2.47 ±1.8 3.23 ±1.9

[0.16, 0.67] Hz 1.85 ±1.5 3.45 ±2.6

Heart Rate (BPM)

Trained Freq.

Interval

Still Moving

MAE STD MAE STD

[1.50, 1.58] Hz 14.38 ±11.7 13.98 ±9.9

[1.20, 1.80] Hz 17.64 ±9.9 14.91 ±12.1

[1.00, 2.25] Hz 15.5 ±10.6 11.18 ±7.9

[0.67, 2.70] Hz 17.2 ±12.7 12.25 ±8.2

[0.60, 5.40] Hz 15.38 ±10.8 14.18 ±11.4

Table 1: Ablation study: mean absolute errors (MAE) and

standard deviations (STDs), per minute, for different signal

frequency interval priors used and for different cases, Still

head pose vs Moving head pose. Red intervals are com-

puted from dataset statistics [mindata,maxdatas] and blue

intervals are obtained from medical domain knowledge.

4.4. Region of interest (ROI) segmentation

We also introduce the prediction of the region of interest,

as a ROI segmentation. Besides segmenting the probable

source region of the signal, it could help us better under-

stand the physiological cues used by the model. In order to

evaluate our ROI segmentation predictions, we use qualita-

tive results such as the ones displayed in Figure 7. At the

same time, due to the lack of ground truth, we introduce

our own quantitative metrics, which are based on our head



Heart Rate (BPM)

Experiment
Still Moving

MAE STD MAE STD

LCAS [10] 29.68 ±15.76 18.96 ±22.51

VSignNet 15.51 ± 9.93 14.91 ± 7.99

Respiration Rate (BPM)

Experiment
Still Moving

MAE STD MAE STD

LCAS [10] 3.72 ±0.78 5.87 ±2.18

M ROI 1.87 ±2.05 4.41 ±4.41

RF ROI 1.90 ±1.72 14.77 ±7.32

VSignNet 1.12 ± 1.34 2.62 ± 2.07

Table 2: Performance comparison between our results

(VSignNet) and the results reported by Cosar et al (LCAS

[10]). We also report the results of the two baselines, using

either manually annotated ROI (M ROI) or ROI detected

with RetinaFace (RF ROI). MAE and STD metrics are com-

puted as in Table 1.

Respiratory Signal Temporal Localization

Still Moving

Mean STD Median Mean STD Median

0.25 ±0.19 0.21 0.27 ±0.24 0.21

Table 3: Estimating the difference between the moments

when the predicted inspiration period reaches its maximum

and the start of the inspiration period as marked by human

annotators on LCAS. The differences are estimated as the

ratio between the distance in absolute number of frames

(between the two moments) and the total number of frames

in that specific respiration period. We report mean values,

standard deviation as well as median values for the two

cases of Still head pose vs. Moving head pose. Note that

the mean error of 0.25 (a quarter of the total inspiration-

expiration period) is in fact expected, intuitively, between

the start at the peak of the inspiration period.

detections using RetinaFace. We use the following metrics:

1) Intersection over Union (IOU) with the previously men-

tioned detections; 2) CHR, center Hit Rate, that is the per-

cent of time the center of the predicted region is inside the

bounding box detected with RetinaNet; 3) DC, distance be-

tween the prediction center and the center of the face box.

Evaluation of the segmentation task has been done only on

the respiratory signal estimation task, where we know the

main source of the signal (nostrils).

In Table 4 we show quantitative ROI segmentation re-

sults. Qualitative results at two scales are presented in Fig-

ure 8. At the original scale, the full image is given to VSign-

Net, which predicts as region of interest the full face of the

person. A bounding box is taken around that region and

fed again into the net, which predicts, at the second, smaller

Figure 8: Signal source ROI mask shown in red, performed

at two scales. At the larger scale (top), our VSignNet

highlights the person, while at the smaller scale (bottom),

VSignNet is capable to correctly isolate the nose and mouth

regions, as primary signal sources for respiration.

Respiratory ROI Segmentation Evaluation

Region IOU (%) CHR (%) DC (pixels)

Head ROI 50.95 92.37 6.74

Table 4: Quantitative evaluation of respiratory ROI segmen-

tation on the LCAS dataset, obtained by VSignNet. The

metrics are averages over LCAS: intersection over union

(IOU), center hit rate (CHR) and distance between the de-

tection and ground truth centers of mass (DC).

scale, regions of interest around the nose and mouth regions

- proving that VSignNet has actually learned by itself to de-

tect the primary source regions of the signal of interest.

5. Conclusions

We presented a novel deep learning approach with fully

automated synthetic training for detecting vital signs and

their source interest regions in thermal videos. Different

from the published literature our method employs a novel

deep neural net (VSignNet), with two, local and global,

temporal stages of processing, which achieves state-of-the-

art results on the recent LCAS dataset. Our second contribu-

tion is that we overcome the lack of proper supervised train-

ing data with an elegant and general algorithm for synthetic

training data generation. Our method is based on minimum

prior medical knowledge and it is applicable (without mod-

ification) to both heart and respiratory rate estimation, as

our experiments show. It is truly interesting that a very gen-

eral and relatively simple algorithm for generating synthetic

training data can be successfully applied in the complex and

specific domain of medical imaging. This fact opens up new

questions, with broader impact, regarding the ability of such

strategy to learn, without human supervision, other complex

vision tasks in space and time.
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