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Abstract

Recent advances in generative adversarial networks

have made detecting fake videos a challenging task. In

this paper, we propose the application of the state-of-the-

art attribution based confidence (ABC) metric for detecting

deepfake videos. The ABC metric does not require access

to the training data or training the calibration model on the

validation data. The ABC metric can be used to draw infer-

ences even when only the trained model is available. Here,

we utilize the ABC metric to characterize whether a video

is original or fake. The deep learning model is trained only

on original videos. The ABC metric uses the trained model

to generate confidence values. For, original videos, the con-

fidence values are greater than 0.94.

1. Introduction

Deepfake automatically manipulates the face in a video

using a pre-trained generative adversarial network (GAN)

to generate fake videos. Deepfake videos are mainly used

to manipulate political opinions and create pornographic

videos. The most famous among all deepfake video appli-

cations is Snapchat application [3]. This application uses

an active three-dimensional (3D) model to swap faces in

real-time and generate deepfake videos and images. Fur-

thermore, Zao, FaceApp were built on trained deep learn-

ing models. The fundamental principle of all these applica-

tions is to manipulate the human face, characteristics, such

as facial attributes [52]. Face synthesis creates entire non-

existent faces using powerful GANs [12].

Figure 1: Detecting deepfake videos using ABC metric.

In this study, we propose a novel approach to detect

deepfake videos using the state-of-the-art attribution based

confidence (ABC) metric [19] as shown in Fig. 1. The ABC

metric does not require access to the training data or train-

ing the calibration model on the validation data. We train

VGGFace2 [5] on ResNet50 [15] model on original face

videos. The test face image is provided to the ABC met-

ric, which uses the trained model to generate the attribution

score. A threshold value of 0.94 is set to differentiate origi-

nal and fake videos.
The key contributions of this study are listed below.

• A new database of deepfake videos was created using

a commercial website [1] by considering 10 original

videos and 10 donor videos. The deepfake database

will be made publicly available for research.

• The ABC metric can be used to draw inferences even

when only the trained model is available. Hence, it can

be used to detect any fake face image without needing

to access the training data.

To the best of our knowledge, we are the first to use the

state-of-the-art ABC metric [19] to detect deepfake videos

without accessing training data
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2. Related Work

Fake videos can be mainly generated by manipulating

faces in the videos, digital forensics, and face swap.

2.1. Manipulating Faces in Videos

Rossler et al. [43, 44] proposed manipulating facial ex-

pressions using a computer graphics approach to transfer

the expression from a source video to a target video. The

extended version of this approach was presented in Face-

Forensics++ [44], which is based on natural textures [50].

This technique utilizes original video data to learn the neu-

ral texture of the target person using network rendering. Re-

searchers have tried to detect facial expression manipula-

tions using color features [35]. However, this approach was

inefficient on most deepfake datasets [26, 43, 29, 61, 8].

Yu et al. [58], proposed a formulation using a learning

model based on an attribution network architecture, which

maps the image to its respective fingerprint and uses GAN

to detect fake images. Furthermore, the learning model

learns the fingerprint from each source image to establish a

correlation index between each model fingerprint. Wang et

al. [53], captured salient features of every layer during acti-

vation. These features are important for facial manipulation

detection systems [37]. Stehouwer et al. [46], proposed at-

tention mechanisms to enhance obtained convolutional neu-

ral network (CNN) feature maps to analyze different types

of facial manipulations.

Jain et al. [18], proposed the CNN model inspired by

ResNet architecture. They employed support vector ma-

chine (SVM) to differentiate original and adversarial im-

ages. Wang et al. [54], used recurrent neural networks

(RNNs) for the detection of face manipulations. They per-

formed face syntheses using the Face-Aware Liquify tool of

Adobe Photoshop to manipulate 50 photographs. Zhan et

al [59], performed an analysis on the spectrum domain in-

stead of considering raw pixel information. They applied

two-dimensional discrete Fourier transform to each RGB

image channel to attain one frequency image per channel.

This approach performed significantly better compared with

GauGAN [17].

Karras et al. [23] extended ProGAN [22] to StyleGAN

to generate high-resolution face images. They proposed an

intuitive, scale-specific control of synthesis based on the

separation of high-level attributes. Facial attributes, includ-

ing the color of the skin, hair, age, anger, smile, and gender,

can also be modified using [11]. StarGAN [6]. The propo-

nents of StarGAN performed an image-to-image translation

using a transfer learning network. They trained conditional

attributes using cyclic consistency and attribute classifica-

tion loss. Lample et al. [27] proposed the IcGAN approach

using an autoencoder architecture to generate fake images

by disentangling salient image information during the train-

ing process.

2.2. Digital Forensics

Face recognition systems can also be attacked by cos-

metics, makeup, occlusions, and plastic surgery [33, 41].

Bharati et al. [4] employed a restricted Boltzmann machine

(RBM) to detect face manipulations using cosmetics. They

considered face patches to learn salient features and classify

original and adversarial face images. Tariq et al. [49], eval-

uated the use of their CNN models to detect manipulation

using images from the CelebA dataset. Other digital foren-

sics techniques include iCaRL [42], ProGAN [22], Star-

GAN [6], CycleGAN [61], StyleGAN [23], Glow [25],

pixel co-occurrence analysis [36], and Face2Face [51].

2.3. Face Swap

The first face swap detection was proposed by Zhou et

al. [60]. They used GoogLeNet [48] to detect fake face

images and SVM for classification. Afchar et al. [2] im-

proved the approach using the Inception model [48]. Guera

et al. [14], introduced a combination of CNNs and RNNs to

detect face swaps in videos. Yang et al. [56], used a splic-

ing approach to synthesize face regions in 3D head poses.

They learned the differences between head poses using fa-

cial landmarks and the central face region to distinguish

deepfakes and real videos. Matern et al. [34], proposed face

swaps by considering missing reflections, eye color, teeth,

and eye tears. These missing attributions were fed to logis-

tic regression and multi-layer perceptron models for classi-

fication. Nguyen et al. [38], proposed multi-task learning

that simultaneously locates the manipulated region and de-

tects face swaps using autoencoders. The other attempts to

detect face swap includes [43, 2, 34, 38]. Recently, He et

al. [16] proposed attGAN, which uses attribute level clas-

sification to guarantee the correct change of attributes of a

generated image. attGAN was enhanced by Liu et al. [30].

In this study, we have generated two deepfake datasets

using a commercial website [1] by considering 10 original

videos and 10 donor videos from the COHFACE database.

This dataset was first used to detect the predicted heart rate

variations of deepfake videos [10]. We have also generated

a new deepfake dataset by giving the original and donor face

videos of celebrities from YouTube to the commercial web-

site [1]. For every deepfake video, a minimum of 300 min

of GPU time is purchased on [1]. The loss value obtained

for the donor and original videos by [1] were analyzed.

To the best of our knowledge, we are the first to generate

two deepfake datasets using a commercial website [1]. The

datasets generated will be made publicly available for the

research community. Furthermore, we are the first to use the

state-of-the-art ABC metric [19] to detect deepfake videos

without accessing training data.



(a) Generating deepfake videos using the commercial website [1] and

training VGG2Face-ResNet50 model only on original videos.

(b) Detecting deepfake videos using the state-of-the-art ABC met-

ric [19] without accessing training data.

Figure 2: Block diagram of the proposed approach used to detect deepfake videos using the state-of-the-art ABC metric

3. Attribution-based Confidence (ABC) Metric

In this study, we apply the state-of-the-art ABC met-

ric for detecting deepfake videos as shown in Fig. 2. The

ABC metric is highly motivated by the Dual Process Theory

[9, 13] and Kahneman’s Decomposition [21] which classi-

fies cognition into System 1 and System 2. The traditional

deep neural network model uses a bottom-up approach, i.e.,

System 1. The ABC metric calculation uses the top-down

approach, i.e., System 2. System 2 uses the attribution of

System 1 to produce new samples in the neighborhood of

the original input. Kilbertus et al. [24] investigated basic

differences between causal and anti-causal systems, with

the findings of causal systems being continuous. Machine

learning problems, such as prediction, are anti-causal. The

Deepfake face videos generate adversarial face images that

are less resilient compared with original videos that gener-

ate original face images. The face region is cropped from

each of the frames. We assume that the lack of resilience is

attributed to the non-occurrence of learning in the causal di-

rection; rather, it occurs in the anti-causal direction. The ex-

perimental and theoretical results are provided as evidence

to support the claims [19]. Merging anti-causal System 1

of deep learning networks with attribution driven System 2

allowed the calculation of the ABC metric. The ABC met-

ric provides a cognition model that is comparatively much

more resilient.

The key contribution of the ABC metric is that it uses

attribution over features for the decision making of ma-

chine learning models. ABC builds a constructor that can

sample the attribution neighborhood of the specified input

and observe the validity of the model in the neighborhood.

Although learning is an anti-causal process, ABC appends

with causal System 2 that reasons the validity of the model.

Computing the ABC metric

ABC metric computation on machine learning models

requires accurate sampling in the neighborhood of high-

dimensional input data. This problem can be tackled by per-

forming sampling over low-dimensional or output layers of

deep neural networks [39, 7] or depending upon manifold-

based and topological analysis of the data [20]. However,

it is not always possible to have large training data during

testing. Hence the ABC metric utilizes axioms on Shapley

values [47]. Recent research has shown that in deep learn-

ing systems, few features have very high attributions, and

they significantly contribute towards the prediction output

[47]. Hence, no change can be obtained in the prediction

output by sampling the low attribution features. Low attri-

bution reflects the equivariance of the deep learning model

with these features. The ABC metric considers the high-

attribution features during sampling instead of considering

low-attribution features.
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Figure 3: Creating deepfake videos under non-varying head pose movements using the commercial website [1]

Figure 4: Creating deepfake videos with varying head pose movements using the commercial website [1]

Mathematical formulations of the ABC metric

Consider that the ResNet50 model M trained on VG-

GFace2 has a input, such that Mi demonstrates the i-th logit

output of the ResNet50 model. The attribution of feature aj
of a for label i is calculated asAi

j(a). The steps involved in

computing the ABC metric are neighborhood sampling and

model conformance computation.

• Neighborhood sampling: Select xj with probability

|Ai
j(a)/aj|

∑
j|Ai

j
(a)/aj|

and replace it to flip the label from i, i.e.,

alter the model’s decision.

• Conformance computation: Confirm the fraction of the

sample in the neighborhood that does not change the

ResNet50 model’s decision. The original decision is

thus conformed as the appropriately obtained confi-

dence value.

The feature attributions are used by the ABC met-

ric to reduce the dimensionality of the input space. On

the reduced dimensionality neighborhood, importance sam-

pling is performed in the input to estimate the ResNet50

model’s conformance. The traditional dimensionality re-

duction technique is principal component analysis (PCA).

PCA searches the features that are important in the entire

image. However, the ABC metric does not search the en-

tire image but identifies the features that are relevant lo-

cally for the input. Hence, even in a very high-dimensional

input image neighborhood, the ABC metric can appropri-

ately estimate the conformance of the model and effec-

tively compute the confidence. In this study, we have used

high-dimensional face images obtained from original and

deepfake videos. The deepfake videos are generated for

varying/non-varying head poses using the commercial web-

site [1], as shown in Figs. 3 and 4, respectively.
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Figure 5: ABC metric values obtained for the original videos from the COHFACE database is greater than 0.94
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Figure 6: ABC metric values obtained for the original videos from the YouTube database is greater than 0.94

Algorithm 1 ABC metric confidence values c(M,a) of

ResNet50 Model M trained on facial input images a

Input: ResNet50 Model M , Face image a with facial

features set a1, a2, a3, · · · , an, Sample Size T
Output: ABC metric c(M,a)

1: A1, ..., An ← Attributions of facial features

a1, a2, a3, ..., an from face input a
2: i←M(a) Get ResNet50 model prediction

3: for j = 1 to n do

4: P (aj)←
|Aj/aj |∑

n
k=1

|Ak/ak|

5: end for

6: Generate samples T by mutating facial feature aj of

input a to baseline abj with probability P (aj)
7: ResNet50 model (M) output on T is obtained.

8: c(M,a) ← Tconform/T where model (M) ResNet50

output on Tconform samples is i
9: return c(M,a) as confidence metric (ABC) of predic-

tion by the ResNet50 model M on face input image a

ABC metric for detecting deepfakes

The ABC metric presented in [19] is applied to detect

deepfake videos. The attribution methods use Shapley val-

ues to consider the baseline input of ab. The baseline can

be a completely dark image. It can also contain a set of

randomly selected input values, and the computation of ex-

pected values is considered an attribution. Suppose the at-

tribution of the j-th feature having i as the output label be

as Ai
j(a). The attribution obtained for the j-th feature does

not depend only on aj but on the entire image a. The deep

learning networks considers each logit similarly. Hence, in

an ABC metric calculation, the class/logit is dropped. The

output of the deep learning network is denoted only using

M(·) and the attribution as Aj(a). The the proponents of

this study [19] have considered the baseline input ab = 0.

The steps involved in calculating the ABC metric for detect-

ing deepfake videos is presented in Algorithm 1. We have

trained the ResNet50 model on VGGFace2. In Figs. 5, 6,

and 7, O indicates the original class label, and P indicates

the predicted class label.
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Figure 7: ABC metric values obtained for original videos from VidTIMIT database is greater than 0.94
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Figure 8: Cumulative data fraction vs. ABC for the test original video from the COHFACE dataset and test adversarial video

compared with the trained original video model

4. Results and Discussions

The existing datasets used for the entire face synthe-

sis include FFHQ [23] , CASIA-WebFace [57], VG-

GFace2 [5] , CelebA [31], and Face Forensics [43]. The

datasets generated for face swapping include VidTIMIT

[26], Celeb-DF [29]], and FaceForensics++ [44], which

is an extension of FaceForensics [43]. Stehouwer et al.

[46] generated a face manipulation database with a col-

lection of 300,000 fake images using ProGAN [22] and

named it as the Diverse Fake Face Dataset. Neves et

al. [37] developed the Face Synthetic Removal database.

This database has a collection of more than 150,000 syn-

thetic face images, which are created using StyleGAN.

Other GAN based face databases have been presented in

[27, 16, 30, 40, 28, 45, 55]. Most of the existing deepfake

datasets are not generated using commercial website [1].

Hence, we have generated two deepfake datasets using the

commercial website [1].

For our analysis, we have used three original and three

deepfake datasets. Among the three original video datasets,

two were obtained from the COHFACE, and VidTIMIT

datasets, and the third was obtained from YouTube. We

have used videos from the COHFACE dataset and YouTube

to generate deepfake videos using a commercial web-

site [1]. The third deepfake videos dataset is generated us-

ing GANs [26]. The deepfake video generation commercial

website [1] requires us to purchase a minimum of 300 min-

utes of GPU usage to generate one fake video. Each deep-

fake video was generated by considering an original video

and a donor video. The commercial deepfake video genera-

tion website [1] generates realistic fake videos. The videos

are converted to frames, and after the face detection is per-

formed, the ResNet50 model, pre-trained on VGGFace2, is

trained only on the first 80% of original faces. The trained

network is tested using the remaining 20% of the original

and deepfake faces obtained by applying a face detection

algorithm to deepfake videos.
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Figure 9: Cumulative data fraction vs. ABC for the test original video from the YouTube dataset and test adversarial video

compared with the train original video model
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Figure 10: Cumulative data fraction vs. ABC for the test original video from the VidTIMIT dataset and test adversarial video

compared with the train original video model

We have applied the state-of-the-art ABC metric for the

detection of deepfake videos. The ABC metric is based on

two assumptions. First, a linear term dominates the attribu-

tion. The same assumption was also made by other attri-

bution methods that use Shapley values [47]. Second, the

axiom states that when the difference in the baseline and in-

put is one only feature, but their predictions are different,

the difference feature should be assigned an attribution that

is non-zero. This axiom was stated in DeepShap [32] and

Integrated Gradient [47]. The ABC metric uses the trained

model to generate the confidence score. The scores gener-

ated by the ABC metric are greater than 0.94 for the original

videos.

To validate the results obtained, cumulative data fraction

and ABC plots are obtained for COHFACE, YouTube, and

VidTIMIT datasets. The cumulative data fraction and ABC

for the original test video from the COHFACE dataset and

adversarial test video as compared with the train original

video model shown in Fig. 8. Fig. 9 shows the plots for

the cumulative data fraction and ABC for the original test

video from the YouTube dataset and test adversarial video

as compared with the train original video model. Fig. 10

shows the plots for the cumulative data fraction and ABC

for the original test video from the VidTIMIT dataset and

test adversarial video as compared with the train original

video model.



5. Conclusion and Future Work

In this study, we apply the state-of-the-art ABC metric to

detect deepfake videos. In ABC metric, access to the train-

ing data, and training the calibration model on separate vali-

dation data are not needed. We have validated our approach

on the DeepfakeTIMIT dataset, and two of our deepfake

datasets, generated using a commercial website [1]. The

loss values obtained from the commercial deepfake website

for one of the deepfake datasets are tabulated in Table 1.

Table 1: Loss values obtained for our deepfake dataset

Subject Original video loss Donor video loss

1 0.0.01671 0.0.01508

2 0.01507 0.01166

3 0.01405 0.02012

4 0.00925 0.02157

5 0.01326 0.01557

6 0.01524 0.01375

7 0.0172 0.01544

8 0.00748 0.00778

9 0.00988 0.00879

10 0.00704 0.00768

The training loss, and validation loss obtained for the

three datasets are tabulated in Table 2.

Table 2: Values for the training loss, and validation loss

Database Training loss Validation loss

COHFACE 1.1082 1.1037

YOUTUBE 1.4176 1.4114

VidTIMIT 1.4699 1.4574

In this study, we found that the ABC values obtained for

original videos are greater than 0.94. The deepfake videos

have low ABC values, so they are easily detected. We

obtained the average validation accuracy of greater than

96% on the three datasets.

The significant contributions of our study are listed.

• A new database of deepfake videos was created using

a commercial website [1].

• The ABC metric was applied, and a new approach to

detect deepfake videos was developed.

To the best of our knowledge, we are the first to generate

two deepfake datasets using a commercial website [1] and

to use the state-of-the-art ABC metric [19] to detect deep-

fake videos without accessing training data. In future, we

will extract physiological signals from the human face and

apply the ABC metric to detect video manipulations.
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