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Abstract

Patient falls are a common, costly, and serious safety

problem in hospitals and healthcare facilities. We have cre-

ated a system that reduces falls by using computer vision to

monitor fall risk patients and alert staff of unsafe behavior

before a fall happens. This paper is a companion and fol-

lowup to “Modeling bed exit likelihood in a camera-based

automated video monitoring application,” in which we de-

scribe the Ocuvera system. [1] Here additional details are

provided on that system and its processes. We report clin-

ical results, detail practices used to iterate rapidly and ef-

fectively on a massive video database, discuss details of our

people tracking algorithms, and discuss the engineering ef-

fort required to support the new Azure Kinect depth camera.

1. Introduction

Patient falls are a common, costly, and serious safety

problem in hospitals and healthcare facilities. Approxi-

mately 2 to 3% of hospitalized patients fall each year [16, 3]

resulting in nearly one million falls in U.S. hospitals; ap-

proximately one-fourth of these falls result in injury [18, 16]

and approximately 11,000 are fatal. [7] The cost of care for

the 2% of patients who sustain serious injury from a fall is

nearly $14,000 greater than for patients who fall without se-

rious injury. [25] When a patient falls unobserved, hospitals

must rule out and/or diagnose and treat injuries by conduct-

ing imaging studies and performing procedures. 34% of the

530 inpatients who fell in an academic medical center un-

derwent imaging with an average cost of $900 per study,

and 20% of patients imaged had at least one positive find-

ing. [8] Fall-related injuries are designated a preventable

Hospital-Acquired Condition by the Centers for Medicare

and Medicaid (CMS). [9] CMS does not reimburse hospi-

tals for costs incurred from patient falls. This policy has

not significantly decreased injury associated with hospital

falls, and there is a lack of evidence for changes in hospital

procedures that can significantly reduce falls. [24]

One limitation of current fall risk reduction interventions

is the inability to prospectively predict when patients will

exit a bed with enough lead time for healthcare profession-

als to respond and meet the patient’s needs. Addressing this

limitation presents an opportunity to decrease the incidence

of falls and their sequelae, which decrease quality of life

and increase health care costs. Over 80% of falls in hos-

pitals may be unobserved, making it difficult to determine

patient location at the time of the fall. [17] Unobserved

and unassisted falls frequently follow unobserved and unas-

sisted bed exits. In a recent study, 45% of falls originated

from the bed, 21% from a bedside chair, 21% occurred in

the bathroom after the patient exited either the bed or chair,

and 13% originated elsewhere (e.g. hallway, shower, com-

mode). [13] Injury is twice as likely with an unassisted fall

as with an assisted fall. [23] Thus, decreasing the incidence

of falls and fall-related injuries in hospital rooms could be

achieved through decreasing unattended bed exits as a com-

mon precursor to falls.

To that end, we at Ocuvera have created a computer vi-

sion system that estimates the probability of a bed exit in

the near future and sends an alert to nursing staff if that

probability rises above a configurable threshold. It consists

of a collection of “room clients” (depth cameras attached

to computers) that are placed in patient rooms, and a mo-

bile app for monitoring video and receiving and respond-

ing to alerts. We use depth for improved computer vision

and deidentification. Previously we have given an overview

of the system. [1] Particular attention is given there to

state estimation, predictive modeling, and theoretical results

achieved on video of patients. In this paper, we report clin-

ical results, detail practices we use to iterate rapidly and

effectively on a massive video database, discuss details of

our people tracking algorithms, and discuss the engineering
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effort used for the new Azure Kinect depth camera.

2. Related work

While progress has been made recently to reduce falls

in hospitals, and there is evidence that multicomponent ap-

proaches can reduce falls, [20] their multifactorial causes

and the continued prevalence of falls [5] are evidence that

additional approaches are still needed. [20, 7] The Ocuvera

system can compensate for many of the shortcomings of

pressure pads, sitters, and central video monitoring (CVM)

systems:

• Pressure pads are common and affordable. However, a

recent, large, and well-respected study found that they

did not decrease fall rates, possibly due to high false

alarm rates and alarm fatigue. [21]

• Use of sitters is costly due to high labor expenses.

Studies of reduced sitter usage demonstrated no in-

crease in fall rates, while studies of implementing sit-

ters demonstrated mixed results, [15] possibly due to

decreased use of standard interventions when sitters

were present. [2]

• CVM is a lower cost alternative to sitters [6] that uses

humans to continuously observe video of up to 15 pa-

tients from a central location. [6, 19, 11, 4] CVM sys-

tems can reduce fall rates by 20-29%. [6, 19, 12] How-

ever, the literature documents limitations of CVM, in-

cluding potential for human error (e.g. attention fa-

tigue) by monitoring technicians, [19] delay in re-

sponding to patient behavior as technicians relay infor-

mation to nursing personnel, [4] ineffective hand-off

communication between technicians and nursing per-

sonnel, [4, 19] privacy concerns of patients and staff,

[11] and the ongoing cost of training technicians. [10]

Other marketed fall risk reduction solutions use a variety

of approaches to address some of these limitations. For ex-

ample, one technology provides audio and video monitoring

of patients at risk of falling by transmitting live video from

hospital rooms to a central monitoring station where moni-

toring technicians watch the patient feeds. If the monitoring

technician sees a patient begin to leave their bed, a voice

command is often issued first to discourage the movement

and, if that is not heeded, an alert is issued to nursing staff.

Another technology offers a remote patient monitoring so-

lution which pushes live patient video to mobile phones and

includes virtual bed rails. When patient movements are de-

tected outside of these superimposed, invisible rails, an alert

is sent to provider staff.

Because falls are a complex problem with no single root

cause, fall risk reduction interventions are best implemented

as a bundle that can address multiple factors contributing

Baseline Intervention

Total Admissions 3966 3618

Total Study Patients 193 130

Unassisted Falls 26 11

Assisted Falls 9 9

Total Falls 35 22

Injurious Falls 10 2
Table 1. Raw Numbers For Study Enrollment and Fall-Related

Outcomes Among 13 Hospitals

Baseline Intervention Change

Unassisted Falls 6.56 3.04 -54%

Assisted Falls 2.27 2.49 10%

Total Falls 8.83 5.53 -37%

Injurious Falls 2.52 0.55 -78%
Table 2. Results Per 1000 Admissions

to patient falls. When implemented as part of a fall risk

reduction bundle, our system contributes a unique combi-

nation of real-time, automated, predictive, video-based, 3-

dimensional algorithms nurses can use to reduce fall risk.

3. Clinical results

In January 2018, we completed USDA NIFA SBIR

Phase I project 1012701 to evaluate the feasibility of a pro-

totype version of the system at critical access hospitals. In

June 2018, we completed a Nebraska Research and Devel-

opment (R&D) Phase I grant study that focused on develop-

ing an adaptive training program for system usage. These

studies included 15 hospitals in baseline and intervention

stages. During the baseline stage, when alerts and video

were not sent to nursing staff, 4.7% of admissions partic-

ipated in the study. During the intervention stage when

nurses did receive alerts and video, 4.0% of admissions par-

ticipated in the study. Results of these studies were com-

bined and have been submitted for separate publication.

Preliminary results of that analysis includes the following

observations. [14]

Nine sites appeared to use the system to intervene to pre-

vent patients at high risk for falls from exiting the bed unas-

sisted resulting in an 89% decrease in unattended bed ex-

its/day (0.84 to 0.09); 96.5% of these patients were at high

risk for falls. Five sites appeared to use the system to mon-

itor patients as they exited the bed unassisted resulting in a

639% increase in the rate of unattended bed exits/day (0.43

to 3.18); 89% of these patients were at high risk for falls.

It appears that the five monitoring hospitals may have used

the system to intervene among patients at high risk for falls

and to monitor patients at low risk for falls to ensure they

could safely increase their mobility without assistance.

The sensitivity of the system to detect unattended bed ex-

its among all hospitals was 97.4% (calculated from bed ex-

its during the baseline stage). The positive predictive value



Figure 1. Association between the rate of unattended bed exits rates and patient age during Baseline (left) and Intervention stages (right) at

nine study sites using the system as intended, showing use of the Ocuvera system effectively prevented unattended bed exits.

of the system was 59.4%. One or two nurses independently

reviewed video associated with the 4,190 alerts sent during

the intervention stage of the two studies. Altogether, 2,487

(59.4%) were classified by at least one nurse as true posi-

tives because they alerted nurses to behavior that warranted

assessment of the patient’s needs. Later deployments have

seen positive predictive values exceeding 70%. Nurses re-

port the impact of false alerts is less for this system because

it is video-based, allowing them to quickly visually assess

patient needs.

During the baseline stage, the median lead-time was 28

seconds for 318 unattended bed exits associated with 64

unique patients. Lead-time is the number of seconds that

elapsed between the first predictive alert generated by the

system due to specific patient movement until a bed exit.

We calculated a lead-time for patients who exited the bed

unattended during baseline if the patient started lying down

in bed and was alone from the time the movement precip-

itating the bed exit began until three seconds after the bed

exit.

Two of the 15 hospitals did not report complete data

for admissions or fall event data. In the 13 hospitals in-

cluded in the final analysis, 4.3% of total admissions partic-

ipated in the study. From baseline to intervention unassisted

falls/1000 admissions decreased by 54% (6.56 to 3.04) and

injurious falls/1000 admissions decreased by 78% (2.52 to

0.55). Assisted falls/1000 admissions increased by 10%

from baseline to intervention (2.27 to 2.49). An assisted fall

occurs when hospital staff lower a patient to the ground in

a controlled manner (ideally using a gait belt); assisted falls

are significantly less likely to result in injury than unassisted

falls. It is possible that assisted falls increased during the

intervention phase due to the predictive system alert that al-

lowed nurses to observe patient behavior, make an informed

decision, and provided the lead-time to reach the patient and

provide assistance including controlling a fall.

Our system has been deployed at a local hospital since

Figure 2. Unattended falls per 1,000 patient days at acute neuro

med/surg rehab unit. Our system was introduced gradually in

2017.

Figure 3. Total falls by year (left) and total falls by month (right).

Our system introduced September 2018. The darker bars for the

two falls in February and June 2019 occurred with patients whose

rooms were not equipped with the system.

2017 for over 700 patients at high risk for falls and over

6,500 patient days. Unassisted fall rates have shown sig-

nificant improvement (see Figure 2). The unit sees almost

8,000 patient days per year and has experienced a 54%

reduction in unassisted falls for patients using the system

compared to pre-intervention.

At our second clinical deployment, a 36-bed medical sur-



gical unit, intervention was activated September 2018. Falls

decreased by 52.2% from 2018 to 2019. At this location,

53% of falls were related to bed exits for 2018. In the 12

months pre-intervention there were 15 falls related to bed

exits. In the 12 months post-intervention there were 3, a de-

crease of 80%. See Figure 3. As of March 2020 there have

only been two falls related to bed exits for patients using the

system.

Our system was chosen for a trial implementation at a

top academic medical center. The pilot implementation in-

volved 16 prototype systems collecting data on over 650 pa-

tients. Results indicated a 54% decrease in unassisted falls

for patients using the system (an inherently high-fall-risk

population) and a 98.4% sensitivity in predicting bed exits.

Across 17 sites combined, with a combined 2473 pa-

tients monitored out of over 10,000 patients admitted, unas-

sisted fall rates decreased by an estimated 46%.

4. Test harness

We test algorithmic changes against our database of

video. A change is only allowed if it makes an improve-

ment in the end-to-end system. There are several aspects

of our testing harness and associated engineering principles

that may be of interest, especially for video-based systems

that rely on a history of state.

4.1. Metrics

The metrics we use represent the idea that we are pre-

venting bed exits while reducing the number of false alerts.

Accordingly, the primary metrics we track when develop-

ing our algorithms are sensitivity, i.e. the proportion of

unattended bed exits that the system alerts on, positive pre-

dictive value (PPV), i.e. the proportion of alerts that occur

while the patient is engaging in unsafe behaviour, and num-

ber of alerts per patient day.

Previously, we required an improvement in both sensi-

tivity and PPV before allowing a change. If one went up

and one went down, we would have soul-searching phili-

sophical discussions about whether the change was good.

More recently, we have adopted a single metric : a weighted

sum of sensitivity and number of alerts per day that heav-

ily weights sensitivity. Having a single metric has made a

significant improvement in our iteration speed.

4.2. Our unit of indepence is the patient

We want to make sure that we are not reporting metrics

on data that we trained against. To us, training data includes

any video that was used to make decisions about whether or

not to include a change as part of the system. This includes

the input to a machine learner, but also the video we worked

against while developing hand-written algorithms.

If we were to use video from the same patient that was

used as training data, we could expect some frames to be

very similar to data the system was trained against. For that

reason, we split the patients into test and training patients.

We take pains to avoid the R&D team ever seeing test pa-

tient data.

This decision impacts how we view the reliability of met-

rics. In particular, we compute confidence by bootstrap-

ping: suppose the set of training patients has size n. We

repeatedly choose a sample of size n with replacement and

compute the desired metric. We then pick an interval con-

taining, for instance, 95% of the resulting data. Patients

vary wildly in the number and manner of bed exits, so this

process has a large effect on the confidence interval. For

example, a recent test run on a subset of our data yielded

a confidence interval for sensitivity of 92.9% ± 5%. This

was computed on 4677 bed exits. If the bed exits had been

treated as independent, the estimate would have been ± 1%.

Splitting by patient is not the only method of data di-

vision. For example, once our library contains a sufficient

number of hospitals, we might split the hospitals into train-

ing and test groups. As is, our metrics prove that the system

generalizes to new patients. Splitting by hospital will en-

able us to better prove that our system generalizes to new

hospital environments.

4.3. Subsampling

We run new algorithms against a cluster of over 50 com-

modity machines. Given that we have over 200,000 hours

of video, we subsample video rather than running all of it

on a cluster run. Bed exits are sparse, so subsampling by

itself would yield few bed exits and a very noisy estimate

of sensitivity. Instead, our taggers identify nearly all of the

bed exits by watching the video at high speed, and we test

against all of them. When computing statistics on video for

a particular patient, we assign weight 1 to frames of video

that were found by humans, and a high weight to the re-

maining randomly chosen frames, calculated so that the to-

tal weight of all frames run through the cluster on a patient

equals the number of frames for that patient. This produces

an unbiased estimate of our metrics while allowing us to

focus on events of interest.

This process, for example, allowed us to accurately es-

timate that our initial manual tagging process had missed

hundreds of bed exits on the basis that we had a handful of

high weight bed exits in our tests. It also provided us with a

more realistic look at our initial estimates of PPV. Most of

the clips we were running on were of bed exits, so by num-

ber, almost all of our alerts were true positives. By weight

however, our PPV was initially below 50%.

4.4. Discretization of state estimates

Many of the underyling state estimates we track (e.g. is

there another person in the room, is the patient in the bed, is

their leg hanging off the bed) are most naturally represented



Figure 4. The frames of state changes of f(A,B) are a subset of

the frames of state changes of A or B.

as a probability. However, we gain many advantages by

thresholding and storing booleans. In particular, we need

only store the frames at which the state changes instead of a

float per frame. With hundreds of millions of frames per test

run and dozens of state estimates, this makes a substantial

difference in storage space and retrieval times.

Another advantage of this data structure is that we can

quickly compute a function of two or more states in time

proportional to the number of state changes instead of

frames. This is true because the set of state change frames

for this function must be a subset of the state change frames

for the originals (see Figure 4.4). For example, suppose we

want to know how often we estimate that a particular patient

is sitting up in bed when no one else is in the room over the

course of a particular day. If the patient sat up 20 times and

someone entered and left the room 24 times, the total com-

putation takes on the order of 44 operations, in contrast to

the half a million frames that this computation represents.

This opens up the ability to quickly run experiments

without re-running the computer vision. For example, we

are able to experiment with different alerting policies, dif-

ferent sensitivity levels, and different test metrics, among

others. In fact, our alert policy is a decision tree that is a

function of the history of discretized states. For a given tree,

we are able to quickly compute a timeline of the current

node in the tree. This allows us to choose from among hun-

dreds of candidate splitting rules at each node, and thereby

build a tree that operates on history of state.

4.5. Reproducibility

There are two ways we want our system to be repro-

ducible: we want the system to have the same output from

test run to test run, and we want the behavior in the field to

be the same when that video is run in the lab.

Reproducibility from test run to test run allows us to dif-

ferentiate between changes in metrics that were due to al-

gorithmic changes and changes due to random fluctuations.

There are two main ways that non-determinism sneaks into

our algorithms. First, some of our algorithms rely on ran-

domness. For example, we use RANSAC to find the floor.

The solution we have settled on is to always use a random

seed that is a function of the incoming frame. Another

source of non-determinism is parallelism. If a parallel al-

gorithm depends, even subtly, on the order in which com-

putations finish, that is a source of non-determinism. For

example, our bed finding iterates over many candidate beds

in parallel. If there are ties in fitness, this can affect the

determinism of the algorithm. We have handled issues like

this on a case-by-case basis. In this case, we assign an index

deterministically to each bed and break ties by index.

We also want video of an event to run in the lab the same

as it did in the field. The major impedement we face is that

the behavior of the system depends on a history of video.

The way we have resolved this is to reset the system if there

has been 30 seconds of no motion in the scene. Thus, if we

want to know how much lead time our alerts would provide

for a particular bed exit, we back up the video to the most

recent time there were 30 seconds without motion and run

the video through our algorithms from there.

It should be noted that we perform this reset in the field.

There is an argument that in practice, access to more state

history should be better for the system. While that may be

true, it may also be false, and we have no ability to test it.

Instead, we know through testing on the cluster that the sys-

tem performs well with resets after periods without motion.

This is not merely theoretical. For example, because our

bed finding is expensive, we previously kept our bed model

even after 30 seconds with no motion. It turned out that,

very rarely, the system would find a bad bed that it thought

was good. This model would often be stuck in this state

for extensive periods of time, including after several days

of use. The testing system gave us no visibility into this

problem, since it would only run on short clips, where bad

beds were very rare. Now that the bed is recomputed after

30 seconds of no motion, we have not had this problem.

5. People tracking

A key component of our system is logic around identify-

ing and tracking movements of patients, nurses, and other

people in the scene. As with many tasks, we believe the fu-

ture is deep learning, and we are actively developing those

algorithms now. However, we are a small company with

limited resources. Patient privacy is a fundamental concern,

so video-based data of patients in hospitals is very difficult

to obtain: it took us 3 years to collect any data, and 2 more

years to collect the 200,000 hours we have now. Falls are

also very rare events, typically occurring around 4 times ev-

ery thousand patient-days. Thus, to accelerate time to mar-

ket, and due to team bandwith limitations, budgetary limita-

tions in data acquisition, and the paucity of data, our current

PeopleTracking algorithms take a more classical approach.

The PeopleTracking pipeline processes each depth frame

that comes in sequentially, performing all operations in ap-

proximately 10ms per frame. The pipeline consists of a

number of steps (see Figure 5).



Figure 5. The basic flow of information in our people algorithm.

5.1. Foreground identification

We begin by isolating pixels of interest. One main reason

for a pixel to gain interest is recent motion. Each pixel in

the image is modeled using a probability distribution based

on its recent mean and variance. Pixels which fall out-

side their expected distribution are considered in motion.

Depth-based mathematical morphology operations are then

applied to filter out noise and in-fill moving segments.

5.2. Head identification

Another main signal for a pixel to be of interest is if it

represents a point on a person’s head. We use Microsoft’s

per-pixel decision tree algorithm, [22] trained on our depth

data, to classify pixels as part of a head or not. To speed up

the computation, not all pixels are tested. Tested pixels are

selected from a subgrid on the image. Foreground pixels in

the subgrid are tested, as are pixels from previously identi-

fied heads, and also a random selection of background pix-

els. Then, for positive identifications, a second pass is con-

ducted to fill in classifications for all nearby pixels. Finally,

pixels are segmented using depth-aware segmentation. Re-

sulting sufficiently large segments are called heads.

5.3. Pixels of interest identification

Pixels of interest are amalgamated into a single mask:

foreground pixels, pixels on identified heads, and pix-

els physically near identified heads (representing potential

shoulders and upper torso). Aside from the head, body parts

are not explicitly identified (as with skeletonization algo-

rithms) because identification is unnecessary and because

many poses seen are not easily learned due to occlusions

from and proximity to nearby objects (other people, tray

tables, bedding, bed rails, IV stands, etc.). The mask has

various morpholology operations applied to it to filter out

small objects like cups and some blanket movement from

areas that could represent a person.

5.4. Segmentation and identity assignment

All pixels of interests are then segmented using depth-

aware segmentation. Each segment is assigned a class num-

ber. Segments that have substantial overlap and physical

proximity to segments from a recent previous frame are as-

signed the same class number. Significant conditional state-

ments determine how to handle conflicts between class as-

signment. For instance, a conflict can occur when a nurse

assists a patient, so from a segmentation perspective the pix-

els are connected by an isthmus of pixels (the nurse’s arm).

As another example, a conflict can happen when a person

sets an object down. A final example of a conflict is when a

patient starts moving in bed and moves their head and feet

before moving their torso. In this situation, the head and

feet can be tracked separately as moving segments, but they

should be combined when it is clear they are connected by

the torso. With conflicts resolved, we assign which seg-

ments are people versus objects and which segment repre-

sents the patient. In general, when handling conflicts be-

tween segments, we err on the side of caution and make de-

cisions to ensure we are correctly tracking the patient when

they are attempting to exit the bed, as alerting in this situa-

tion is the highest priority of the system.

5.5. Relative position determinations

The system can designate exactly one tracked person as

the patient. Once that designation is made, patient status

is inherited across frames as above. To initially determine

which segment represents the patient, segments are evalu-

ated based on their current position relative to the bed and

where that segment was first tracked (i.e. in bed, in the

frame but out of bed, or from out of frame). Segments can

be first seen in the bed or in the frame if the system is turned

on while the patient is in the bed or following a system reset

after a period of no motion (see Section 4.5).

The system also keeps track not just of where a segment

came from, but how confident it is that the segment is a per-

son, where the head is, and how confident it is that it has de-

tected the person’s head for the segment, whether the person

is near the bed or leaning over the bed, whether the segment

has ever had a head detected, when the segment last moved,

what its estimated center of mass is, etc. This information

is used to not only determine the patient, but also decide



when the system should not send an alert because a nurse is

in the room helping the patient: if the patient exits the bed

with help from a nurse, the system should not disturb nurses

with an alert for that bed exit.

6. Azure Kinect

We have adapted the system to use the Azure Kinect

depth camera from Microsoft. This section discusses our

reasons and the process for integrating with our system.

6.1. Reasons for adopting the Azure Kinect

Availability. We previously used Kinect V2, which is no

longer being manufactered.

Quality. The quality and accuracy of the Azure Kinect

depth camera is significantly better than other commodity

depth cameras on the market.

Power consumption. The camera draws up to 5.9W,

compared to 30W for the Kinect V2. This allows us to pack-

age our system with a smaller power supply.

Wide field of view. The Azure Kinect has a fisheye lens

with a 120◦x120◦ field of view, compared to 70.6◦ x 60◦

from Kinect V2. This opens more opportunities for place-

ment, and allows us to see more of the room.

6.2. Goals

Our initial goal in integrating the Azure Kinect was en-

suring that it could be used as a drop-in replacement for

the Kinect V2. We have a large body of depth video that we

want to leverage as we move to this new camera. We want to

be sure that quality is not compromised and that test results

will apply to the real world. There are several differences

between the two cameras that we had to address.

6.3. Wide field of view vs. narrow fields of view

The Azure Kinect operates in two modes: narrow field of

view mode, and wide field of view mode. The narrow field

of view mode has higher depth quality, but the shape of the

IR projector is octagonal, so the corners are clipped (see

Figure 6.2). We simulated the effect of clipping the corners

on our existing video, and it had a significant negative effect

on all of our key metrics. Given this and the fact that we

want to eventually use the extra information provided to us

by the wide field of view, we have chosen to use wide field

of view in production.

6.4. Modifying wide field of view

The wide field of view mode also has differences from

the Kinect V2. Most notably, the image is taken with a fish-

eye lens, and is therefore very distorted. Additionally, the

threshold for filtering bad depth data is stronger. We used

standard image unwarping in openCV to create a depth im-

age similar to that of the Kinect V2. There were two in-

teresting challenges. First, there was a Moiré pattern in

Figure 6. The corners are clipped in narrow field of view mode.

the depth data when we used nearest-neighbor interpola-

tion. This is mostly fixed by using bilinear interpolation,

except that zero pixels should not be averaged over in or-

der to avoid smearing artifacts near edges. Eliminating ze-

ros from the average can be achieved efficiently by unwarp-

ing the depth image, unwarping a 0-1 valued mask with the

same method, and then dividing by this unwarped mask.

See Figure 6.4. For the heavy filtering of depth data, we

worked with Microsoft to adjust thresholds to get depth

data out to the same distances available on Kinect V2. This

yields some highly incorrect noise. We filter this by remov-

ing small isolated segments (see Figure 6.4). In addition

to these challenges, the default 512x512 image from Azure

Kinect has a heavy spatial filter. We worked with Microsoft

to reduce this filtering effect to produce data closer to the

Kinect V2 (see Figure 6.4).

6.5. Testing

To our eye, we are able to produce a signal very similar

to that produced by the Kinect V2. To test more systemat-

ically, we have run the Azure Kinect system passively on

real hospital patients. We have caught some differences this

way: namely our motion detection was more likely to trig-

ger a false positive. Having worked through that and other

issues, we have now run hundreds of patient days against

the Azure Kinect and are satisfied with the results. A direc-

tion for the future is learning a map from Kinect V2 style

video to Azure Kinect style video for testing purposes. We

have good initial results. However, there are challenges.

Namely, the CycleGAN [26] model we have learned does

not preserve depth effectively, and doing style transfer on

every frame of all of our video would be time intensive.



Figure 7. Top: a naive undistortion. The rings are a Moiré pattern.

Bottom: bilinear interpolation with proper zero handling. Notice

the lack of rings.

Figure 8. Before: custom permisive noise filter. After: same filter

plus small segment removal.

7. Conclusion

In the last few years we have made significant progress in

improving the Ocuvera system’s performance and support

Figure 9. Top: default spatial filtering in 512x512 mode. Bottom:

custom spatial filtering more closely matches Kinect V2.

of the Azure Kinect depth camera. These changes amount

to a system that can be tested more efficiently, that can track

patients more reliably, and that integrates with an updated,

improved depth camera. We are constantly working to en-

sure that our system is both implementing state-of-the-art

computer vision techniques and operating as effectively as

possible in the field. We believe our results thusfar show a

promising technology that can have a positive impact on the

complex problem of patient falls in hospitals.
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