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Abstract

Remote measurement of physiological signals from

videos is an emerging topic. The topic draws great inter-

ests, but the lack of publicly available benchmark databases

and a fair validation platform are hindering its further de-

velopment. For this concern, we organize the first challenge

on Remote Physiological Signal Sensing (RePSS), in which

two databases of VIPL and OBF are provided as the bench-

mark for kin researchers to evaluate their approaches. The

1st challenge of RePSS focuses on measuring the average

heart rate from facial videos, which is the basic problem of

remote physiological measurement. This paper presents an

overview of the challenge, including data, protocol, analy-

sis of results and discussion. The top ranked solutions are

highlighted to provide insights for researchers, and future

directions are outlined for this topic and this challenge.

1. Introduction

Physiological signals such as the heart rate (HR), respi-

ration rate (RR), and heart rate variability (HRV) are im-

portant indicators of human physical conditions. Until to-

day most main-stream approaches for measuring physiolog-

ical signals still rely on contact sensors, including special

medical instruments like the electrocardiography (ECG),

and some commercial products like sport watches or smart

bracelets. To pursue convenient and comfort way for physi-

ological signal measurement, efforts have been made dur-

ing the last decade for remote measurement from facial

videos recorded with commonly accessible cameras. Com-

pared to contact measures, the advantages that remote mea-

sures could bring are that, firstly, breaking the constrain

of physical distance that people can be measured at differ-

ent locations; secondly, allowing more comfortable moni-

toring, especially for patients with special conditions that

might be irritated by contact means; and thirdly, integrat-

ing the measurement with camera systems which are avail-

able almost everywhere in the world. If feasible, remote

physiological signal measures would facilitate applications

in many fields, e.g., pushing the Telemedicine to another

level, which stands high value in the background of global

COVID-19 outbreak while the paper was written.

Many methods for remote physiological signal measure-

ment have been proposed ever since 2008, when Verkruysse

et al. [21] first reported that plethysmography (PPG) sig-

nals can be captured from human faces under ambient

light. Of all the physiological signals, the HR was the

main focus of most studies, while other signals (e.g., the

RR and HRV) were explored in a small number of studies.

From the ‘feature’ point of view, remote HR measurement

methods can be divided as ‘color-based approaches’ and

‘motion-based approaches’. Color-based approaches such

as [16], [17], [4], [8], [10] and [22] rely on the subtle color

changes of facial skin pixels to measure HRs, while motion-

based approaches such as [1], [11] and [23] track the mo-

tion trajectories of facial pixels to measure HRs. From the

‘learning’ point of view, remote HR measurement methods

can be divided as ‘training-free approaches’ and ‘learning-

based approaches’. Most earlier approaches are training-

free, including [16, 17], [4], [1] and [10], which don’t in-

volve any training process, and rely on signal filtering meth-

ods such as blind source separation and others to refine the

HR signals. Later studies started to exploit the strength of

machine learning or deep learning to further tackle the prob-

lem, such studies include [6], [14], [12], [3], [24] and [25].



More details of the development of remote HR measure-

ment are referred to survey papers [18] and [19].

Despite the thriving research interests, the lack of pub-

licly available benchmark databases and a fair validation

platform are the major issues that hinder its further devel-

opment. Kin researchers have to make repetitive efforts

on self-collecting small datasets to test proposed methods,

which makes it difficult to fairly evaluate and compare the

actual strength and weakness of each proposed method, as

self-collected data are of different recording conditions and

qualities. For this concern, we organize the first challenge

on Remote Physiological Signal Sensing (RePSS) in con-

junction with the CVPM workshop 1 in CVPR 2020 at Seat-

tle, USA. As the first open challenge on remote physiolog-

ical signal sensing, we will be focusing on measuring the

average HR from color facial videos, which is the most fun-

damental problem in this field.

The rest part of the paper is organized as follows: Sec-

tion 2 gives the overview of the RePSS challenge, including

the data, challenge protocol and evaluation metrics; Sec-

tion 3 briefly introduces some proposed approaches that

achieved leading performance in the challenge, Section 4

reports challenge results and discussions, and at last in Sec-

tion 5 we discuss future directions.

2. Challenge Overview

2.1. Data

The data used for the RePSS challenge come from two

databases: the VIPL-HR-V2 and the OBF.

VIPL-HR-V2 is provided by the Institute of Computing

Technology (ICT), Chinese Academy of Sciences (CAS),

China. VIPL-HR-V2 is the second version of VIPL-

HR [13, 14], and the construction of VIPL-HR-V2 started

from 2018. One important motivation for building VIPL-

HR-V2 is to provide large scale data which could meet the

need of deep learning methods for the purpose of remote

Physiological signal sensing. So far the data of more than

3000 persons was collected in VIPL-HR-V2. The statistical

information of the all subjects is listed in Table 1. VIPL-

HR-V2 contains facial videos recorded with color cameras

under relatively natural ambient light. The subjects were

in sitting position in front of recording cameras (Realsense

F200) on a table for capturing videos. Ground truth physio-

logical signals of HR, SpO2 and blood volumn pulse (BVP)

signals are synchronously recorded with facial videos using

a CONTEC CMS60C BVP sensor. Besides, subjects were

asked to look as natural as possible during video recording,

i.e., allowing head movement and talking.

OBF is provided by the Center for Machine Vision and

Signal Analysis (CMVS), University of Oulu, Finland. The

data was collected from 2017 to 2018, which contains data

1http://www.es.ele.tue.nl/cvpm20/

from more than 200 subjects. OBF has subjects of both

healthy person and patients with atrial fibrillation (AF), as

a main motivation for OBF is to promote remote sensing

in medical oriented applications. OBF subjects are from

various ethnics including typical eastern Asians (Chinese,

Japanese, etc.), Caucasians (Finnish, Russian, Spanish, etc),

and others (Indian, Pakistanis, etc.), which means the OBF

data covers wide range of skin tones. More statistical in-

formation of the 100 healthy subjects are listed in Table 1.

Facial videos were recorded with one RGB camera (Black-

magic URFA mini) at 60 fps with resolution of 1920 by

1080, and one NIR camera at 30 fps with resolution of 640

by 480. Three channels of physiological signals (ECG at

256Hz, BVP at 128 Hz, and respiration at 32Hz) were syn-

chronized and recorded with a NeXus-10 MKII platform.

Subjects were recorded firstly at resting state and then after

five-minutes of intense exercise in order to cover a wider

range of HR variance. Heart rate value corresponding to

each video is provided, which is the average of all heart

rates in the corresponding time period of the video.

Table 1. Statistical information of VIPL-HR-V2 and OBF subjects.

VIPL-HR-V2 OBF

Age (y) 35.4± 18.0, 31.6± 8.8,
[6, 60] [18, 68]

Gender 49% M , 51% F 61% M , 39% F

Ethnic Asian:100% Caucasian:32%

Asian:37%,

Others:31%

Weight (Kg) 61± 12 71± 16
Wear eyeglasses N/A 39%

RePSS challenge training data The training data of

RePSS is randomly selected from VIPL-HR-V2 database.

RGB videos of 500 subjects recorded with Realsense F200

camera at the average speed of 25 fps with resolution of 960

by 720 are used. For each subject we randomly cut five clips

of ten-second long videos, so that the training set contains

2500 samples. The ground truth of HR (in beat-per-minute

‘bpm’) is the average of HRs of corresponding clip and pro-

vided to challenge participants for their training of models.

RePSS challenge testing data The testing data of

RePSS challenge consists of two parts, that 100 subjects

(no overlap with the training set) from the VIPL-HR-V2

database and 100 subjects (all from the healthy group) from

the OBF databases are used. For each subject from both

databases, we randomly cut five clips of ten-second long

videos, so that the testing set contains 1000 samples. For

the VIPL-HR-V2 part, all videos were recorded with the

color camera at the average speed of 25 fps with resolu-

tion of 960 by 720, and for the OBF part, all videos were

recorded with the RGB camera at frame rate of 30 fps (down



Figure 1. Sample images of anonymized testing videos. The left one from VIPL-HR, and the right one from OBF.

sampled from the original 60fps to match with the VIPL-

HR-V2 data) with resolution of 1920 by 1080. Even though

all the participating subjects have signed consent forms and

given the permission to use all the recorded data for scien-

tific research and demonstrations in e.g., publications and

presentations, the OBF videos were anonymized by adding

mosaic blocks covering important facial features to better

protect the personal identification while data is being used

for research. Face positions and facial landmark locations

were detected using face-alignment 2 and were provided

for challenge participants to facilitate the testing process

if needed. The testing data from VIPL-HR-V2 were pro-

cessed in the same way to unify the format. Sample im-

ages of the anonymized testing videos are shown in Fig-

ure 1. Ground truth average HRs were computed from cor-

responding BVP signals of both databases, which were not

provided to challenge participants and only be used for the

evaluation carried out the challenge organizers based on the

results submitted from the participants.

2.2. Challenge protocol

The RePSS challenge is operated on the CodaLab plat-

form, and consists of two stages as follows.

Training phase (15.01.2020 – 20.02.2020) The training

data was released on 15th. Jan. 2020. During the train-

ing phase, registered participants get access to the labelled

training data and establish their machine learning models.

There was no specific limitation of using outer source data,

i.e., if some participants want, they can also use their own

data. No result submission could be made to the challenge

website during the training phase.

Testing phase (23.02.2020 – 06.03.2020) The testing

data was released on 23rd. Feb. 2020. During the test-

ing phase, challenge participants were asked to adjust their

models using the testing data and submit testing results to

the challenge website to check the performance. Test re-

sults were asked to be submitted in the form of an excel ta-

ble which contains estimated average HR for each test sam-

ple. The ground truth HRs were embedded in the CodaLab

2https://github.com/1adrianb/face-alignment

platform to automatically produce final performance when a

new result was submitted. Executable codes were not asked

for this challenge, but may be considered in future. Each

registered participant (or team) can submit results up to five

times before the submission deadline, and the best perfor-

mance (of the participant or the team) will be ranked and

shown in the final result leading board. It is possible that

one participant could register under multiple names though.

2.3. Evaluation /metrics

Three evaluation metrics were used for the RePSS chal-

lenge, including the mean average error (MAE), the root

mean square error (RMSE) and the Pearson’s correlation

efficient r (R). All three metrics are widely used in related

papers. The MAE and RMSE can evaluate the approaches

by showing the ‘difference’ of estimated HRs compared to

the actual HRs on an average level, thus smaller value in-

dicates better performance; while the correlation R shows

how strongly the relationship is on scale of [-1 1], of the

estimated HR and the corresponding GT HRs, thus larger R

indicates better performance.

3. Proposed approaches

Altogether 129 teams (registered CodaLab names) from

36 organizations all over world participated the first RePSS

challenge, and all participants signed license agreements

for data access. No constraint was put on which category

of method to be preferred or forbidden as long as they can

work for remote HR measure. Three approaches from the

top three ranked teams are introduced in the following.

3.1. Mixanik (Neurodata Lab)

The overview of Mixanik method is shown in Figure 2.

Data augmentation: speed-up and slow-down augmen-

tation (or frequency morphing) [15] is used to increase

training dataset size as well as variance of the reference

pulse rate distribution. This should improve the perfor-

mance of the algorithm especially for subjects with very

low or very high pulse rate. Horizontal flip augmentation

is used as well.



Figure 2. Overview of Mixanik method.

Video preprocessing: First, the method detects faces us-

ing a RetinaNet network [9] with MobileNet backbone [7]

trained with focal loss. Affine face alignment based on fa-

cial landmarks detection [5] is performed for each face. ROI

average pooling is used to resize facial areas to the size of

W×H for the heart rate estimation neural network, where

W=H=36. After that, resampling to 25 fps by cubic in-

terpolation is performed. Bandpath filter for [45 bpm, 180

bpm] frequencies is applied for each (pixel, channel) pair

independently in order to filter out signals not related to

pulse cycles.

Pulse rate estimation neural network: A convolutional

neural network is trained for pulse rate estimation. It has 3

inputs: 1). diff input is a discrete time derivative of the

preprocessed frames sequence described above. 2). frames

input consists of the preprocessed frames themselves. 3).

masks consists of frame-wise masks. These masks are

based on the facial landmarks. Each mask pixel equals 0

if the corresponding pixel does not belong to face or be-

longs to mouth or eyes area, and 1 otherwise. A 3D spatio-

temporal attention CNN is used followed by global spatial

average pooling for PPG features extraction. Diff input is

processed with the 3D CNN with separable spatio-temporal

3D convolutions and spatial pooling layers. Frames and

masks are used for attention weights evaluating to select

most relevant face areas for pulse rate estimation. 3D CNN

outputs 32 time series, one for each channel of the last

convolutional layer. Each time series is processed with a

1D CNN, which was pre-trained to evaluate pulse rate on

synthetic PPG-like curves. 32 pulse rate estimations are

achieved, which are combined to a single output with a 2-

layer perceptron. The whole 3D+1D CNN was trained end-

to-end with MAE loss function on our MoLi-ppg dataset [in

press] ( 11.5 hours, 40 subjects) and then or the VIPL-HR

V2 training data. Adam optimizer is used during training.

Predictions post-processing: There are 5 video frag-

ments featuring each subject in the competition dataset. Ac-

cording to the training set, these 5 fragments had nearly

the same reference pulse rate for most of the subjects. Let

(p1, p2, p3, p4, p5) be the neural network outputs on these

fragments for some subject. Then the final pulse rate esti-

mation on a video fragment is fi = 0.01 × pi + 0.99 ×

median (p1, p2, p3, p4, p5). The fragments are not grouped

by subjects in the test set. To evaluate median value each

video was matched with other videos of the same subject.

For this purpose the researchers first evaluate a simple em-

bedding of the first frame for each video. This embedding

for VIPL dataset videos consists of RGB colors of pixels of

two 100 × 150 rectangles (top-left and top-right), each re-

sized to 10 × 15. So, VIPL videos embedding have length

2 × 10 × 15 × 3 = 900 and represent background color in-

formation. All OBF videos have the same background, so

for OBF videos chest area (bottom 420 × 1080 pixels rect-

angle resized to 8 × 20) is used as a color embedding. The

researchers use 1 − ρ(a, b) as a distance metric on the em-

beddings described above, where ρ is a Pearson correlation

coefficient. Videos are grouped by subjects by an iterative

DBSCAN procedure. First the researchers set ǫ =0.01 in

DBSCAN, and then gradually increase it up to 0.4. If there

are any clusters of size 5 on each step, it is assumed that

each of these clusters corresponds to videos of one subject.

These videos are not considered on the subsequent cluster-

ing iterations.

3.2. AWoyczyk (Fachhochschele Dortmund)

The overview of AWoyczyk method is shown in Fig-

ure 3.

The examination of vital parameters is an essential el-

ement of modern medicine. The heart rate is one of the

most important parameters. It is typically recorded via elec-

trocardiography or by photoplethysmography (PPG) using

sensors attached to the patient. Current research focuses

on non-contact alternatives to capture physiological signals.

One promising approach uses videos to derive a pulse sig-

nal (imaging PPG, iPPG). A common approach to derive the

heart rate by iPPG first defines a region of interest (ROI) and

secondly combines the colour information from that ROI to

yield a pulse signal. To define the ROI, simple face detec-

tors producing a facial bounding box, more complex vari-

ants yielding facial landmarks and skin classifiers, respec-

tively, are in use. However, previous research has shown

that homogeneous skin areas contribute to a better signal.

Trumpp et al. therefore presented a level set segmentation

to identify a homogeneous skin region [20]. Since the level

set segmentation described by Chan et al. [2] does not guar-

antee to segment skin from non-skin but merely fore- from

background, this contribution adopts the method to the spe-

cial case of skin segmentation. The researchers propose an

approach using a Gaussian mixture model (GMM) based

level set formulation to yield a time-varying and homoge-



Figure 3. Overview of AWoyczyk method. Skin GMM (red) and non-skin GMM (blue), segmented ROI after applying level set and

extracted pulse wave via CHROM.

neous ROI on which further iPPG processing steps can build

up.

The researchers model the probability distributions for

the pixel skin and no-skin class by two separate GMM.

They are trained on the first frame using the expectation

maximation algorithm. The skin GMM originates from the

ROI of a face detection algorithm (OpenCV’s Viola & Jones

Face detection) while the surrounding pixels define the non-

skin GMM. The proportion of the posterior probabilities are

than included in the energy term minimized by the level set

function, i.e. the inclusion of non-skin pixels according to

the individualized model is penalized, as well as skin pixels

outside the ROI. In order to keep track of movements and

facial expressions, the level set function is updated for each

frame. This procedure yields a time-varying ROI on which

the further processing builds up. To derive the pulse signal

from the ROI, we use CHROM [4]. CHROM uses a combi-

nation of normalized chrominance signals, derived from the

red, green and blue channel to make the signal more robust

to intensity changes originating from motion or reflectance.

The CHROM signal is further processed by a bandpass fil-

ter. Finally, the heart rate is determined as a frequency be-

longing to the highest amplitude in the frequency spectrum

of the extracted pulse signal.

3.3. PoWeiHuang (National Chiao Tung University)

The method was proposed originally for the purpose of

remote monitoring of driving scenarios, which was then

adapted to the task of remote HR measurement for attending

the RePSS challenge. Based on statistical signal processing

(SSS) and Monte Carlo simulations, the researchers pro-

pose a new algorithm, ADaptive spectral filter banks (AD),

which provides better balance to robustness and sensibility

of remote monitoring for driving scenarios. HR estimation

with rPPG can be approximately modeled as single-tone

frequency estimation with additive white noise. This esti-

mation problem has been discussed thoroughly in the SSS

and the probability of outliers can be derived from corre-

sponding signal-to-noise ratio (SNR). Based on the proba-

bility of outliers, the method provides a viable spectral fil-

ter option to balance the robustness and sensibility. In the

design of AD filter banks, the exponential smoothers are se-

lected due to the simple relationship between time constant

and design of parameters. If the SNR is high enough and

the probability of outlier is tolerable, the time constant of

AD is small to enhance tracking sensibility; by contrast, if

the SNR is low, large time constant is applied for stability.

In addition, because the design is based on SSS and Monte

Carlo simulation, the method has a potential advantage over

applications with different band-width or applications with

different requirement between sensibility and stability.

The researchers built a driving database to verify the pro-

posed algorithm and analyzed the influence on rPPG from

drivers’ habits (amateur and professional), vehicle types

(compact cars and buses), and routes. In total, a driving

database with over 23 hours of data and 104 trials has been

built. Moreover, the researchers also adapt their method to

the RePSS challenge.

4. Challenge results and discussion

In this section we report the results obtained by par-

ticipating teams. First, the main results are reported and

shown in the ranked leaderboard. Then we compare results

achieved on the two databases of VIPL-HR-V2 and OBF.

At last we analyze the performance on different HR ranges.

The results from the top six groups are shown for the last

two analysis due to limited space.



Table 2. The final result leaderboard of the 1st challenge of RePSS.

# User Institute MAE RMSE R

1 Mixanik Neurodata Lab 6.94289 (1) 10.68021 (1) 0.75493 (1)

2 AWoyczyk Fachhochschele Dortmund 7.92115 (2) 14.37509 (3) 0.58891 (2)

3 PoWeiHuang National Chiao Tung University 8.94626 (3) 14.16263 (2) 0.53531 (3)

4 SHLAI National Tsing Hua University 12.38949 (4) 16.08538 (7) 0.22547 (5)

5 yuchun wang National Tsing Hua University 12.46439 (5) 16.20117 (10) 0.18898 (7)

6 Simplar Southern Federal University 12.48682 (6) 15.83572 (4) 0.18548 (8)

7 yangyb N/A 12.53826 (7) 16.08765 (8) 0.10077 (14)

8 mayanbiao N/A 12.54743 (8) 16.06358 (6) 0.10139 (13)

9 liyuxin N/A 12.57556 (9) 15.97100 (5) 0.09694 (16)

10 yaoguorun N/A 12.73557 (10) 16.12572 (9) 0.09998 (15)

11 cvlab.nthu N/A 12.73808 (11) 16.34883 (12) 0.21761 (6)

12 shaoguowen N/A 12.90892 (12) 16.54261 (13) 0.08033 (17)

13 chenggj PingAn Health Technology Co.Ltd 12.91462 (13) 16.57148 (14) 0.15358 (10)

14 legal N/A 12.91462 (13) 16.57148 (14) 0.15358 (10)

15 dlavender Nanjing University of Science and Technology 13.01585 (14) 17.30358 (17) 0.06710 (18)

16 cpi1976 CanControls GmbH 13.25897 (15) 16.28846 (11) 0.00000 (23)

17 baoqianyue N/A 13.28824 (16) 16.74968 (16) 0.02195 (21)

18 lg920810 PingAn Health Technology Co.Ltd 13.39697 (17) 17.86813 (19) 0.27874 (4)

19 mengtzu.chiu National Tsing Hua University 13.55358 (18) 17.45627 (18) 0.16305 (9)

20 lijingjdsun N/A 13.63316 (19) 16.65428 (15) 0.05501 (19)

21 CCCCoda Beihang Univercity 14.36682 (20) 18.75101 (20) 0.11018 (12)

22 ylin N/A 14.50666 (21) 18.97367 (21) 0.11282 (11)

23 WeihuaOu Guizhou Normal University 14.75637 (22) 19.10806 (22) 0.04032 (20)

24 sunrise Shanghai Jiao Tong University 15.68960 (23) 19.74385 (23) 0.00932 (22)

25 wantsjean N/A 20.12449 (24) 25.55460 (24) -0.02370 (24)

4.1. The main results and ranking

The main results are ranked with the metric of MAE, and

we also calculated two other metrics of RMSE and correla-

tion R in order to evaluate the methods on a fuller scope.

The ranking leaderboard is shown in Table 2. For each

registered name, up to five submissions can be made and

the system chooses the submission and ranked the highest

among the five. The best results were achieved by ‘Mix-

anik’ with an MAE of 6.94 bpm. ‘Mixanik’ also leads on

the other two metrics, with the RMSE of 10.68 bpm and R

of 0.75.

To further evaluate the performance under different con-

ditions, we choose the results from the top three ranked

teams (named as T1, T2 . . . T6 accordingly) to carry out

two comparison analysis in the following two subsections.

4.2. Performance on the two databases

The testing data includes two halves, i.e., 500 samples

from the VIPL-HR-V2, and the rest 500 samples from the

OBF. We would like to compare the performance on the two

parts of data. The metric of MAE was calculated separately

on VIPL-HR-V2 and OBF for each team, and the results of

T1 to T6 are shown as a bar chart in Figure 4.

Figure 4. Comparison of the performance on VIPL-HR-V2 and

OBF of the top six teams.

The results show that for the top three teams, their meth-

ods performed significantly better on the OBF than on the

VIPL-HR-V2 data. The best MAE on OBF was 2.56 bpm

achieved by T2. The differences are much smaller for T4,

T5 and T6. One reason for the difference might be that the

OBF videos have higher resolution than the VIPL-HR-V2

videos, which may indicate that the top three approaches

are more sensitive to the face size or input resolution.



4.3. Performance on different HR ranges

Healthy adults’ HRs distribute in the range of [50, 130]

bpm in most daily life scenarios when middle to low level

intensity of activities are involved. The distribution of HRs

of our training and testing samples are shown in Figure 5.

The distribution of the testing data match similar pattern of

the training data. Our test data covers the range of [49, 134]

bmp, which makes a good representation of ordinary HR

cases.

Figure 5. Distribution of HR levels of the RePSS training and

testing data.

We divided the testing samples into three groups (of sim-

ilar number of samples) of low (less than 77 bpm), middle

(77 to 90 bpm) and high (more than 90 bpm) HR levels ac-

cording to the GT HR values, so that we can examine how

well the approaches performed on different HR levels. The

MAE values of the three HR groups are calculated for each

of the top six teams, and the results are shown in Figure 6. It

can be seen that all teams performed the best on the middle-

level group of data, i.e., ranged in [77, 90] bpm, while the

MAE values are significantly larger when tested on either

high-level or low-level groups of data. The challenge of

measuring high or low level of HRs needs to be addressed

in future works.

Figure 6. Comparison of the performance on low vs. middle vs.

high HR levels of the top six teams.

5. Future directions

As the very first challenge held on the topic of remote

physiological signal sensing, the RePSS attracted great in-

terests within short time. Registered teams come from var-

ious countries and regions (e.g., China, Russia, Germany,

USA, Australia, and etc.), and more than one hundred re-

sults were submitted at the end, which shows that it is a

widely concerned topic. As the first trial, we started with

the basic task of measuring average HR from color facial

videos. Meanwhile, we provided large amount of training

and testing data with non-overlap subjects, and concerned

different recording scenarios (e.g., talking, moving, and dif-

ferent lighting). By these means we increase the challenge

difficulty level, and make the task more resembling to appli-

cations in real world. Very good performance were achieved

thanks to the efforts of all participating teams, especially of

the top three groups. The MAE values of about 7 bpm is

a good starting point, considering that the testing data in-

clude masked faces, and are even from different recording

sources.

We expect to continue with the RePSS challenge in the

following years. We expect that more advanced approaches

could be developed to further improve the HR measurement

accuracy, i.e., achieve smaller MAEs and higher Rs. More-

over, we will also consider other aspects to make the chal-

lenge better, which include:

(i).Increase the data size.

(ii).Enrich data for special concerns, e.g., data with

higher or lower HR levels, data from darker skin tones, etc.

(iii).To have more than one test channel focusing on dif-

ferent tasks, so that teams can join and choose their favorite.

(iv).Invite leading teams from institutions or companies

in this domain to increase the visibility of RePSS challenge.

In terms of future directions for the RePSS challenge, the

analysis of the current results also gave us good hints. First,

the measurement of average HR will continue to be a major

focus, as the accuracy can be further improved. We may in-

clude the measurement of HRV features to elevate the dif-

ficulty level. Second, we might set test specially focused

on facial resolutions to explore the impact of face size, and

hope some approaches that could counter for the limitation

of low resolution would appear. Third, we consider adding

the task of measuring respiration rate as it is also an impor-

tant vital sign in many application scenes. We would also

like to hear ideas and concerns from participants, and en-

vision the RePSS challenge to develop and thrive to be a

better platform supporting this topic.
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