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Abstract

The respiratory rate is important information in the

healthcare environment. Consequently, research is done to

develop a device that could measure the respiratory rate

continuously with non-contact devices. Various methods

were tried, such as radio-based, thermal imaging or remote

photoplethysmography (rPPG). The rPPG method uses a

video recording of the skin in ambient light conditions. It

measures the small variations of light reflection induced by

the amount of blood in vessels. This method allows the

extraction of physiological parameters such as the heart

rate or respiratory rate without any contact with the skin.

The main issue with the rPPG technique is the lower sig-

nal quality compared with contact-based methods. In this

paper, we assess the performance of the respiratory rate es-

timation algorithms with rPPG signals. The tested algo-

rithms were designed for contact-PPG signals input. The

use of the algorithms designed for contact PPG on remote

PPG signals can lead to respiratory rate estimations with

a mean absolute error below 3 breaths-per-minute. We

benchmark our results using this standard and some other

metrics to interpret the quality of the assessment.

1. Introduction

The estimation of the respiratory rate is often neglected

by the medical staff. It is a time-consuming measurement

and inconvenient to be performed [1]. Indeed, the gold stan-

dard for respiratory rate assessment is a 1-minute manual

measure [2]. However, this measure provides early infor-

mation about medical complications. For example, cardiac

arrest [3], ischemic stroke [4], and state of shock [5] can

be better detected considering respiratory rate information.

So its assessment should be as frequent and robust as pos-

sible. Many contact-based measurement methods were de-

veloped to measure the respiratory rate continuously. The

impedance pneumography, respiratory belts or capnography

have been the first systems to be developed to perform such

measurements. They obtain accurate results, unfortunately,

continuous use of such systems is uncomfortable. More-

over, they are too bulky to be used daily.

To address these issues, some technologies were used

to provide wearable devices. Electrocardiography (ECG)

[6, 7] and photoplethysmography (PPG) [8, 9] based res-

piratory rate extraction are promising for continuous moni-

toring. The ECG devices consist of electrodes fixed to the

skin. These electrodes measure the electrical field induced

by the heart and respiratory activity in the chest. The PPG

devices use the light absorption of the skin to estimate a

blood volume signal. Light passes through the skin and is

modulated by the blood contained in the vessels. This al-

lows measuring the variation of the blood in the vessels.

From this signal, it is also possible to get respiratory infor-

mation. Contrary to previous methods, they can be imple-

mented in wearable devices such as smartwatches to mon-

itor physiological parameters outside the healthcare envi-

ronment [10, 7]. The main issue with these techniques is

the need for contact with skin. This need is troublesome as

it may cause some discomfort and hygiene issues on fragile

skins.

Several non-contact based methods were developed to

solve these issues. For example, radio-based methods [11,

12], movement-based methods [13, 14] or thermal imaging-

based methods [15, 16] are currently investigated. These

methods are less robust than contact-based methods because

of the noise introduced by movements or the environment.

Some of these also need high-cost devices that curb their

usage.

Another non-contact method, called remote photo-

plethysmography (rPPG) uses a camera and the light re-

flection from the skin to extract blood volume pulse sig-

nals. This technique can be employed with a low-cost web-

cam and ambient light for the heart rate estimation [17, 18].



The principles of this method are similar to the contact PPG

method. It measures the light that is reflected from the skin

and from this deduces the to blood circulation as the light

is more or less absorbed depending on the amount of blood

in vessels. The light fluctuation, and therefore the resulting

measurement contains cardiac information as well as respi-

ratory information [19, 20]. The general processing steps

needed to get a respiratory rate from video recordings are

shown in figure 1.

To get an rPPG signal, the video is first segmented in

skin and non-skin pixels. This step often consists of face

detection and tracking, plus a skin pixel detection to re-

fine the signal’s quality. A spatial averaging is done on the

skin pixels to get the color traces. These color traces are

combined to enhance the quality of the physiological sig-

nal and to reduce the noise. The combination methods can

use either the statistical properties of the traces or the light-

tissue interaction properties to get a signal. The statistical

properties-based methods are PCA [18], ICA [21], PVM

[22] and EVM [23] methods. PCA creates a rotation matrix

that separates the principal components embedded in the

color traces. The principal components are as uncorrelated

as possible. ICA tries to maximize the non-gaussianity and

thus the independence of the output signal. PVM and EVM

are based on the GEVD algorithm [24]. They construct a

rotation matrix that maximizes a ratio of properties. The

property used in PVM is the periodicity of the signal, while

the one used in EVM is its SNR. The other class of meth-

ods, such as CHROM or PBV, employs the physiological

properties of the light/skin tissue interaction to improve the

quality of the signal. CHROM [25] chooses a combination

that is orthogonal with the specular reflection component.

PBV [26] is based on a similar principle as CHROM but

uses a so-called blood volume pulse component on which

the color traces are projected.

The obtained 1D signal is the rPPG pulse trace. It is simi-

lar to the contact PPG signal often with a lower quality. This

signal can be then analyzed to extract physiological infor-

mation. The respiratory information can be extracted from

rPPG signals using similar techniques as with PPG signals.

Breathing modulates the (r)PPG signals in three ways. First,

an additive modulation called baseline wander occurs, due

to variation in the intrathoracic pressure. Secondly, the am-

plitude of cardiac pulses varies with respiration because of

the changes in the cardiac refill. This is called amplitude

modulation. Finally, frequency modulation is caused by the

modification of intrathoracic pressure. This change causes

a physiological response called Respiratory Sinus Arrhyth-

mia (RSA) that can be revealed in (r)PPG signal as a small

variation in the instantaneous heart rate.

A lot of algorithms were developed to assess the respira-

tory rate from a PPG signal. Charlton et al. [27] reviewed

most of these algorithms in a single framework to predict

which algorithm is best suited for the respiratory rate assess-

ment with contact PPG signals. In this paper, we considered

the work presented by Charlton et al. to benchmark the res-

piratory rate assessment from rPPG signals. To do this, we

extracted the RGB traces from videos and combined them

using four state-of-the-art combination algorithms. These

algorithms were parametrized to output either a baseline

wander respiratory signal or a cardiac signal carrying am-

plitude modulation and frequency modulation. These sig-

nals were then used as input of the framework to extract the

respiratory rate of the subjects. The algorithms used in this

analysis are presented in 2. The details of our implementa-

tion and parameters are detailed in 3. Then, section 4 shows

the results obtained and their analysis.

2. Methods

In this section we present the algorithms used for the

respiratory rate estimation. First, the color traces com-

bination algorithms are presented and their variation for

cardiac/respiratory signal enhancement is detailed. Then,

Charlton’s respiratory rate extraction algorithms are pre-

sented. Finally, the implementation details of the complete

pipeline and the metrics used for the method comparison

are shown.

2.1. Combination algorithms

The combination algorithms used to get the pulse or res-

piratory signal are CHROM [25], PBV [26], PVM [22] and

EVM [23]. The CHROM and PBV algorithms use a pre-

computed vector to guide the combination. The vector is ei-

ther the specular reflection component in the CHROM case

or a blood volume pulse vector direction for PBV. The goal

of CHROM is to remove the information carried by this vec-

tor by projecting the color traces on the components orthog-

onal to the noise-carrying vector. The PVM and EVM meth-

ods use a combination using only the frequency character-

istics of the color traces. The drawback of these methods is

that a periodic noise can confuse them. The PVM method

estimates a rotation matrix with the first output component

showing the highest periodicity. On a similar idea, the EVM

algorithm maximizes the SNR of the first output compo-

nent. The SNR is considered as the energy of a filtered sig-

nal over the non-filtered signal. The EVM procedure is then

refined to update the tracked frequency and the rotation ma-

trix on each new sample, using an adaptive filter.

These algorithms can be used to get a respiratory or car-

diac signal, depending on the frequency band they consider

as the signal. To extract the respiratory signal from the color

traces, the CHROM algorithm uses the combination vec-

tor obtained with a frequency band including the pulse rate.

This vector is reemployed on a low-frequency band traces

to get a respiratory signal. The same approach is used with

PBV. A complete description of the processing pipeline can
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Figure 1. The general rPPG processing pipeline to estimate respiratory rate from video recordings.

be found in [28]. The EVM and PVM algorithms are used

directly on the color traces filtered with a band-pass filter

keeping the respiratory signal. Depending on the chosen

parameters, these algorithms can either output a respiratory

signal or a cardiac signal. In this paper we note “respiratory

rPPG” the respiratory signal obtained from the combination

step output, and “cardiac rPPG” the cardiac signal obtained

from the combination algorithms and as the input of Charl-

ton’s respiratory signal extraction algorithms.

2.2. Respiratory rate extraction algorithms

The respiratory rate extraction code is publicly available

in [27]. To assess the performance of our algorithms, we

implemented the processing pipeline summarized in figure

3. The combination algorithms output either a cardiac rPPG

signal or a respiratory rPPG signal. The cardiac signals

are processed with respiratory signal extraction of Charl-

ton’s framework to obtain respiratory signals. These signals

and the respiratory rPPG signals are then analyzed with the

respiratory rate estimation and the modulation fusion algo-

rithms presented in Charlton’s work. In next paragraphs we

refer to Charlton’s algorithms using the naming convention

presented in [27]. In this convention, the X algorithm fam-

ily refers to the respiratory signal extraction step. The A and

B subfamilies group the filter-based and the feature-based

extraction algorithms respectively. The E letter names the

respiratory rate estimations class algorithms. The F sub-

letter indicates a frequency-based technique and the T sub-

letter indicates a time-domain-based technique. Finally, the

respiratory rate fusion and smoothing algorithms are named

with the F letter. The modulation fusion class algorithms

have the M subletter and the temporal smoothing class al-

gorithms have the T subletter.

2.2.1. Cardiac signal to respiratory signal extraction.

The cardiac rPPG signals are first used for respiratory signal

extraction. This can be done using filter-based or feature-

based algorithms. Charlton presented 12 extraction algo-

rithms with a PPG input. The filter-based extraction al-

gorithms are bandpass-filter based (XA1 [29]), Continuous
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Figure 2. Peak-troughs detection-based algorithms example.

Wavelet Transform based (XA2 and XA3 [30]) or centered-

correntropy function based (XA4 [31]). The feature-based

algorithms can be split in peak/troughs detection-based al-

gorithms, kernel PCA algorithm, and pulse width measure-

ment algorithm. In the feature-based algorithms, an initial

step consists of peak and trough detection with the Incre-

mental Merge Segmentation algorithm [32]. The features

obtained from the peak/troughs detection algorithm are

summarized in figure 2 [32, 33, 34]. The figure shows that

XB1 is the mean of a peak/trough pair (baseline wander).

The XB2 algorithm measures the amplitude of the pulse.

XB3 is a frequency modulation based algorithm that mea-

sures the time delay between two successive peaks. XB4

is the amplitude difference between consecutive troughs.

The XB5 and XB6 respectively measures the peak and the

trough amplitude. The XB7 and XB8 algorithms are ded-

icated to ECG signals and thus are not considered in this

study. The XB9 [35] algorithm uses a kernel PCA method.

It constructs a matrix with signal slices. Each slice is cen-

tered on a detected trough. The best Eigenvector is used

to recombine these slices and generate a respiratory signal.

The XB10 [36] algorithm measures the PPG pulse width

using a wave boundary detection algorithm.

Once the feature metrics are obtained, a resampling step

creates a uniform sampled signal. The resampling algo-

rithms are cub, cubB, lin and linB. They are a cubic and

linear interpolation. The B suffix indicates that the result-



ing signal was bandpass filtered at physiological frequen-

cies. The resampling step is used on cardiac rPPG process-

ing with XB∗ algorithms. Indeed, these algorithms output

irregularly sampled respiratory signals that need to be re-

sampled for the next steps.

2.2.2. Respiratory rate estimation. To make this section

easier to read, we will refer to “cardiac rPPG” as the com-

bination made to enhance the cardiac signal quality that is

processed by Charlton’s algorithms to get a respiratory sig-

nal, and “respiratory rPPG” as the combination made to en-

hance the respiratory signal quality. In previous step, the

respiratory signal was extracted from the cardiac rPPG sig-

nal. The respiratory rPPG signals are included in the pro-

cessing framework at this step. This part consists of es-

timating the respiratory rate from the signal. Charlton’s

framework contains 12 algorithms dedicated to respiratory

rate extraction. These are frequency-domain based or time-

domain based techniques. They convert windows using fre-

quency analysis techniques and detect respiratory frequency

in the spectrum. EF1 [32] uses a Fast Fourier Transform.

The respiratory rate is the frequency with the highest en-

ergy in the frequency band. A similar procedure is done

in EF6 [37], using FFT on the autocorrelation of the sig-

nal. The EF2 [33, 38], EF3 [39], EF4 [40], EF5 [41] al-

gorithms analyze the window using a Burg’s autoregressive

(AR) model. EF2 employs a peak detection procedure on

the order-8 AR power spectral density. Similarly, EF4 com-

putes AR power spectral density with varying orders. EF3

and EF5 compute the poles of the order-8 model and search

for the valid poles in the physiological frequencies. This can

be either the highest pole or the lowest frequency pole, with

the magnitude being more than 95% of the highest pole. Fi-

nally, the EF7 [36] algorithm uses a Welch periodogram.

The time-domain techniques generally use peak and/or

trough detection to estimate the respiratory rate. The ET1

[42] algorithm defines the duration used to compute the res-

piratory rate as the delay between the first and the last de-

tected peak. In ET3 [43] a filtering part is added. The ET5

[37] algorithm uses the amplitude difference of pairs of ex-

tremes to filter peaks and troughs. ET4 [37] filters troughs

that are above 0 and peaks that are below a threshold.

Finally, the ET2 [44] algorithm computes zero-crossing

events and get the respiratory rate as the zero-crossing fre-

quency.

2.2.3. Modulation fusion. An optional last step consists of

a fusion of the respiratory rhythms detected with the three

physiological modulations. In Charlton et al., this step im-

proved significantly the quality of the assessment. The pre-

sented algorithms are smart fusion FM1 [32], spectral peak-

conditioned averaging FM2 [36], pole magnitude criterion

FM3 [33] and pole ranking criterion FM4 [45]. In this study

the temporal smoothing algorithm was not evaluated.

3. Experimental protocol

3.1. Implementation details

The code was executed using Matlab [46]. To allow a

more robust comparison between the algorithms, we used

the same steps to extract color traces for each combina-

tion algorithms. Using a video, the code detects face using

Viola-Jones algorithm [47] and tracks its movements using

Kanade-Lucas-Tomasi algorithm [48]. A skin pixel detec-

tion step is implemented using a histogram matching algo-

rithm [49]. The previously defined region-of-interest is spa-

tially averaged to get the color traces. These color traces are

normalized using the procedure described in CHROM [25].

The choice of window length was 8 seconds for CHROM,

PBV and PVM and 2-seconds for EVM. The 8-seconds

window was used with respect to the CHROM article [28],

while the 2-seconds window showed better results with the

EVM algorithm [23]. The 8-seconds window length con-

fuses EVM when the respiratory rate is at about 15 rpm

(respirations-per-minute). Using an empirically fixed 2-

seconds window improved the results on this frequency

band. The CHROM and PBV algorithms are implemented

according to [28] without the sub-regions and weighting

steps that are not relevant in this study. The scaling and

windowing steps are kept. PVM is computed on 30-seconds

windows with a 1-second step between windows, in line

with the original paper [22]. A similar scaling/windowing

procedure as in CHROM is made with PVM.

3.2. Charlton pipeline adaptation

Some modifications were made to use the rPPG sig-

nals inside Charlton’s framework. The respiratory signal

extraction step is executed on cardiac rPPG signals only.

An adaptation of the parameters is needed to deal with the

lower sampling frequency of the rPPG signals (20 Hz in

the dataset). Thus, the downsample steps were disabled

because the sampling frequency was low enough for most

processing. Charlton’s framework assesses the algorithms

performance using the intermediate signals generated dur-

ing the process. However, these intermediates signals are

missing in the case of the respiratory rPPG signals. So the

signal quality index and the statistics obtained at the end of

the framework were disabled.

3.3. Database

The database used for validation of the framework is

the Newborn Care Adult database made by the CSEM of

Neuchâtel (Switzerland) [50]. The database consists of

three scenarios with 12 subjects per scenario. The heart

rate and respiratory rate ground truth values are recorded

using ECG, PPG and respiratory belt. The management

of the ground truth values is done using a TSD201 Biopac

Systems, Inc., USA ® device. All videos show a subject



RGB

traces

Combination HR

Combination RR

Cardiac

signal

Resp. signal

Resp. signal

extraction

RR estimation

Mod. Fusion

RR

Figure 3. The processing pipeline from rPPG signals to respiratory rate.

face and upper body. The subjects are laying on a hospi-

tal bed with sensors attached to their body. The HandGrip

scenario shows a subject doing a handgrip exercise to ac-

celerate its heart rate. The Respiration scenario challenges

the respiratory rate estimation with an initial apnea and in-

creasing respiratory rates from 5 to 15 rpm. In the Move-

ment scenario, the subject is asked to move the head later-

ally during the record. The videos were recorded using an

RGB camera with artificial light illumination. They are at

20 fps and 1280×1024 pixels size with a resolution of 1.3

Mp, without compression. The apnea segment in the Res-

piration scenario was removed to assess the performance of

the algorithms in detecting respiratory rates (not detecting

apneas). The respiratory rate estimation for the HandGrip

ground truth signals failed with subjects 6 and 7. These sub-

jects were ignored in the HandGrip database to have a better

comparison of the algorithms.

4. Results and discussion

To assess the performance of the processing pipelines

(RGB combination, respiratory sigal extraction, respiratory

rate estimation and respiratory rate smoothing algorithms),

we define five metrics: r, Prec 1, Prec 2, MAE and

RMSE. The r metric is the Pearson coefficient. The

Prec 1 and Prec 2 metrics are the number of rhythms with

an absolute error smaller than a given threshold, over the

total number of rhythms. The thresholds are respectively 1

and 2. The Mean Absolute Error (MAE) metric shows the

average of the absolute difference between the ground truth

and the estimated rhythms. The Root Mean Square Error

(RMSE) computes the average of the squared difference

between ground truth and estimated rhythms and gives the

square root of it.

To compare the results, we extracted for each scenario

the 10 best processing pipelines, based on their MAE. These

results are presented in table 1, 2 and 3. As presented in 2,

the Resample step concerns only signals extracted with the

XB∗ algorithms family. Moreover, the Extract step is only

used to extract a respiratory signal from cardiac rPPG sig-

nal. The HR/RR column indicates if the signal obtained with

the combination algorithm is either a cardiac rPPG signal or

a respiratory rPPG signal. The best results are presented in

bold.

The Respiration scenario can get significant results using

EVM or PVM with a modulation fusion step. The resam-

pling algorithm does not significantly change the results.

The best respiratory rate estimation algorithm class are

frequency-based for EVM with an autocorrelation model-

based algorithm (EF3) and temporal-based for PVM (ET2

and ET3).

In the Movement scenario, the combination algorithm

that gave the best results is CHROM and PVM. However,

PVM seems to have a low r value, so we consider ignoring

it in the interpretation of the results. The results of CHROM

with this scenario is coherent with the literature, while this

algorithm is designed to suppress the movement-correlated

noise produced by the specular component of the light. The

EVM and PVM algorithms detect a frequency or a period

of interest and enhance it. Thus movement polluted signals

may confuse these algorithms and lead to bad results. The

respiratory signal extraction algorithms are mostly feature-

based. The best feature-based algorithm was XB3 which

corresponds to the frequency modulation. The modulation

fusion algorithm can get good results too, however it seems

that the use of frequency modulation is sufficient by itself.

The best respiratory rate estimation algorithms were time-

domain, mostly ET1 and ET2. Finally, the MAE is higher

than in the Respiration database. This is coherent consid-

ering that the Movement database has a more challenging

setup.

In the HandGrip scenario, the results seems to be inter-

mediate between the Respiration and Movement database

results. This is in line with the setups, while Respiration

database is supposed to be the easiest database and Move-

ment the hardest to process. The best combination algo-

rithms are CHROM, PBV and PVM. It seems that the com-

bination step is not very important in this setup. However,

best pipelines produce the respiratory signal directly. The

other pipelines use modulation fusion algorithms FM1 and

FM2 to improve the estimation quality. The best respiratory

rate estimation algorithms were EF2 and EF3. They are

all frequency-based. They are all based on an AR model



Combine Resample Extract Estimate Mod. Fusion HR/RR r Prec 1 Prec 2 MAE RMSE

EVM lin EF3 FM2 Both 0.65 0.27 0.52 2.27 3.48

EVM cub EF3 FM2 Both 0.65 0.27 0.52 2.27 3.47

PVM linB ET2 FM1 Both 0.78 0.17 0.33 2.28 2.89

PVM lin ET3 FM1 Both 0.74 0.14 0.29 2.34 3.01

PVM cub ET3 FM1 Both 0.74 0.14 0.28 2.34 3.00

PVM lin ET2 FM1 Both 0.74 0.16 0.29 2.37 3.06

PVM cub ET2 FM1 Both 0.74 0.15 0.28 2.37 3.06

PVM linB ET3 FM1 Both 0.76 0.15 0.30 2.37 2.95

PVM cubB ET2 FM1 Both 0.77 0.15 0.28 2.39 2.96

PVM cubB ET3 FM1 Both 0.74 0.14 0.27 2.41 2.99

Table 1. The 10 best algorithms for Respiration database, ordered by their MAE.

Combine Resample Extract Estimate Mod. Fusion HR/RR r Prec 1 Prec 2 MAE RMSE

PVM lin ET1 FM1 Both 0.03 0.04 0.08 4.14 5.41

PVM cub ET1 FM1 Both -0.01 0.04 0.08 4.23 5.54

PVM linB ET1 FM1 Both 0.25 0.03 0.07 4.58 5.82

CHROM lin XB3 ET2 HR 0.37 0.10 0.26 4.64 5.64

CHROM lin ET2 FM1 Both 0.31 0.10 0.16 4.64 5.48

CHROM linB ET2 FM1 Both 0.29 0.07 0.13 4.64 5.40

CHROM cub XB3 ET2 HR 0.37 0.10 0.25 4.68 5.64

CHROM cub ET2 FM1 Both 0.28 0.09 0.15 4.70 5.47

CHROM cubB ET3 FM1 Both 0.23 0.08 0.15 4.70 5.53

CHROM cubB ET2 FM1 Both 0.21 0.07 0.16 4.73 5.65

Table 2. The 10 best algorithms for Movement database, ordered by their MAE.

method.

Considering the results from a global point of view, we

see that depending on the scenario it is possible to improve

the quality of the assessment with a careful choice of the

algorithm. This choice is lead by the quality of the respi-

ratory signal and of the cardiac signal. Videos with high

quality of respiratory signals in the color traces should use

the EVM or PVM methods to get a respiratory signal. On

the other side, videos with high quality of cardiac signal or

movement-induced noise should use the CHROM or PBV

method to extract the respiratory signal. The best respira-

tory signal extraction algorithm is feature-based and repre-

sents the frequency modulation. The respiratory rate esti-

mation techniques use either time-domain methods with the

ET2 and ET3 and frequency-domain methods with EF2 and

EF3 which are autoregressive model-based. In most of the

pipelines, the use of a modulation fusion improved signifi-

cantly the results. This is in line with Chalton’s conclusions.

On the other hand, Charlton concluded that the best respi-

ratory rate estimation techniques were time domain. In our

results we show that frequency-domain techniques can also

obtain significant results. Further work should be made to

confirm these results on other setups.

The detected rhythms are presented using Bland-Altman

(figure 4) and correlation plots (figure 5). Some outliers

were in the EVM algorithm with an estimated rhythm

higher than 30 rpm and have been removed on the corre-

lation plots to improve the readability. Also, a red area is

drawn to show a local mean absolute error computed on the

neighborhood of a mean frequency for the Bland-Altman

plot (ground truth frequency for the correlation plot). The

window used to compute the mean error is of ± 1 rpm. An-

other annotation is the histogram of the estimated respira-

tory rhythms. This annotation is shown on the right margin

of the Bland-Altman plot.

We use Respiration scenario rhythms to get a look at

all physiological frequencies. The selected algorithms are

CHROM lin XB3 ET2 HR, EVM lin EF3 FM2 Fus, PVM

lin ET3 FM1 Fus and PBV EF2 RR. In this nomenclature

the first word indicates the combination algorithm, the last

word indicates the kind of signal obtained with the com-

bination algorithm. The X∗ and E∗ methods are Charl-

ton’s respiratory signal and respiratory rate extraction al-

gorithms, respectively. If needed, the resampling function



Combine Resample Extract Estimate Mod. Fusion HR/RR r Prec 1 Prec 2 MAE RMSE

CHROM EF3 RR 0.33 0.21 0.41 3.03 3.78

PVM EF2 RR 0.35 0.20 0.39 3.04 3.69

PBV lin EF2 FM2 Both 0.34 0.17 0.33 3.05 3.72

PVM EF3 RR 0.30 0.21 0.40 3.05 3.73

PBV cub EF3 FM2 Both 0.27 0.20 0.38 3.05 3.85

PBV lin EF3 FM2 Both 0.26 0.20 0.38 3.05 3.86

PBV cub EF2 FM2 Both 0.35 0.18 0.33 3.06 3.73

PBV cubB EF2 FM1 Both 0.06 0.14 0.31 3.06 3.74

CHROM lin EF3 FM2 Both 0.28 0.19 0.39 3.08 3.77

PBV linB EF2 FM1 Both 0.04 0.15 0.33 3.09 3.77

Table 3. The 10 best algorithms for HandGrip database, ordered by their MAE.
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Figure 4. The Respiration scenario Bland Altman plot on four algorithms.

used is written after the combination algorithm. The F∗

method is the optionnal modulation fusion method used

by the pipeline. These algorithms are chosen to have one

pipeline per combination algorithm. The complete pipeline

was chosen considering all the metrics. The CHROM and

EVM pipeline has a better quality with Movement and Res-

piration database respectively. The PVM and PBV pipelines

were chosen using the Respiration and HandGrip results re-

spectively.

The graphs show that the EVM, PVM and PBV methods

give cleaner results on the Respiration scenario. EVM has

some outliers and PBV have higher error levels at higher

frequencies. The CHROM method has low plot quality.

This is due to the use of the cardiac signal enhancement

to get the respiratory signal. The Respiration database has

more energy in the respiratory frequencies band than in the

cardiac frequencies band. This permits the respiratory rPPG

combination algorithms to get better results.

5. Conclusion and future work

In this paper we used Charlton’s framework with rPPG

based signals to improve the respiration rate estimation
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Figure 5. The Respiration scenario correlation plot on four algo-

rithms.

quality. Some modifications were done to make it usable

on rPPG signals. The framework was then tested on sig-

nals generated with four combination algorithms. These

algorithms output either a cardiac rPPG signal or a respi-

ratory rPPG signal. Then these signals were used as input

to Charlton’s framework. The respiratory signals (generated

by the framework or by the combination) are then processed

to detect a respiratory rate. This has shown that contact

PPG algorithms can be used on rPPG signals to obtain ac-

curate results. The estimation of the respiratory rate can be

done with autoregressive models or time-domain analysis.

The use of a modulation fusion step improves the results.

Without the fusion step, the best algorithms used to get a

respiratory signal are cardiac rPPG with frequency modula-

tion or respiratory rPPG with baseline wander. A potential

improvement of the method would be to choose the opti-

mal algorithm depending on the color traces properties. In-

deed, we showed that the best algorithm was either EVM on

databases with high levels of respiratory signal or CHROM

on cardiac signal combination with movement polluted sig-

nals. We also noticed that Respiration database signals have

high respiration signal energy and low cardiac signal en-

ergy. This property can be assessed using a simple FFT on

the color traces. In the Movement database, we can con-

sider the movement noise level at the ROI tracking step. So

another study should be done to show if it is possible to in-

crease the respiratory rate assessment quality by selecting

the algorithm that fit the signals properties best.
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