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Abstract

Accidental falls are the most frequent injury of old age

and have dramatic implications on the individual, family,

and the society as a whole. To date, fall prediction esti-

mation is clinical, relying on the expertise of the physio-

therapist for performing the diagnosis based on standard

scales, such as the highly common and validated Berg Bal-

ance Scale (BBS). Unfortunately, the BBS is a time con-

suming subjective score, prone to variability and incon-

sistency between examiners. In this study, we developed

an objective, computational tool, which automates the BBS

fall assessment process and allows easy, efficient and ac-

cessible assessment of fall risk. The tool is based on a

novel multi depth-camera human motion tracking system

integrated with Machine Learning algorithms. The system

enables large scale screening of the general public at very

little cost while significantly reducing physiotherapist re-

sources. The system was pilot tested in the physiotherapy

unit at a major hospital and showed high rates of fall risk

predictions as well as correlation with physiotherapists BBS

scores on individual BBS motion tasks.

1. Introduction

Accidental falls are the leading cause of injury-related

death and hospitalization in old age [34, 4], with over one-

third of the older adults experiencing at least one fall or

more each year. Considering that the elderly population

is dramatically increasing in number, with expected elderly

population (age 60 and older) reaching 22% worldwide by

year 2050, with 35% in Europe, and 28% in North America

[37, 38], the necessity for fall risk assessment is imminent.

To date, fall prediction estimation is clinical, relying on

the expertise of the physiotherapist for performing the diag-

nosis. The extent and severity of fall risk is quantified using

standard scales. One of the most common, is the compre-

hensive Berg Balance Scale (BBS). This is a time consum-

ing subjective score, prone to variability and inconsistency

between examiners. Currently, the BBS diagnosis relies

on expensive and limited medical professional resources,

strongly restricting the number of patients diagnosed and

monitored. New and more efficient methods for fall predic-

tion are necessary to identify and monitor older people at

high risk of falling who would benefit from participating in

fall prevention programs [20, 47].

In response to these calls we developed a study to au-

tomate the fall assessment process and allow easy, efficient

and accessible assessment to be performed, thus reducing

wait times for patients and exploiting medical professional

resources more efficiently.

In this paper, we present an objective, computational

tool, which automates the BBS fall assessment process and

allows easy, efficient and accessible assessment of fall risk.

The tool is based on a novel multi depth-camera human mo-

tion tracking system developed by the authors integrated

with Machine Learning algorithms. The system was pilot

tested in the Physiotherapy Unit at the Galilee Medical Cen-

ter, a major hospital in Israel, and showed high rates of fall
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risk predictions as well as correlation with physiotherapists

BBS scores on individual BBS motion tasks.

The high rate of successful automatic BBS scoring, and

the ease of use of the system, will allow the system to be

deployed in local medical centers, community centers and

even at homes. This will increase accessibility to the el-

derly, allow greater number of individuals to undergo test-

ing and thus detect greater number of elderly individuals

that are at high fall risk and require intervention.

2. Background

2.1. Assessing Balance and Fall Risk

Estimation of balance and risk of fall is traditionally per-

formed by physiotherapists and medical professionals using

standardized and validated measures. These are typically

motor functioning evaluations where a subject performs an

action or task which is graded by the medical professional.

The evaluations range from single task tests to a systematic

battery of tests (see review in [46]).

Several single task tests focus on evaluating gait such as

the 2-meter walk [7], 10-meter walk [17], and the 6 minute

walk [40] where the score is the time to cover the distance or

the distance within the specified time. These tests are very

fast to implement and have been studied in the context of

gait deterioration in diseases. A more extended comprehen-

sive gait test is the Dynamic Gait Index [44] developed to

evaluate gait, balance and fall risk. It encompasses a battery

of gait related tasks at different levels of difficulty.

Another family of tests incorporate rising from a chair, as

this is also an important aspect of daily life. The 30 second

chair stand [29], 5X-Sit-to-Stand [6] and 10X-Sit-to-Stand

require subjects to rise and sit in a chair as fast as they can

measuring the number of repetitions in a specific time or the

time to perform a number of repetitions. These tests asses

functionality and strength of lower body extremes [29]. and

can serve to predict falls [10].

A very popular test that combines chair and gait tests is

the Timed Up and Go test [33, 41] that measures the time to

rise from a chair, walk speedily for 3 meters, turn and return

to sit in the chair. A subject is considered at high fall risk of

fall if the task took longer than 14 seconds [45]. This is a

quick test and is easy to perform, though several repetitions

are recommended [5].

Other approaches to balance evaluation test for static

pose, e.g. the Single-Legged / Unipedal Stance test [18],

Unilateral Forefoot Balance Test [11], and Romberg test

[42]. These require subjects to stand on both feet, aligned,

in tandem or toe to heel, with eyes opened or closed.

The 4-Stage Balance Test [43] is an assessment combining

the above, with four different and increasingly challenging

standing positions which must be maintained for 10 sec-

onds.

Finally, other tests for balance induce various localized

stepping such as the Step Test [24] where subject must raise

foot on and off a step in succession as quickly as possible,

the Four Square Step Test [14, 36] where subjects perform

a sequence of steps over low objects in a square path, and

the Y Balance Test [39] where subjects take lunging steps

in 3 directions from a central pivot point.

The collection of single tasks balance evaluations de-

scribed above are quick and easy to perform, usually requir-

ing few and readily available equipment. However for med-

ical assessment and intervention programs, medical profes-

sionals often prefer a more comprehensive balance test, that

provides scores on a battery of tasks thus allowing a more

detailed diagnosis and a personalized treatment. These tests

are, of course, time consuming. Popular tests include the

Berg Balance Scale (BBS) [2], the Tinetti Assessment Tool

(TAT) [49], the Short Physical Performance Battery [21],

each consisting of tasks relating to pose, gait and chair

stand-sit. the Balance Evaluation Systems Test [26] is es-

pecially long. It is used for determining the source balance

system that causes instability of an individual.

Advances in cameras and sensing technologies as well

as in machine learning tools, has promoted the study of au-

tomatically evaluating balance and risk of fall. For example

wearable sensors [48], inertial sensors [27] and visual sen-

sors [32, 52] have been used to test for balance and fall risk.

Camera sensors are ideal for hospitals, or old age homes,

and home care systems [1], where they have significant ad-

vantages over other sensors since they are non-intrusive and

can analyze multiple events simultaneously [50]. However,

RGB cameras used in balance assessment lack depth infor-

mation, which increases the number of false alarms [31].

Using multiple cameras to obtain depth information, re-

quires calibration, and synchronization [52]. In our pro-

posed study we use depth sensors in a novel multi-depth

camera tracking system which does not require calibration

sessions. Using 3D sensors has been shown to be success-

ful on the single test Get-Up-and-Go [30], on the 10-meter

walk test [19], Single-Legged Stance test [16] and on gait

assessment [12].

2.2. The Berg Balance Scale BBS

The Berg Balance Scale (BBS) [2, 3] was developed to

evaluate balance in older people by assessing their perfor-

mance of specific functional tasks. The BBS is a standard

measure used in the medical community at large. It is com-

prehensive and validated with relatively small inter-raters

variation. The advantage of this scale is its high sensitivity

and specificity. The test includes 14 simple balance tasks,

ranging from unsupported sitting and standing to reaching

forward while standing and standing on one leg (Figure 1).

The level of success in achieving a task is credited a score

of zero (unable) to four (independent), and the final mea-



Figure 1. The BBS is a physical test, used to evaluate stability and

fall risk. It includes 14 motor tasks that are evaluated by a medical

professional. (Source: The Fall Prevention Center of Excellence

(StopFalls.org)).

sure is the sum of all individual scores [3]. The BBS has

been validated and it has been shown that a score of 36 or

less, indicates a near 100% chance of fall within 6 months

[44]. In practice a score of 0-20 is considered high fall risk,

21-40 medium fall risk and 41-56 low fall risk.

3. Automated BBS Assessment

The automated BBS assessment system requires tracking

and recording patients motion while performing the BBS

motor tasks. Following acquisition, the data is analyzed and

a BBS score is predicted. Considering its usage and target

population, the system must be non-intrusive, portable, and

easy to use (even by a patient in a home setting). Score

predictions must be reliable and consistent.

The proposed system, consists of two major compo-

nents:

1. Motion tracking technology, including sensors and

cameras.

2. Data analysis and score prediction algorithms that rely

on training machine learning algorithms.

3.1. Motion Capture and Tracking

To achieve a non-intrusive, portable and inexpensive mo-

tion capture system, we used Kinect 3D cameras [23, 51]

that provide, depth information of the scene. Using Time of

Flight technology, the depth sensors provide a distance from

camera for every point in the scene at each video frame.

From this data, a body pose representation is extracted in

the form of a skeleton, where body joints are positioned in

a 3D coordinate system relative to the camera (Figure 2).

The BBS motion tasks, require patients to move in var-

ious directions including a full 360◦ turn (task #11). Thus

to capture the full range of body motion we use a 2-camera

setup (Figure 3), where 2 depth sensing cameras are posi-

tioned 2 meters apart and directed approximately 45
◦ in-

ward. Additionally, this setup allows integration of data

from the two camera sources consequently reducing noise

and skeleton errors. With any multi-camera system there

is a need for synchronization and calibration, however this

Figure 2. The 3D sensor measures distances of points in the scene

from which (left) from which a skeleton representation of the body

pose is produced (right).

process typically requires a designated calibration session

with special calibration tools. We implemented the ap-

proach in [15] where synchronization and calibration is per-

formed on the fly using patient motion. Thus, eliminating

the need for calibration sessions, and creating an easy to

use system. The automated calibration, allows integration

of the skeletal data as well as the additional data required

for analysis such as the ground position and object location.

During filming, the system outputs per video frame: the

skeletal 3D joint position, the floor position and orientation

per frame, the 3D point cloud data in the patient’s imme-

diate surrounding, and objects in the scene relevant to the

BBS task.

3.2. Data analysis and BBS Score Prediction

The goal of the system is to predict the BBS score of

patients as correlated with the scores given by physiother-

apists: the 14 individual BBS scores and the final fall risk

assessment deduced from the 14 BBS scores. We adopted

a machine learning algorithm and trained it using labeled

patient data (Figure 4).

Figure 3. The 3D camera setup includes two depth sensors to allow

capture of full range of patient motion, and to allow data merging

to reduce noise and skeleton errors.



3.2.1 Data Collection

To train and evaluate the ML algorithm, we recorded 129

subjects at the physiotherapy unit at the Galilee Medical

Center. 100 of the subjects were in-patients and 29 were

visitors that were recruited as subjects for the lower risk

category. All subjects were aged 65 or older. All The pa-

tients were recorded using the multi camera tracking system

(Section 3.1), while preforming the 14 BBS tasks. Concur-

rently, two physiotherapists assessed the patient using the

BBS scoring system. The physiotherapists scores served as

labels for the training samples. When an inconsistency in

the physiotherapists’ scores occurred, the more conserva-

tive score was used. Fortunately this occurred in relatively

few cases.

3.2.2 Feature Extraction

For every subject and for each of the 14 tasks, features

were extracted to serve as ML training for a Random Forest

classifier [25]. For each video frame, spatio-temporal fea-

tures were extracted from the skeletal and 3D cloud point

data including: relative position of skeleton joints, distance

between body parts, angle at body joints, height of joints

from ground and more (Figure 5). All features were rela-

tive (to start position, to other body parts to ground plane,

etc) and thus invariant to the position of camera with respect

to the subject. All features were measured in metric units.

From these, global spatio-temporal features associated with

the task’s complete motion sequence were computed: av-

erage speed and acceleration of joints, motion-paths, max-

imal/minimal/mean values of the spatio-temporal features

and more. These global features served as the representa-

tion of each sample video for the machine learning training.

Figure 4. Schematic diagram of the BBS score and fall risk pre-

diction system.

Figure 5. Spatio-temporal features were computed from the skele-

ton data in each recorded video frame.

To optimize training of the system, feature selection was

performed, by considering the most informative features as

deduced by the trained ML system, as well as directly rec-

ommended by the physiotherapists.Thus, the relevant fea-

tures used in training and testing ranged between 100-200

dependent on the specific BBS task. The BBS score as-

signed by the physiotherapist to each subject in each video

sequence, served as the label of each such video sample and

its associated feature vector.

The predicted labels of the 14 classifiers were supplied as

input features to an additional SVM [13] classifier to predict

the final BBS fall risk category (low fall risk / medium fall

risk / high fall risk) (see Figure 4).

3.2.3 Training

A separate Random Forest classifier [25] was trained for

each of the 14 tasks. The parameters for the classifiers were

chosen using a grid search algorithm, which exhaustively

searched through a manually specified subset of hyper-

parameters [28]. An additional SVM classifier was trained

for the ternary fall-risk classification (low fall risk / medium

fall risk / high fall risk), whose parameters were also cho-

sen using a grid search algorithm. The chosen kernel for the

SVM classifier was a Radial Basis Function(RBF) [9], with

a gamma coefficient of 1/nf , where nf is the number of

features, and a regularization parameter C = 3. Since our

dataset is not large enough to split into training, validation

and test sets, we used the leave-one-out-cross-validation

method (LOOV) [35], leaving one subject out on each itera-

tion, to evaluate the accuracy of the classifiers. This method

also represents the classifiers’ performance when given a

single new subject to classify, rather than a batch of new

subjects.



4. Results

To evaluate the performance of the automated BBS score

prediction system, we evaluated the classification perfor-

mance into the five score classes (0-4) for each task. Ad-

ditionally we evaluated the final risk assessment into the

three classes of High, Medium and Low risk of fall, given

by the threshold levels defined on the final BBS score of the

physiotherapist: a score of 0-20 is considered high fall risk,

21-40 medium fall risk and 41-56 low fall risk.

Table 1 shows the accuracy in predicting the score of ev-

ery BBS task. N is the number of samples tested in each

task (differences between tasks are due to patients not com-

pleting some of the BBS tasks, or technical failures in some

of the recordings) and the number of samples for each of

the five classes. The table also shows the chance level since

the distribution of samples was not evenly spread across

the classes (some BBS tasks are very easy and are never

scored low, e.g. Task #3 Sitting with Back Unsupported).

The Table also shows the Mean Square Error for the mis-

classifications. The low MSE values indicate that when

erred, the classification error was at most one score unit.

More importantly, is the accuracy in determining the

level of fall risk. Figure 6a shows the performance of the

system by displaying the confusion matrix between the pre-

dicted risk level and the true level determined by the sum

of BBS task scores assessed by the physiotherapist. Suc-

cess rate is at 75%, with Mean Square Error (MSE) of 0.25,

however, when assessing risk of fall, false negatives (FN)

should be minimized. The matrix shows that 9 high risk

samples were categorized as medium risk. We can con-

trol the level of FN by optimizing for different thresholds

while still maintaining a good level of success. Figure 6b

shows the resulting confusion matrix when this approach

was adopted. It can be seen that FN was reduced to 4 sam-

ples, however, at the expense of increased number of false

positives and a small increase in MSE to 0.29. The intent is

to allow the physicians to select the level of accuracy, and

achieve a satisfying false negative percentage as well as a

satisfying overall accuracy.

Finally, we performed feature ranking to determine the

tasks most influencing the final risk of fall. We found that

the following five BBS tasks contributed the most to the

classifier output (in decreasing order):

• Turn 360◦ (Task #11)

• Alternate Feet on Step (Task #12)

• Transfers (Task #5)

• Reaching forward with outstretched arm (Task #8)

• Standing with Feet Together (Task #7)

The importance of the tasks was determined using an

Analysis of Variance (ANOVA) F-test algorithm [22], that

scores the features by calculating their F-statistic (ratio of

the between-group variability to the within-group variabil-

ity). Our physiotherapists (co-authors) indeed confirmed

that they consider the first two as the major contributors to

the BBS evaluation.

5. Conclusion

We developed an automated system for evaluating the

BBS fall assessment scores. The system is based on a novel

multi depth-camera human motion tracking system inte-

grated with Machine Learning algorithms. The system is

non-invasive, portable and easy to use. The system enables

Task Task Description N Samples per Class Chance Accuracy MSE

<0,1,2,3,4> Level

1 Sitting to Standing 102 0,0,0,66,36 65% 82% 0.18

2 Standing Unsupported 111 0,0,15,24,72 66% 72% 0.36

3 Sitting with Back Unsupported 112 0,0,0,0,0,112 100% 100% 0.0

4 Standing to Sitting 105 0,0,0,53,52 50% 85% 0.15

5 Transfers 96 0,0,22,39,35 41% 73% 0.36

6 Standing Unsupported, Eyes Closed 101 0,0,0,49,52 51% 68% 0.32

7 Standing Unsupported, Feet Together 106 13,13,0,33,47 44% 72% 0.37

8 Reaching Forward 75 0,17,0,24,34 45% 69% 0.51

9 Pickup Object from the Floor 99 7,0,0,39,53 54% 72% 0.31

10 Look Behind Shoulders 102 7,9,8,32,46 45% 52% 1.25

11 Turn 360◦ 100 14,26,20,7,33 33% 66% 0.60

12 Alternate Feet on Step 93 39,11,12,0,31 42% 75% 0.34

13 Standing Unsupported, One Foot in Front 93 30,14,30,0,19 32% 74% 0.54

14 Standing on One Leg 109 39,40,8,0,22 37% 66% 0.80

Table 1. MultiClass classification prediction of BBS score per task.



Figure 6. Confusion matrix between the predicted risk level and the true level. a) Using Standard BBS thresholds for risk of fall. b) Using

thresholds that reduce false negatives.

large scale screening of the general public at very little cost

while significantly reducing physiotherapist resources. The

system was pilot tested in a major hospital and showed high

rates of fall risk predictions as well as correlation with phys-

iotherapists BBS scores on individual BBS motion tasks.

Further studies will continue to improve performance

of the system by collecting additional data, improving on

feature detection and selection and incorporating more ad-

vanced ML techniques as well as technologies. Our sys-

tem relies on depth sensors to obtain 3D skeletons of the

human subject. Improved performance is obtained using

the new version of the Kinect (Kinect Azure). Technology

is also expected to improve and allow 3D skeletons from

2D data. Currently, such available systems (e.g [8]) require

very strong computational power that is not readily acces-

sible and appropriate for the simple low cost system as we

propose in this paper.

Finally, we mention that this study focused on evaluating

fall risk via the BBS scoring system. A similar approach can

easily be applied to any other motor based fall assessment

tasks such as the Tinetti Assessment Tool (TAT) [49] and

others.
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