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Abstract

Remote Photoplethysmography (rPPG) is a fast-growing

technique of vital sign estimation by analyzing video of a

person. Several major phenomena affecting rPPG signals

have been studied (e.g. video compression, distance from

person to camera, skin tone, head motions). However, to

develop a highly accurate rPPG method, new, minor, fac-

tors should be investigated. First considered factor is irreg-

ular frame rate of video recordings. Despite of PPG signal

transformation by frame rate irregularity, no significant dis-

tortion of PPG signal spectra was found in the experiments.

Second factor is rolling shutter effect which generates tiny

phase shift of the same PPG signal in different parts of the

frame caused by progressive scanning. In particular condi-

tions effect of this artifact could be of the same order of

magnitude as physiologically caused phase shifts. Third

factor is a size of temporal windows, which could signifi-

cantly influence the estimated error of vital sign evaluation.

It follows that one should account difference in size of pro-

cessing windows when comparing rPPG methods. Short se-

ries of experiments were conducted to estimate importance

of these phenomena and to determine necessity of their fur-

ther comprehensive study.

1. Introduction

Photoplethysmography (PPG) is an estimation of blood

volume changes in tissue by measuring characteristics of

light either passed through tissue (mostly by contact PPG)

or reflected from tissue (mostly by remote PPG, also re-

ferred as rPPG). rPPG signal which carries information

about blood volume changes caused by heart beats. Typi-

cally, two sources of rPPG signal are considered. First is

optical absorption by hemoglobin molecules [1]. Early the-

ory assumed that changes of optical density of tissue are

produced by pulse wave passing through blood vessels [2].

Alternative explanation are elastic deformations of capillary

bed by pulse wave in underlying arteries [3]. Second source

of rPPG signal is slight motion of body or head caused

by pulse wave in arteries. Particularly, head makes tiny

tilt movements due to carotid pulsation. Generally, both

sources relate mostly to arteries pulsation, which generates

capillaries motion in normal direction and head motion in

tangential direction to skin surface.

rPPG methods evaluate vital signs. Thus, proper ac-

counting of factors affecting this evaluation and its inter-

pretation is critical. A variety of rPPG algorithms have

been developed since early 2000s [4–7] and significantly

improved over the last years: some are based on mathe-

matical models involving physical properties of light re-

flectance such as CHROM [8] and POS [9], others are

based on deep learning approaches, such as [10–12]. Re-

cent methods demonstrate promising accuracy of HR esti-

mation, reaching mean absolute error (MAE) lower than 3

beats per minute (bpm) on particular datasets [10, 13, 14].

Such low error is reached by optimization of major factors

such as processing pipeline or deep learning architecture,

robust tracking of areas for rPPG signal retrieving. To fur-

ther improve rPPG methods, additional factors which have

minor effect on accuracy should be accounted. Another mo-

tivation for considering these new factors is the importance

- due to narrower dynamic range - of high accuracy for re-

trieving of differential characteristics such as short-term HR

variability or PPG phase shift. Next important concern is

reasonable choice of better rPPG method for particular con-

ditions. Particularly, the question is: is it correct to directly

compare the rPPG methods that were trained on video se-

quences of various durations? For example, some method

produces HR estimates on time series of 4 sec duration, an-

other -– on 20 sec series. They are both tested on a dataset

where ground truth HR values were computed on ECG sig-

nal within 10 sec duration temporal windows. If particu-

lar method performs better, it means that it provides HR

estimations closer to ground truth values calculated in the

said manner. Further, if ground truth (GT) values are re-

calculated for another duration of temporal window (4 sec

or 20 sec), another method could become better, meaning it

provides estimates closer to new GT values. In variety of

works where rPPG methods are compared, such informa-
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tion about duration of temporal windows for computing GT

values and estimation of HR values is omitted (see Table 1).

In our opinion, such omitting of this information could lead

to misunderstanding of optimal conditions where compar-

ing methods perform better.

The following attributes of PPG signal are typically es-

timated: heart rate [4, 5, 15], heart rate variability [16] res-

piratory rate [17], phase shift of PPG signal on different

skin areas [4]. These attributes depend on health state and

functional state of a subject; thus, they could be used as

indicators of such states. In particular, heart rate is used

for physical load assessment [18], while heart rate variabil-

ity is for stress estimation [19–21]. Regarding PPG signals

phase shift, initially it was interpreted as a correlate of ab-

normal health state, particularly – migraine [22]. Later, con-

tradictory explanation was introduced [3]: opposite phases

of PPG signal in neighboring areas are caused by elastic na-

ture of skin in the following manner. Pulse wave in an artery

deforms capillary bed to skin surface above an artery. Due

to skin elasticity, neighboring areas can move in opposite

direction. Authors gave intuitive explanation by consider-

ing a sponge: when some part of it is moving towards un-

der pressure, neighboring areas can move in opposite direc-

tion. Such different interpretation of the same phenomenon

led to different conclusions on person's state. This exam-

ple demonstrates importance of correct accounting of rPPG

signal nature for proper inferring about person's state.

Another factor which should be properly considered in

rPPG method applications is a process of image acquisition

by a camera. Properties and artifacts of such acquisition

affect rPPG signal and can lead to incorrect conclusions.

PPG signal can be extracted and enhanced in video captured

even by common webcams [8, 23, 24]. rPPG signal in such

video is characterized by relatively low signal to noise ratio

(SNR). Therefore, considering and suppression of possible

artifacts is critical for SNR increasing.

Typically, processing of color signals by classic sig-

nal processing methods (which are not based on deep

learning models) is based on assumption of regular inter-

frame duration. Particularly, computing Fourier spectra (or

wavelet transform) doesn't account information about irreg-

ular inter-frame duration. However, some rPPG datasets

(like VIPL-HR [25] and PURE [26]) has irregular frame

rate in their videos, and [27] claims importance of irregular

frame rate for the correct HR estimation.

One more video-related factor is a rolling shutter effect,

also known as progressive scanning of a frame. Video frame

is not obtained in a single moment in time, since acquisi-

tion of each frame is a continuous process. As a result, one

part of a frame is captured earlier than another, causing ap-

pearance of phase shift artifacts. Due to phase shift can

be treated as diagnostic factor [2], it's important to exclude

potential artifact of progressive scanning in phase shift of

rPPG signals. We didn't considered rolling shutter as a

source of HR estimation errors, however such phenomena

as Pulse Transit Time may be affected if artifact is strong

enough.

Next factor – camera's anti-banding – is not studied in

our work. However, it possibly can affect rPPG method

and, thus, could merit further research. Anti-banding fil-

ter suppresses flicker taking place in video recordings un-

der lamplight conditions. The flicker is produced by beat

of frame capturing frequency and artificial light source fre-

quency. Due to frequency of this beat can be close to HR

frequency, anti-banding could suppress rPPG signal.

In this work, we review factors affecting accuracy of HR

estimation focusing on video capture-related aspects, and

proper comparing of rPPG methods. Namely, we consider

irregular frame rate and rolling shutter effect. In this work

we rather aim at illustrating possible effect of this factors on

HR evaluation on several examples, than providing com-

prehensive statistical evaluation of such effect. Regarding

correct comparing of rPPG methods, we focus on temporal

window selection for HR computing both in rPPG process-

ing and in ground truth labels.

2. Related works

In this section, we review available works in two areas:

1 – rPPG methods standardization and matching and 2 –

studies of video capture-related artifacts and their suppres-

sion.

With significant growth of amount of works in contact

and contactless PPG, several reviews appeared where au-

thors aimed to systematize different approaches and con-

ditions of their applicability. In [48] authors considered a

problem of weakly standardized experimental setups and

datasets for PPG, emphasizing contrast between usage of

industrial-grade equipment in experimental setups and mar-

keting rPPG as low-cost technology. Such weak standard-

ization makes matching of HR estimation results obtained

using different approaches complicated and even impossi-

ble in some cases. Papers listed in Table 1 compared rPPG

methods of HR estimation regardless of their processing

windows. In rare cases, authors provide optimization re-

sults of varying processing window size for a particular

method [8, 14, 30, 37]. Nevertheless, existing methods are

usually implemented with “default” settings provided by

their authors and compared with no attention to their pro-

cessing window size.

The following datasets are commonly used for training

and evaluation of rPPG approaches: Mahnob-HCI [49],

MMSE-HR [50], PURE [26], and VIPL-HR [25]. They

consist of videos with subjects been sitting in front of a cam-

era for 10 seconds or more. The number of subjects varies

from 10 (PURE) to 107 (VIPL-HR). The reference data was

recorded from contact sensors as electrocardiogram or pho-



Paper or

proposed

method

Methods compared with

CHROM [8] ICA [28], PCA [29]

SAMC [30] ICA [28], BCG [31], Li2014 [32],

CHROM [8]

Huang2016 [33] CHROM [8], ICA [28]

POS [9] G [4], PCA [29]. ICA [28],

CHROM [8], PBV [34], 2SR [35]

Coppetti2017 [36] Four iOS applications for contact

and non-contact PPG

cICA [37] cICA [37], ICA [28], PCA [29],

G [4], CHROM [8], POS [9]

SparsePPG [38] DistancePPG [39], CHROM [8],

ICA [28]

HR-CNN [40] 2SR [35], Li2014 [32],

SAMC [30]

SynRhythm [41] ICA [28], BCG [31], Li2014 [32],

CHROM [8], Niu2017 [42],

SAMC [30], Hsu2014 [43]

DeepPhys [10] Estepp2014 [44],

McDuff2014 [45], BCG [31],

CHROM [8], POS [9],

SAMC [30]

Deep-HR [12] ICA [15, 28], BCG [31],

Li2014 [32], CHROM [8],

SAMC [30], Hsu2014 [43],

RithmNet [46], HR-CNN [40]

PhysNet [11] SynRhythm [41], HR-CNN [40],

DeepPhys [10]

RithmNet [46] ICA [28], BCG [31], Li2014 [32],

CHROM [8], SAMC [30]

STVEN +

rPPGNet [47]

ICA [28], CHROM [8],

Li2014 [32], SAMC [30],

SynRhythm [41], HR-CNN [40],

DeepPhys [10]

Table 1: Papers comparing methods without considering the

size of the temporal window for HR calculation.

toplethysmogram. Ground truth HR values could be calcu-

lated in different ways from reference data, if using different

methods (peak detection-based or spectrum-based). These

GT values calculation as well as routines of data conver-

sions are handled by frameworks, which are reviewed be-

low.

One way to standardize evaluation and matching of

rPPG methods is to compare them in homogeneous envi-

ronment with universal rules of computing evaluations and

ground truth values on the same temporal windows. To

the best of our knowledge, there are a few open-source

tools implementing several steps of rPPG pipeline: iPhys-

Toolbox [51], Kooij2019 [17] and PPGI-Toolbox [52].

The frameworks provide several methods of rPPG signal

processing, such as, ICA [15], CHROM [8], POS [9],

BCG [31], 2SR [35], LGI [52], as well as some classical ap-

proaches of image processing and HR estimation using pe-

riodogram. However, existing tools are mostly available for

Matlab, while another research environments (e.g. Python-

based) are not well covered. There is still a lack of general,

readily available, open-source rPPG framework allowing to

research variety of methods (including machine-learning)

and to evaluate them on public datasets.

Benchmarks and challenges is a common way to match

efficiency of different approaches. While they are widely

used in most of computer vision and machine learning ar-

eas, they just start appearing in rPPG. RePSS (Remote

Physiological Signal Sensing) [53] is the first challenge in

the area, conducted in conjunction with CVPR 2020. There

is also another benchmark on HR evaluation, “rPPG bench-

mark” [17]. To date, it contains only a single private dataset

with a single result on it from the authors'method.

Factors related to video capturing and video compres-

sion are intensively studied to reveal their effect on rPPG

accuracy [47, 54, 55]. Video compression strongly sup-

presses rPPG signal in video. In [55] authors described

types of artifact in rPPG signal caused by compression and

proposed a framework to deal with compressed video. In

particular, they found red and blue color components are

mostly affected by video compression artifacts in a case

of low-bitrate video and proposed single-channel process-

ing approach (greed color component) which outperforms

multichannel-based approaches on low-bitrate video. Yu

developed STVEN autoencoder [47] to convert video from

one bitrate to another with aim of enhancement of rPPG sig-

nal. McDuff proposed Deep Super Resolution network [54]

for low resolution video which also allows to enhance rPPG

methods on compressed video.

Mentions of phase shift could be traced up to

Verkruysse's work [4]. It was studied recently at [56], and

it was demonstrated that phase shift may be used to distin-

guish rest and exercise condition of the subject. So-called

“rolling shutter” effect, caused by progressive scan presum-

ably on CMOS sensors, is a well-known source of artifacts,

efforts was made to measure [57] and compensate [58] the

effect. No prior works were found which evaluate possi-

bility of rPPG signal could be affected by rolling shutter.

However, in [4] authors noticed the possible influence of

automatic gain correction on the phase shift and found its

influence insignificant.

In [27], authors claimed significant effect of frame rate

irregularity on HR estimations, however, they didn't sep-

arate “additional background processes” from “frame rate

jitter”. Other than that, irregular fps is poorly studied in

rPPG.



Figure 1: The lamp divided into four regions that were used

in the rolling shutter experiment. Best viewed in color.
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Figure 2: Median values of estimated absolute amplitude

shift.

3. Rolling Shutter Experiment

To evaluate the impact of rolling shutter effect on the

retrieving of the phase shift over the picture, several PPG

records from MMSE-HR dataset [50] were used. The

records were played back through the model object – a big

LED lamp with finely-controllable brightness, designed to

exclude any phase shift along its surface (Figure 1). Six

smartphones (Figure 2) were simultaneously used to cap-

ture video from the model object. If there is no rolling

shutter effect, there should be no phase shift in the captured

videos. Otherwise, observable phase shift is caused by the

rolling shutter.

To verify the existence of a phase shift, the four bright-

ness signals were extracted from a video as time series of

averaged grayscale intensities over four regions: from top,

bottom, left, and right regions of the model object (see Fig-

ure 1). Then the phase shift is calculated along the vertical

axis (i.e. between top and bottom signals) and horizontal

axis (i.e. between left and right signals). Rolling shutter

effect expected to produce phase shift along the progressive

scan direction, while phase shift along orthogonal direction

is expected to be close to zero.

3.1. Experimental Hardware

The experiment required light source (“modulator”) that

can be modulated using digital signal at a relatively high

sample rate. The hardware pipeline shouldn't have its

own significant influence at a frequencies that are typical

for heart rate and its subproducts in a form of skin color

changes. Thus, the modulator should support low frequency

modulation (even constant value).

3.1.1 Computer Connectivity

To simplify the task of digital-to-analogue and vice-versa

conversion and to use an already existing well-tried so-

lution, it was considered to utilize a sound card as a

fast ADC/DAC (Analog-to-Digital Converter / Digital-to-

Analog Converter) module and GNU Radio [59] as a back-

end. A hardware customization of a sound card was re-

quired. A regular sound card have DC (Direct Current)

decoupler capacitors both at line input and line output. It

is reasonable filtering procedure for an average sound sig-

nal but not for the photoplethysmography. Genius Sound

Maker 5.1 PCI sound card was used having the capacitors

well recognizable. The capacitors were bypassed and after

that modification the ”zero” digital reading was strictly at-

tached to the ADC/DAC idle voltage of 2.5 volts DC. The

sound card sample rate is 44100 per second that is enough

for the experimental purposes.

3.1.2 The Modulator

The modulator task is to produce a light at a given sample

rate. The common solutions can lead to an incorrect ex-

periment setup. A PWM (Pulse Width Modulation) that is

widely used to dim the power of LED does not suit our task

as it can produce moire effect. White lamps utilise phosphor

LEDs that have an afterglow and a wide spectral character-

istic. So let's formulate the requirements for the modulated

light source:



• do not use a PWM modulation to achieve the required

light output;

• do not have an afterglow;

• generated light should be perceptible by the camera.

A LED lamp light with a diffuser was customized. White

LED strip was replaced with a green LED strip. Green LED

produce direct light emission without phosphor thus having

no afterglow. Another reason is that LED wavelength is in

the middle of the visible range of a generic camera. A linear

amplifier was developed to drive the LED strip within sound

card DAC in a full range of possible input. After that the

GNU Radio backend can use sound card linear output to

drive the Modulator light.

3.2. Results

3.2.1 Phase Shifts caused by Rolling Shutter effect

We was able to identify phase shift of up to 0.02 sec. for

all the smartphones used. It was always registered along

horizontal axis, and vertical axis has order-of-magnitude

smaller phase shift (Figure 2). This difference exists for

all of the PPG signal used.

For comparison, phase shift of 2 frames was demon-

strated in [4], “0.067s, or 34 degrees at a HR of 1.43 Hz”.

Phase shift of 0.02 sec, caused by progressive scan, is about

10 degrees at HR of 1.43 Hz (mind that this “progressive

scan shift” is not related to the actual heart rate, and it’s

natural to measure it in seconds, not in degrees).

Moço et al. [56] quote 14.8° of cheek-forehead phase

shift at the period of rest and 17.5° at the period of exer-

cise. HR is not reported unfortunately, but 0.02 sec is 7.2°

at 60 bpm and 9.6° at 80 bpm.

So we conclude that rPPG phase shift caused by the pro-

gressive scan is big enough to produce significant distur-

bance to the phase-related experiments, especially the ones

where difference of phase shifts is estimated. Special at-

tention should be paid to avoid it or filter it out. Simplest

possible approach is to take sensor orientation into account

and demonstrate effect after the sensor is rotated to 90 deg.

3.2.2 Phase Shifts oscillation

More important is that 0.02 sec is not the constant shift. Ac-

tually, phase shift slowly oscillates from effectively zero up

to maximum and back to zero. These oscillations don't look

like random, but seem to be quite periodic. These oscilla-

tions happen for all the six smartphones used in our experi-

ments.

We actually have no any obvious explanation for this os-

cillations – either by video capturing artifact or by experi-

ment setup flaw. However, this effect may be quite impor-

tant because of it's slowness - because period may be as long

as tens of seconds, it's possible to get serious artifacts just

because one may accidentally catch close-to-zero part of the

curve in one experiment, and close-to-maximum part in an-

other, producing false positive recognition of phase shift be-

cause of it.

For example, in [56] phase shift difference between rest

and exercise periods is 2.7°. With progressive scan phase

shift oscillating from 0° to 7.2°, it’s easy to get a false pos-

itive result. Moreover, as long as progressive scan phase

shift is never negative over this oscillations, multiple exper-

iments may not compensate it.

4. Irregular Frame Rate Experiment

We captured 10 different PPG signals from each of 6

different smartphones. This resulted in 60 video records,

which were split into 279 10-seconds pieces – we need

small pieces to avoid potential artifacts to be averaged out.

Video stream encoded with average codec actually con-

tain “presentation time” for each frame - the moment when

a frame should be shown. In case of regular frame rate these

values follow at regular intervals, otherwise not. This infor-

mation is used by decoder to render the video. FFprobe util-

ity was used to extract the frame “presentation times”. We

consider naming the “presentation time” as “frame times-

tamp”. To understand if irregular frame rate affects HR es-

timations, we used essentially the same experimental setup

as described above, but with different processing of the re-

sulting videos. Specifically, we converted every video to the

“timestamped” irregular signal - i.e. average intensity of the

whole model object was calculated for every frame and then

stored along with the timestamp of this frame. This ”times-

tamped” irregular signal was then interpolated to the regular

44100 Hz signal using two methods:

• “good” one, which uses actual timestamps from the

video in the process of interpolation;

• “bad” one, which uses wrong timestamps, calculated

as if frame rate of the video is constant (i.e. taking

timestamp of the first frame, timestamp of the last

frame, and dividing period between this timestamps

equally to all the frames between).

“Bad” signal, if compared to the “good” one, if some-

what “squeezed” in some places and somewhat “stretched”

in other places, as expected. To understand if this squeezes-

and-stretches are big enough to cause any significant distur-

bance, we evaluated:

• difference between “good” and “bad” signals;

• difference between their spectra.



Figure 3: Comparison of timestamp-aware (good, colored in blue in upper figure) and timestamp-ignorant (bad, colored in

red in upper figure) signals and their power spectra. Due to insignificant signals and spectra difference ”bad” and ”good”

plots looks same on this scale. Displacements on zoomed view is not to scale.

4.1. Results

All 6 smartphones produce videos with irregular frame

rate. But our results contradict to [27] – difference caused

by irregular frame rate is mostly inessential in our experi-

ments. Both amplitude and spectral differences of “good”

and “bad” signals are orders of magnitude smaller than am-

plitude of the signal and absolute spectrum (Figure 3).

This result remains the same for the different cameras

with codecs with different irregularity structures.

5. Effect of temporal window on HR estimation

5.1. Methods

The effect of using different sizes of temporal window

was investigated on a subset of Fantasia Database [60], from

PhysioNet [61]. The subset contains 120-minute records of

ten healthy subjects: five young (21–34 years old) and five

elderly (68–85 years old). Subjects had been lay in resting

state for 120 minutes watching a movie while electrocardio-

graphic (ECG) signals were collected. The ECG frame rate

was 250 Hz. Each heartbeat was annotated using an auto-

mated arrhythmia detection algorithm [60], and each beat

annotation was verified by visual inspection. The interbeat

(RR) interval time series for each subject were then com-

puted.

Let s ∈ {0, 5, . . . , 60} sec be the size of a temporal win-

dow W s which contains N annotated heart beats. “0-sec”

window size denotes a single RR interval. Then, the HR

value was calculated as an average of RR intervals RRi cal-

culated within the W s:

HR (W s) =















1

RR
, for s = 0 sec

N − 1
∑

N−1

i=1
RRi

, for 5 ≤ s ≤ 60 sec
. (1)

Heart rates, which are averaged within temporal win-

dows of s1 and s2 sizes (s1 > s2), were compared as fol-

lows. The whole time series were divided into sequences of

s1-sec windows. In each window W s1 another shorter slid-

ing window W s2

i
(⊂ W s1) of s2-sec duration was selected

with a step of 5 seconds, i = 0, . . . , (s1 − s2) /5. In case of

s2 = 0, all RR intervals within the W s1 window were se-

lected. Next, HR values were computed using (1) for W s1

window and for each W s2

i
. The differences between HR

values were averaged as relative difference:

d (W s1 ,W s2

i
) =

|HR (W s1)− HR (W s2

i
)|

HR (W s1)
· 100%. (2)

The larger d-value indicates greater difference of HR val-

ues estimated within different temporal windows. Imple-

mentation of this method in Python code is publicly avail-

able1.



s1

s2 0 5 10 15 20 25 30 35 40 45 50 55

5 2.7% - - - - - - - - - - -

10 3.3% 1.7% - - - - - - - - - -

15 3.6% 2.1% 1.2% - - - - - - - - -

20 3.8% 2.4% 1.5% 0.9% - - - - - - - -

25 4.0% 2.6% 1.8% 1.2% 0.8% - - - - - - -

30 4.2% 2.8% 2.1% 1.5% 1.1% 0.6% - - - - - -

35 4.3% 2.9% 2.2% 1.8% 1.3% 0.9% 0.6% - - - - -

40 4.3% 3.1% 2.4% 2.0% 1.6% 1.2% 0.8% 0.5% - - - -

45 4.4% 3.2% 2.5% 2.1% 1.8% 1.4% 1.1% 0.7% 0.4% - - -

50 4.5% 3.2% 2.7% 2.3% 2.0% 1.6% 1.3% 1.0% 0.7% 0.4% - -

55 4.5% 3.3% 2.7% 2.4% 2.1% 1.8% 1.5% 1.2% 0.9% 0.6% 0.4% -

60 4.6% 3.3% 2.8% 2.4% 2.1% 1.8% 1.6% 1.3% 1.1% 0.8% 0.6% 0.3%

Table 2: Averaged differences between HR values computed on internal temporal windows (s2) located within external

ones (s1). Window sizes are given in seconds. Due to s1 > s2, the resulting matrix is lower triangular.
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Figure 4: Box plot of distributions of differences in HR

values estimated for various sizes of temporal windows.

Figure 4 illustrates distribution of differences in average

HR values computed for pairs of temporal windows W s1

and W s2 for corresponding differences between s1 and s2
sizes. The average values of differences are presented in

Table 2.

5.2. Results

The difference between HR values estimated on differ-

ent temporal windows appears to be up to 10% and greater

which corresponds to 4–10 bpm for normal heart rate at

rest (40–100 bpm for healthy adult [62]). Also, similar dif-

ference is expected to be between HR values estimated by

rPPG methods with different processing window sizes. It

means that comparison between result of an rPPG method

1https://github.com/Simplar/Effect-of-temporal-

window-on-HR-estimation

and a reference HR data should be done using the same tem-

poral window sizes; if sizes differ, one should take into ac-

count an additional “error” caused by the difference.
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6. Conclusion

Several factors and their influences on rPPG methods

were considered.

1. Rolling shutter effect generates shift of PPG signal

which is of the same order of magnitude as “physi-

ological” phase shift reported in a number of papers.

Thus, it should be properly accounted in studies and

interpretations of PPG signal phase shifts.

2. In short series of experiments we didn't observe effect

of irregular frame rate in video on distortion of PPG

signal spectrum. However, since this irregularity de-

pends on particular recording device and compression

method, it could be a subject of separate comprehen-

sive research.

3. Significant variation of computed ground truth labels

of HR is discovered caused by different size of tem-

poral window for HR averaging. In our opinion, size

of temporal window both for HR estimation by rPPG



method and for ground truth should be explicitly de-

clared when presenting results of evaluation and com-

paring of different approaches.
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C. Wyss, “Accuracy of smartphone apps for heart rate

measurement,” European journal of preventive cardiology,

vol. 24, p. 2047487317702044, 05 2017.

[37] R. Macwan, Y. Benezeth, and A. Mansouri, “Remote photo-

plethysmography with constrained ica using periodicity and

chrominance constraints,” BioMedical Engineering OnLine,

vol. 17, p. 22, Feb 2018.

[38] E. M. Nowara, T. K. Marks, H. Mansour, and A. Veer-

araghavan, “Sparseppg: Towards driver monitoring using

camera-based vital signs estimation in near-infrared,” 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pp. 1353–135309, 2018.

[39] M. Kumar, A. Veeraraghavan, and A. Sabharwal, “Distan-

cePPG: Robust non-contact vital signs monitoring using a

camera,” Biomedical Optics Express, vol. 6, no. 5, p. 1565,

2015.

[40] R. Spetlik, J. Cech, V. Franc, and J. Matas, “Visual heart rate

estimation with convolutional neural network,” in Proceed-

ings of British Machine Vision Conference, 2018.

[41] X. Niu, H. Han, S. Shan, and X. Chen, “Synrhythm: Learn-

ing a deep heart rate estimator from general to specific,” in

2018 24th International Conference on Pattern Recognition

(ICPR), pp. 3580–3585, 2018.

[42] X. Niu, H. Han, S. Shan, and X. Chen, “Continuous heart

rate measurement from face: A robust rppg approach with

distribution learning,” in 2017 IEEE International Joint Con-

ference on Biometrics (IJCB), pp. 642–650, Oct 2017.

[43] Y. Hsu, Y. Lin, and W. Hsu, “Learning-based heart rate

detection from remote photoplethysmography features,” in

2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 4433–4437, May 2014.

[44] J. R. Estepp, E. B. Blackford, and C. M. Meier, “Recov-

ering pulse rate during motion artifact with a multi-imager

array for non-contact imaging photoplethysmography,” in

2014 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pp. 1462–1469, Oct 2014.

[45] D. J. McDuff, S. Gontarek, and R. W. Picard, “Improvements

in remote cardiopulmonary measurement using a five band

digital camera,” IEEE Transactions on Biomedical Engineer-

ing, vol. 61, pp. 2593–2601, 2014.

[46] X. Niu, S. Shan, H. Han, and X. Chen, “Rhythmnet: End-

to-end heart rate estimation from face via spatial-temporal

representation,” IEEE Transactions on Image Processing, 10

2019.

[47] Z. Yu, W. Peng, X. Li, X. Hong, and G. Zhao, “Remote heart

rate measurement from highly compressed facial videos: an

end-to-end deep learning solution with video enhancement,”

in Proceedings of the IEEE International Conference on

Computer Vision, pp. 151–160, 2019.



[48] C. H. Antink, S. Lyra, M. Paul, X. Yu, and S. Leonhardt, “A

broader look: Camera-based vital sign estimation across the

spectrum,” Yearbook of medical informatics, vol. 28, no. 01,

pp. 102–114, 2019.

[49] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A

multimodal database for affect recognition and implicit tag-

ging,” IEEE Transactions on Affective Computing, vol. 3,

pp. 42–55, Jan 2012.

[50] Z. Zhang, J. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci,

S. Canavan, M. Reale, A. Horowitz, H. Yang, J. Cohn, Q. Ji,

and L. Yin, “Multimodal spontaneous emotion corpus for hu-

man behavior analysis,” pp. 3438–3446, 06 2016.

[51] D. McDuff and E. Blackford, “iphys: An open non-contact

imaging-based physiological measurement toolbox,” in 2019

41st Annual International Conference of the IEEE Engineer-

ing in Medicine and Biology Society (EMBC), pp. 6521–

6524, IEEE, 2019.

[52] C. Pilz, “On the vector space in photoplethysmography

imaging,” in Proceedings of the IEEE International Confer-

ence on Computer Vision Workshops, 2019.

[53] X. Li, H. Han, H. Lu, X. Niu, Z. Yu, A. Dantcheva, G. Zhao,

and S. Shan, “The 1st Challenge on Remote Physiological

Signal Sensing (RePSS),” arXiv, 2020.

[54] D. McDuff, “Deep super resolution for recovering physi-

ological information from videos,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pp. 1367–1374, 2018.

[55] C. Zhao, C.-L. Lin, W. Chen, and Z. Li, “A novel frame-

work for remote photoplethysmography pulse extraction on

compressed videos,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops,

pp. 1299–1308, 2018.

[56] A. Moço, S. Stuijk, M. van Gastel, and G. de Haan, “Im-

pairing factors in remote-ppg pulse transit time measure-

ments on the face,” in 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW),

pp. 1439–14398, June 2018.

[57] L. Oth, P. Furgale, L. Kneip, and R. Siegwart, “Rolling shut-

ter camera calibration,” in 2013 IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 1360–1367, June

2013.

[58] Y. Lao and O. Ait-Aider, “A robust method for strong rolling

shutter effects correction using lines with automatic feature

selection,” in 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), (Los Alamitos, CA,

USA), pp. 4795–4803, IEEE Computer Society, jun 2018.

[59] “GNU Radio - The free open software radio ecosystem. [On-

line] (http://www.gnuradio.org).”

[60] N. Iyengar, C.-K. Peng, R. Morin, A. Goldberger, and L. Lip-

sitz, “Age-related alterations in the fractal scaling of cardiac

interbeat interval dynamics,” The American journal of phys-

iology, vol. 271, pp. R1078–84, 11 1996.

[61] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov,

R. Mark, J. Mietus, G. Moody, C.-K. Peng, and H. Stanley,

“Physiobank, physiotoolkit, and physionet : Components of

a new research resource for complex physiologic signals,”

Circulation, vol. 101, pp. E215–20, 07 2000.

[62] G. Quer, P. Gouda, M. Galarnyk, E. Topol, and S. Steinhubl,

“Inter- and intraindividual variability in daily resting heart

rate and its associations with age, sex, sleep, bmi, and time

of year: Retrospective, longitudinal cohort study of 92,457

adults,” PLOS ONE, vol. 15, p. e0227709, 02 2020.


