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Abstract 
 

In the present paper, we propose a method for 
acquiring multiple biological information inputs from a 
red-green-blue (RGB) facial video footage and using their 
feature values to estimate stress levels. Such estimations 
are important because if left unchecked, stress can cause 
severe mental illness and/or physical damage to the 
human body. Accordingly, it is important to understand 
the onset of stress at an early stage and take measures to 
counteract it. However, since it is difficult for us to 
accurately gauge our stress levels, it would be desirable 
to establish an objective and accurate estimation method. 
Additionally, while the commonly used questionnaire 
method is easy to implement, it lacks both objectivity and 
accuracy. In a recent study, many methods that use 
biological information were proposed. In the present 
study, we estimate stress using three biological signals 
captured using an RGB camera: pulse, blinking rate, and 
pupil diameter. Our results show that stress estimation 
accuracy is improved by using these biological signals, 
thereby indicating that it is possible to estimate stress 
more accurately by using biological information in a 
multimodal manner. 

1. Introduction 

It is necessary to quickly and accurately grasp stress 
levels and take appropriate remedial actions because 
unchecked stress can cause enormous mental and 
physical damage. Current stress estimation methods are 
generally based on questionnaires, but it is not always 
possible to perform objective and accurate stress 
estimations with such methods because they depend on 
the subjective evaluations of the respondents.  

In previous studies, methods that use changes in 
biological information such as pulse and pupil dilation 
have been used to estimate stress levels more accurately. 
A particular advantage of methods using biometric 
information is that measurements can be continuously 
collected without the subjective biases of the subjects. 
Such measurements are normally collected using contact-

based dedicated equipment, but noncontact measurement 
methods are more desirable because contact-based 
methods have limited measurement environments.  

In a previous study by Mitsuhashi et al. [1], pulse 
waveforms were extracted by skin pigment component 
separation from a facial video captured using red-green-
blue (RGB) camera footage, after which four-stage stress 
classification was performed using the features obtained 
from the pulse waveforms. This study aims to build on 
that method, thus increasing the accuracy of stress 
classification, by extracting noncontact information on 
measurable blinking and pupil dilation from facial videos, 
in addition to extracting pulse waveform data. 

2. Proposed method 

It is widely known that stress affects the dominance 
and autonomic balance of the nervous system and that 
those effects are partially expressed as physiological 
changes such as increased heart rate and pupil dilation. 
Because these changes occur unconsciously, objective 
observations of autonomic nervous system activities can 
be made by measuring changes in such biological 
information. In this study, we acquire and utilize pulse, 
blinking rate, and pupil dilation as biosignal data 
extracted from facial video footage captured by an RGB 
camera, and then use those extract features for stress 
estimation. 

2.1 Pulse waveform estimation 

A pulse is defined as a change in blood pressure or 
volume in the peripheral vasculature that accompanies the 
heartbeat. A contact-type measurement method using a 
machine called a photoplethysmograph is generally used 
when measuring the pulse for medical purposes. Using 
the property that hemoglobin contained in the blood 
absorbs green light, this machine obtains pulse waveform 
data by observing the intensity of light emitted from and 
reflected to a fingertip attachment. However, this method 
requires special equipment, which reduces the 
environments in which it can be used, and can also 
increase stress due to the need for the person being tested 
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to make physical contact with the device. 
Therefore, a technique called image-based 

photoplethysmography (iPPG) has been proposed as a 
noncontact method for acquiring pulse waveforms. For 
example, Verkruysse et al. [2] proposed a method for 
acquiring pulse waveforms that works by calculating 
temporal changes in average pixel values of G signals of 
region of interest (ROI). This method utilizes the fact that 
the G component of the skin in the moving image 
captured by the RGB camera correlates with the blood 
volume, which means it can be used to acquire the pulse 
waveform from time-series changes to the G component. 
However, since this method is affected by lighting 
fluctuations and body movements (which increase the 
observed noise), several studies have been conducted to 
find ways of acquiring clear pulse waveform data from 
facial video footage [3-6]. 

Fukunishi et al. [7] proposed a method of measuring 
pulse waveforms that is robust against lighting 
fluctuations based on a technique called skin pigment 
component separation. In this method, hemoglobin 
components are extracted by applying skin pigment 
component separation to captured skin video footage [8]. 
This method estimates the pulse waveform by calculating 
the average pixel value in the skin area of the face using 
the hemoglobin component of the video that fluctuates 
with heartbeat blood volume changes. Furthermore, a 
more accurate pulse waveform can be obtained by 
applying a band-pass filter to extract and apply a band of 
45 to 180 beats per minute (the normal range of a human 
heart) to the estimated pulse waveform. Figure 1 shows 
time-series changes of a pulse waveform obtained from a 
facial video. 

2.2  Blinking estimation 

It has been noted previously that blinking rates are 
affected by emotional stimulation levels, such as tension 
and anxiety. It is also known that the sympathetic nerve 
controls a portion of the eyelid muscles that perform 
blinking activities. In general, when measuring blinking 
activity, a method of acquiring an electromyogram (EOG) 
of the eye using an electromyograph is widely used. 
However, since this is also a contact-style measurement, 
a noncontact measurement method is needed to facilitate 
stress-free measurements.  

Soukupová and Čech [9] proposed a method that  

 

 

 

detects eye blinks from facial video footage by using 
landmarks. In the method described above, 68 landmarks 
are acquired from a facial video by machine learning, and 
the degree of eye-opening/closing is determined based on 
the vertical and horizontal distance fluctuations of six 
points related to the eyes. Figure 2 shows an example of 
the six landmarks acquired and the related vertical and 
horizontal distance fluctuations, while Equation (1) 
shows the calculation formula of the biological signal for 
a blink.  

 

 EAR = 𝑝2𝑝6 + 𝑝3𝑝52(𝑝1𝑝4)  

= 𝐓𝐡𝐞 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐨𝐟 𝐋𝐚𝐭𝐞𝐫𝐚𝐥 𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐄𝐲𝐞𝐓𝐡𝐞 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐨𝐟 𝐕𝐞𝐫𝐭𝐢𝐜𝐚𝐥 𝐋𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐄𝐲𝐞  (1) 

 

The eye aspect ratio (EAR) calculated by Eq. (1) 
represents the ratio of the vertical and horizontal distance 
of the eye based on the six landmarks mentioned above. 
While the horizontal distance of the eye does not change 
when the eye is opened or closed and, the vertical distance 
is kept constant when the eye is open, the length decreases 

 

Figure 1. Pulse waveform from RGB facial video. 

 

Figure 2. Changes to eye landmark distances. 

 

Figure 3. The blink waveform calculated by Equation (1). 



 

 

rapidly when the eye is closed, such as when a blink 
occurs.  

Figure 3 shows the blink waveform, which is the time-
series change of the EAR value calculated by Eq. (1). The 
part where the value decreases rapidly is considered to be 
the blinking point. From the blink waveform seen in Fig. 
3, a total of 14 features, such as the number of blinks, the 
amplitude at eye opening and closing times, and the 
opening and closing speeds, can be acquired. 

2.3 Pupil estimation 

In this subsection, we explain how pupil diameter 
changes are acquired using circles fitted to the pupil and 
iris that have been segmented from a facial video. 
Basically, pupillary movement and size are related to the 
functions of the pupillary sphincter and pupillary dilator 
muscles. They are controlled by the autonomic nervous 
system, and it is known that fluctuations in pupil diameter 
can be affected by stress. Specifically, the pupillary 
sphincter is under the control of the parasympathetic 
nerve and the pupillary dilator muscles are under the dual 
control of the sympathetic and parasympathetic nerves. 
Thus, the pupil shrinks in the resting state and enlarges in 
the stressed state, which means it can be a useful stress 
indicator.  

In this study, the eye region is extracted from the facial 
video, and circles are fitted to the pupil and the iris 
segmented by deep learning. The ratio of each size is then 
used to obtain pupil diameter changes. Figure 4 shows the 
procedure for acquiring the pupil and iris sizes from the 
facial video.  

Segmentation of the pupil/iris region from the facial 
video footage is performed using the U-Net deep learning 
network, which is a full-layer convolutional network 
specialized for image segmentation. U-net was selected 
because it is capable of using fewer images for learning, 
can be trained quickly, and has high image segmentation 
accuracy. The pupil/iris ratio (PIR) is calculated by 
comparing the diameters of the circles fitted in Fig. 4. 
This value is important because while the iris size does 
not change due to stress, the pupil size varies. Equation 
(2) is an equation for calculating the PIR. 
 

 

By using the ratio of the pupil to the iris as an index, pupil 
fluctuation can be observed regardless of the measured 
distance. Figure 5 shows an example of a PIR time-series  

change calculated by Equation (2). 
Referring to Fig. 5, a sharp decrease similar to the  

 

 

 

blink waveform shown in Fig. 3 is observed. This is 
thought to be because the pupil could not be detected due 
to blinking, which means the numerical value was lost. To 
continuously analyze pupil fluctuations, Hermitian 
interpolation is performed to compensate for the loss of 
the numerical value. Figure 6 shows the result of 
performing interpolation on the PIR values provided in 
Fig. 5. As shown in Fig. 6, it is possible to eliminate 
extreme changes in the PIR numerical value by 
performing numerical interpolation. 
 

PIR = 𝑎𝑝𝑎𝑖  

= 𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 𝐨𝐟 𝐂𝐢𝐫𝐜𝐥𝐞 𝐅𝐢𝐭𝐭𝐞𝐝 𝐭𝐨 𝐏𝐮𝐩𝐢𝐥𝐃𝐢𝐚𝐦𝐞𝐭𝐞𝐫 𝐨𝐟 𝐂𝐢𝐫𝐜𝐥𝐞 𝐅𝐢𝐭𝐭𝐞𝐝 𝐭𝐨 𝐈𝐫𝐢𝐬  

(2) 

 

Figure 4. Procedure for acquiring the pupil and iris size 

from the facial video. 

 

Figure 5. Example of PIR time-series changes. 

 

Figure 6. The result of performing interpolation on 

the PIR values in Figure 5. 



 

 

3. Feature extraction 

In this research, as part of efforts to improve stress 
estimation accuracy levels, we obtain and then combine 
the multimodal features of the three types of biological 
information described in the previous section. In this 
section, we explain the features used in this research. 

3.1 Pulse features 
It is known that changes in biological information due 

to stress appear as fluctuations in the interval between 
peaks of the pulse waveform. Since pulse rate variability 
is calculated by noting differences between adjacent peak 
times of the pulse waveform, we first calculate the pulse 
rate variability as shown in Fig. 7. We then obtain other 
pulse features by analyzing the pulse waveform in the 
time and frequency domains. 

 

3.1.1 Time-domain analysis 

The time-domain features, which can be easily 
obtained by the pulse waveform interval shown in Fig. 7 
are analyzed directly. In particular, the value of the pulse 
waveform interval 𝑚𝑒𝑎𝑛𝑅𝑅𝐼 and the standard deviation 𝑠𝑡𝑑𝑅𝑅𝐼 , as well as the average value of the heart rate 
waveform 𝑚𝑒𝑎𝑛𝐻𝑅 and the standard deviation 𝑠𝑡𝑑𝐻𝑅, 
all of which are calculated from one pulse waveform 
interval, are the most easily obtainable indices.  

Among these, the standard deviation 𝑠𝑡𝑑𝑅𝑅𝐼 of the 
pulse waveform interval reflects the overall fluctuation of 
the pulse waveform, while the root mean square 𝑅𝑀𝑆𝑆𝐷 
of the pulse waveform sequential difference reflects 
short-term pulse waveform fluctuations. The method used 
for calculating 𝑅𝑀𝑆𝑆𝐷 is shown in Eq. (3). 
 

 𝑅𝑀𝑆𝑆𝐷 = √ 1𝑁 − 1 ∑(𝑅𝑅𝑗+1 − 𝑅𝑅𝑗)2𝑁−1
𝑗=1  (3) 

 

In this equation, 𝑁  presents the total number of 
consecutive pulse waveform intervals while 𝑅𝑅𝑗 refers 
to the 𝑗th pulse waveform interval. In the time domain, 
we extract the five abovementioned features. 

3.1.2 Frequency Domain Analysis 

Features in the frequency domain are obtained by 
analyzing the power spectral density (PSD) of the pulse 
interval. In this study, the PSD is calculated using the 
periodogram proposed by Lomb and Scargle. Because the 
changes to the high-frequency (HF: 0.15 to 0.40 Hz) and 
low-frequency (LF: 0.04 to 0.15 Hz) components of the 
pulse waveform fluctuations reflect the actions of the 
autonomic nervous system, our method also uses the  

 

 

features obtained from the frequency domain analysis of 
the pulse waveform.  

In this research, we calculate 𝐿𝐹  as the integrated 
values of the LF band in the PSD calculated by the Lomb-
Scargle periodogram. In addition, 𝐻𝐹  is calculated as 
the integrated values of the HF band, 𝑛𝐿𝐹 is calculated 
as the normalized 𝐿𝐹 , 𝑛𝐻𝐹  is calculated as the 
normalized 𝐻𝐹, and 𝐿𝐹/𝐻𝐹 is calculated as the ratio of 𝐿𝐹 per 𝐻𝐹. 
As described above, we acquire a total of ten feature 
types from the pulse waveform. 

3.2 Blink features 
Next, we will explain the extraction of features which 

are related to blinks. Figure 8 schematically shows the 
blink waveform described in Section 2 and the feature 
points obtained from it. In Fig. 8, 𝑃𝑠 and 𝑃𝑒  represent 
the start and endpoint of the blink, respectively, while 𝑃𝑠𝑏  and 𝑃𝑒𝑏  represent the endpoint of the eyelid closing 
process and the start point of the eyelid opening process. 𝑃𝑚𝑎𝑥  represents the time when the EAR value reaches a 
maximum. Based on each of these feature points, the 10 
feature values can be extracted.  

First, the amplitude at the time of eyelid closure 𝐴𝑐𝑙 
is defined from the difference between the EAR values of 𝑃𝑠  and 𝑃𝑠𝑏  . Next, the amplitude 𝐴𝑜𝑝  at the time of 
eyelid opening is determined from the difference between 
the EAR values of 𝑃𝑒𝑏   and 𝑃𝑒  . The maximum 
amplitude 𝐴𝑚𝑣  is then defined from the difference 
between the average value of 𝑃𝑠𝑏  and 𝑃𝑒𝑏  and the EAR 
value of 𝑃𝑚𝑎𝑥 . The eyelid speed 𝑉𝑐𝑙 = 𝐴𝑐𝑙/𝑇𝑐𝑙  is 

 

Figure 7. Pulse rate variability.  

 

Figure 8. Blink feature points.  



 

 

defined from the time difference 𝑇𝑐𝑙(= 𝑇𝑠𝑏 − 𝑇𝑠) 
between 𝑃𝑠 and 𝑃𝑠𝑏 , while the eyelid opening is defined 
from the time difference 𝑇𝑜𝑝(= 𝑇𝑒 − 𝑇𝑒𝑏)  between 𝑃𝑒𝑏  and 𝑃𝑒  the speed 𝑉𝑜𝑝 = 𝐴𝑜𝑝/𝑇𝑜𝑝.  

The mean and standard devaition values of these 
parameters are obtained as feature values. Additionally, 
we use the number of blinks 𝐸𝐵_𝑛𝑢𝑚𝑎𝑙𝑙   when 𝑃𝑠𝑏  
and 𝑃𝑒𝑏  are detected as individual peak detection points, 
the number of blinks counted from 𝑃𝑠  to 𝑃𝑒   as one 
blink 𝐸𝐵_𝑛𝑢𝑚𝑒𝑐𝑝 , and 𝐸𝑦𝑒_𝐶𝑙𝑜𝑠𝑒𝑑_𝑇𝑖𝑚𝑒 , which is 
the sum of the time of closed eyes from 𝑃𝑠 to 𝑃𝑒 . Thus, 
a total of 14 feature types can be obtained from the blink 
waveform. 

 

3.3 Pupil features 
In this subsection, we will explain the extraction of 

features related to pupils. As shown in Figs. 5 and 6, we 
acquire a total of pupil six feature value types. These are 
the 𝑚𝑒𝑎𝑛𝑃𝐼𝑅𝑜𝑟𝑖, which is the average of the original 
PIR values seen in Fig. 5; 𝑠𝑡𝑑𝑃𝐼𝑅𝑜𝑟𝑖 , which is the 
standard deviation of the original PIR values; 𝑚𝑒𝑎𝑛𝑃𝐼𝑅𝑖𝑝 , which is the average of the interpolation 
values shown in Fig. 6; 𝑠𝑡𝑑𝑃𝐼𝑅𝑖𝑝, which is the standard 
deviation of the interpolated PIR values; 𝑚𝑖𝑛𝑃𝐼𝑅 , 
which is the minimum PIR value; and 𝑚𝑎𝑥𝑃𝐼𝑅, which 
is the maximum PIR value. 

4. Experiment 
Using the biological signals described in the previous 

sections and their obtained features, we measured four 
stress state levels and then verified the stress 
classifications and their accuracy using a multiple 
regression analysis-based classifier. 

Figures 9 and 10 show the experimental setting and 
the procedures used. Our experiment was conducted in a 
dark room with nine students in their 20s (six male and 
three female) participating as test subjects. Video footage 
was captured using an RGB camera with a frame rate of 
60 fps and a resolution of 1024×768 pixels. Artificial 
sunlight was provided as lighting.  

In these experiments, each test subject was asked to  

use a chin rest to stabilize his or her face in order to 
prevent body movements from being introduced into the 
pulse waveform information as noise. Two minutes of 
video footage were taken for each of the subjects in four 
stress level states (a relaxed state and three states in which 
they were required to solve mental arithmetic tasks of 
varying difficulty).  

A six-minute rest interval was set between video  

 

Figure 9. Experimental setting.  

 

 

Figure 10. Experimental procedure.  

 

captures to eliminate the effects of the previous task. The 
mental arithmetic tasks given to the participants were 
divided into three levels. For the easiest task, they were 
asked to perform multiplication with two single-digit 
numbers. For the moderate level task, they were asked to 
perform multiplication with one double-digit number and 
one single-digit number. For the most difficult task, they 
were asked to perform multiplication with two double-
digit numbers.  

 During the video capturing process, the subjects 
were instructed to perform each task while looking 
straight at the camera and keep their eyes open as much 
as possible so that we could record blink and pupil 
information accurately. To subjectively evaluate the 
degree of stress experienced by the test subject in each 
task, a post-evaluation was performed using the State-
Trait Anxiety Inventory (STAI) questionnaire, which 
makes it possible to evaluate the anxiety state a subject 
feels transiently during a specific scene (such as during 
the execution of a stress task).  

5. Results 

In the present study, we compared classification 
accuracies by using features obtained from facial videos, 
which were combined for each biological signal (for 
example, pulse only, blink only, pulse and blink, all 
biosignals) and then performed multiple regression 
analyses for each combination. Five features that were 
selected based on Pearson's product-moment correlation 
coefficient for each combination of biological signals 
were used for the stress estimations. We also performed 
cross-validation by the leave-one-out method to verify the 
stress estimation accuracy.  

To estimate stress levels, we created a model formula 
by performing multiple regression analysis on teacher 
data and then calculated a predictive label value by 
inputting the test data. A feature of the multiple regression 
analysis estimation method is that we can calculate the 
estimation value as a constant value, which means that it 



 

 

may be possible to estimate a change in a stress state time-
series in the future.  

As an indicator of classification accuracy, we compare 
the average value of the difference between the correct 
label and the prediction value by the root mean square 
error (RMSE). Specifically, we express the correct label 
by discretely assigning numerical values to each state 
where the video was taken, as shown with red letters in 
Fig. 8. Equation (4) expresses the calculation formula of 
the RMSE for the correct answer label and the predicted 
value. 
 

 

In this equation, 𝑁  presents the number of data, 𝑦𝑖 
presents the prediction value, and 𝑦𝑖̂ refers to the correct 
label value. A lower RMSE value indicates a more 
accurate estimation. 

Figure 11 shows the RMSE for each combination of 
biometric information. We also compared the coefficient 
of determination of the multiple regression analysis 
performed using all data. The coefficient of determination 
is an index indicating the goodness of fit of the model 
formula to the data. It is considered that the higher the 
coefficient is, the better the model fits the data.  

Figure 12 shows the coefficient for each biometric 
information combination. From Figs. 11 and 12, we found 
that estimation accuracy improved as the number of 
biological information indicators used increased and that 
the estimation accuracy was maximized by combining 
information on pulse, blinking rate, and pupil dilation 
values. 

Table 1 shows the feature values selected by the 
combination using all of the biological information 
collected in this study, and the effectiveness of 
multimodal use of biometric information in stress 
estimations. 

It is worth noting that 𝐿𝐹/𝐻𝐹, which is known to be 
an effective index for stress estimation, was not selected 
as a feature. We believe that factors other than the stress 
task, including the environmental load imposed by taking 
video footage in a dark room while illuminating the test 
subject’s face with a bright light, and the long-term stress 
associated with the daily mental state of the test subject, 
should also be considered. In order to eliminate the effects 
of these factors, the following countermeasures can be 
considered.  

The environmental stress imposed during the video 
captures in this study can be prevented by providing 
sufficient time for the test subject to adapt to the 
environment before conducting the measurements. We 
also believe that long-term stress can be mitigated by 
providing time before taking measurements in the same  

Feature values Biological information 𝒔𝒕𝒅𝑯𝑹 Pulse 𝒔𝒕𝒅𝑹𝑹𝑰 Pulse 𝑬𝑩_𝒏𝒖𝒎𝒆𝒄𝒑 Blink 𝑬𝒚𝒆_𝑪𝒍𝒐𝒔𝒆𝒅_𝑻𝒊𝒎𝒆 Blink 𝒎𝒊𝒏𝑷𝒖𝒑𝒊𝒍 Pupil 
 

Table 1. Feature values selected by the combination 

using all biological information. 

 

 

 

way as with environmental factors. However, it would be 
difficult to completely eliminate the stress effects caused 
by the experiment setting.  

Looking at the feature value changes between the 
states, we can see a significant difference between the 
resting state and the stress task, especially in the blinking 
information such as 𝐸𝐵_𝑛𝑢𝑚𝑎𝑙𝑙. Since this may provide 
a useful index for determining such short-term stress, it 
will be necessary to conduct further experiments in the 
future for clarification purposes. 

6. Conclusion 

In this paper, we proposed a method for acquiring three 
types of biological information from captured RGB facial 
video footage and used that data to estimate stress levels. 
Through experiments in which we combined these 
multiple biometric information types, we confirmed that 
the stress estimation accuracy was improved.  

In future studies, by applying appropriate stress to the test 

 RMSE = √1𝑁 ∑(𝑦𝑖 − 𝑦𝑖̂)2𝑁
𝑖=1  (4) 

 

Figure 11. RMSE for each combination of biometric 

information. 

 

Figure 12. Coefficient for each combination of biometric 

information. 



 

 

subjects, we will perform measurements to verify the 
effectiveness of this method. We will also consider 
applying this method to more complex stress situations. 
Additionally, in order to analyze pupil information in 
more detail, such as we currently do with pulse 
waveforms, it will be necessary to consider methods for 
analyzing pupil changes. 
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