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Abstract

It is well established that many datasets used for com-

puter vision tasks are not representative and may be biased.

The result of this is that evaluation metrics may not reflect

real-world performance and might expose some groups (of-

ten minorities) to greater risks than others. Imaging pho-

toplethysmography is a set of techniques that enables non-

contact measurement of vital signs using imaging devices.

While these methods hold great promise for low-cost and

scalable physiological monitoring, it is important that per-

formance is characterized accurately over diverse popula-

tions. We perform a meta-analysis across three datasets,

including 73 people and over 400 videos featuring a broad

range of skin types to study how skin types and gender af-

fect the measurements. While heart rate measurement can

be performed on all skin types under certain conditions, we

find that average performance drops significantly for the

darkest skin type. We also observe a slight drop in the per-

formance for females. We compare supervised and unsuper-

vised learning algorithms and find that skin type does not

impact all methods equally. The imaging photoplethysmog-

raphy community should devote greater efforts to address-

ing these disparities and collecting representative datasets.

1. Introduction

There are inherent challenges with machine systems that

rely on learning complex relationships from data, whether

in a supervised or unsupervised manner. It is often diffi-

cult to be sure about how the resulting model will behave in

practice. Specifically, regarding demographics, there is con-

cern over differences in how algorithms perform on people

from some groups compared to others [5]. Biases can be

introduced in several parts of the model development pro-

cess. If datasets are biased it can mean that performance

is different and/or not carefully characterized across dif-

ferent groups [6, 7]. This is especially problematic if it

Figure 1. Characterizing the performance of computer vision al-

gorithms is important to ensure that some demographic groups are

not exposed to greater risk. We perform a meta-analysis of the

impact of skin type on imaging photoplethysmography measure-

ment. The examples shown illustrate that lighter skin types are

associated with higher blood volume pulse signal-to-noise ratios.

The red line indicates the heart rate measured via a contact sensor.

leads to unjustified over-confidence in the technology. The

data sources that provide training and testing examples in

computer vision often have inherent biases [6, 8] as data

from affluent, well-educated and over-represented popula-

tions are easier to collect. In recently published work, per-

formance of facial gender classification algorithms has been

shown to be worse for women and people with darker skin

types [6, 7, 9]. Another study found that face detection

performance suffered similarly and that the gender of peo-

ple from East Asian countries was also more likely to be

classified incorrectly [8]. Improving the performance of

machine-learned classifiers is virtuous [10, 8]. However, an
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Manuscript N M/F Skin Types Metrics Results

Fallow et al.

(2013) [1]

23 11 / 12 I/II-8, III-5, IV-4, V-6 BVP SNR BVP SNR lowest for the dark-

est skin types.

Wang et

al.(2015) [2]

15 N.R. I/II-5, III-5, IV/V-5 BVP SNR, ρ,

AUC

BVP SNR lowest for the dark-

est skin types. ρ comparable.

No stats test performed.

Shao et al.

(2016) [3]

23 15 / 8 II to V - Dist. unclear BVP SNR BVP SNR lowest for the dark-

est skin types.

Addison et al.

(2018) [4]

10 5 / 5 I-2, II-2, III-2, IV-2, V-1, VI-1 HR bias,

RMSD, ρ

Errors highest for the darkest

skin types. No statistical tests

performed.

Ours (2020) 83 45 / 38 I-3, II-25, III-24, IV-22, V-7, VI-3 BVP SNR,

MAE, RMSE,

ρ

Performance of supervised and

unsupervised iPPG algorithms

drops significantly for skin

types V and VI.

Table 1. A summary of imaging PPG results by skin type from four previous studies and our meta-analysis. All studies have found their

chosen metrics suffer on subjects with darker skin types. By performing a meta analysis we are able to analyze more than three times the

number of subjects than any of the previous studies and perform statistical tests on the distributions of these results.

important first step is often becoming aware of the biases

and why they occur ( “fairness through awareness”) [11].

Imaging photoplethysmography (iPPG) is the name

given to a set of techniques [12] for measuring the blood

volume pulse via light reflected from the skin using imag-

ing devices (e.g., a digital camera) [13, 14]. These methods

have the potential to enable low-cost measurement of im-

portant vital signs, including: heart rate [15], blood oxy-

genation [16], respiration rate [17] and stress (as mea-

sured by changes in sympathetic nervous system activ-

ity) [18, 19]. Furthermore, even subtle dynamics of the

morphology of the iPPG signal can be measured [18] -

derivative metrics which have been linked to blood pres-

sure [20, 21] and could be helpful in assessing the impact

of chronic illnesses, such as hypertension, and the risk of

mortality that come with those conditions.

Given that iPPG is an optical technique that relies on

measuring light reflected from the skin it is natural to as-

sume that skin type would influence the signal-to-noise ratio

(SNR) and indeed several studies have found this to be the

case [2, 4, 3, 1, 22]. A larger melanin concentration in peo-

ple with darker skin absorbs more light, thus the intensity of

light returning to the camera is lower and the iPPG signal

weaker. For this work we use the Fitzpatrick Scale [23] for

quantifying skin types, as this is the most commonly used.

It has six skin type categories from I (lightest) to VI (dark-

est). With respect to gender there are less obvious reasons

why one might hypothesize a difference in performance;

however, women tend to have higher average resting heart

rates than men [24]. One hypothesis might be that iPPG

algorithms tuned on populations of mostly men may per-

form worse on videos of women (if they assume the heart

rate should be present in a specific, lower, frequency range).

Appearance differences between men and women including

facial hair and the use of cosmetics [25], both of which can

block light entering and leaving the skin, might impact the

results too.

Only a few papers have reported iPPG results over differ-

ent skin types [2, 4, 3, 1, 22] and all of these did so on their

own private datasets which were limited in the number of

subjects (in all cases 23 people or fewer). Due to the small

number of subjects and lack of diversity most were not able

to evaluate performance on all of the six Fitzpatrick skin

types and to our knowledge none included a comparison

across genders. To help address these gaps in the literature

for this very important issue we perform a meta-analysis

of results across three datasets and find that the blood vol-

ume pulse signal-to-noise ratio (BVP SNR) and the accu-

racy of heart rate measurement drop significantly for the

darkest skin types (V an VI on the Fitzpatrick scale). We

compare supervised and unsupervised learning algorithms

and find that some algorithms are more robust to skin type

parameters than others.

2. Representation in Computer Vision Datasets

Biases can occur for many reasons. “Selection bias” is

related to the tendency for certain classes of data to be in-

cluded in datasets in the first place. “Capture bias” is related

to how the data are acquired and may be influenced by the

collectors’ preferences (e.g. in images of people with cer-

tain skin types or genders, etc.) and data collection settings.

“Negative set bias” is related to the examples in the dataset

which are supposed to represent the “rest of the world” [29]

as negative instances of certain classes. In this paper, the



Table 2. Fitzpatrick skin type and gender distribution in three datasets (MMSE-HR [26], AFRL [27], MR-NIRP [28]). The number of

subjects (and videos) is shown alongside example frames that illustrate the differences between skin types.

Fitzpatrick Skin Types Gender

Data I II III IV V VI Female Male Total

[26] 0 / 0 8 / 22 11 / 26 18 / 44 2 / 6 2 / 4 23 / 64 17 / 38 40 / 102

[27] 1 / 12 13 / 156 10 / 120 1 / 12 0 / 0 0 / 0 8 / 96 17 / 204 25 / 300

[28] 0 / 0 2 / 3 1 / 2 1 / 2 4 / 8 0 / 0 2 / 4 6 / 11 8 / 15

Total 1 / 12 23 / 181 22 / 148 20 / 58 6 / 14 2 / 4 33 / 164 40 / 253 73 / 417

“capture bias” is the most relevant to our discussion as we

consider the performance of iPPG methods on typically un-

derrepresented groups.

For the broader context in computer vision, let us take

several benchmark datasets used for facial analysis gen-

erally. Almost 50% of the people featured in the widely

used MS-CELEB-1M dataset [30] are from North Amer-

ica and Western Europe, and over 75% are men. The de-

mographic make up of these countries is predominantly

lighter skin types.1 Another dataset of faces, IMDB-

WIKI [31], features 59.3% men and Americans are hugely

over-represented (34.5%). Boulimwini et al. [6] found that

the IARPA Janus Benchmark A (IJB-A) [32] contained only

7.80% of faces with skin types V or VI and again three-

quarters of the participants were male. The datasets typi-

cally used for iPPG analyses (AFRL [27], MAHNOB [33],

MMSE-HR [26] and VIPL [34]) have similar problems and

have many fewer subjects. Thus, any one dataset may only

have a few skin types represented and the distribution is

usually biases towards types II and III. Moreover, because

the iPPG is such a subtle intensity signal, it is easily cor-

rupted by various sources of noise, including head motion,

uncontrolled ambient illumination [28, 35, 22] and video

quality [36, 37]. Therefore, it may be difficult to decou-

ple the detrimental effects of motion and illumination noise

on the quality of the iPPG signals from the effects of the

demographics of the subjects in different datasets. Some

datasets which contain more subjects of darker skin types

may also contain different types of motion noise or be more

compressed, leading to worse performance. These possible

confounding sources of noise make it challenging to accu-

rately characterize the effects of skin types on iPPG signal

quality with a lack of sufficiently large and diverse publicly

available datasets. Performing a meta-analysis helps us to

increase the sample size in each skin type category and per-

form more robust statistical tests.

1http://data.un.org/

3. Imaging Photoplethysmography

Over the past 15 years iPPG has become an estab-

lished research domain with applications in infant moni-

toring [38], telemedicine and affective computing [39]. As

this technology begins to be deployed in real-world applica-

tions, it is imperative that the performance is carefully char-

acterized. Table 1 provides a summary of research in which

skin type analysis was performed to some extent. Fallow et

al. [1] performed an analysis of pulse signal strength using

a contact PPG device. Grouping the results into four cate-

gories (I/II, III, IV, V) they found that people with skin type

V showed significantly lower BVP modulation. Wang et

al. [2] performed a comparison of unsupervised iPPG meth-

ods and grouped the skin types of the 15 participants into

three categories (I/II, III and IV/V). Again, they found that

BVP SNR was lowest for the IV/V skin type group. Shao et

al. [3] did not group skin type categories but only had sub-

jects from type II to V (i.e., not the full range of skin types)

again finding BVP SNR was lower in darker skin types. To

our knowledge the only prior work to report results on sub-

jects of all skin types is that of Addison et al. [4]. Of the

10 subjects in their study two were of each of the seven

skin type categories, with the exception of categories V and

VI that only had one subject. As with the other studies, they

found that the performance dropped on subjects in skin type

categories V and VI.

4. Experiments

4.1. Data

We perform a meta-analysis of three datasets to quan-

tify how the iPPG signals are affected by different skin

types and gender. Table 2 shows a summary of these three

datasets and the distribution of the subjects with different

skin types and genders. Examples of the video frames from

the three datasets used are shown in Figure 2. In total we

considered 417 videos of 73 subjects, featuring subjects

from all skin type categories.

MMSE-HR [26] 102 videos of 40 participants were



Figure 2. Examples of video frames from datasets used to evaluate the effects of skin types: (a)AFRL[27], (b) MMSE-HR [26], (c)

MR-NIRP (RGB) [28].

recorded at 25 frames per second (fps) and 1040x1392 pixel

resolution during spontaneous emotion elicitation experi-

ments. A gold-standard contact blood pressure wave was

measured at 1000 fps. We computed heart rate estimates as

the inverse of the time interval between the detected peaks

of the blood pressure wave.

AFRL [27] 12 videos of 25 subjects were recorded at

120 fps at 658x492 pixel resolution during controlled head

rotation tasks of varying speed of the motion of the head.

The camera used was a color Scout scA640-120gc GigE-

standard capturing 8-bit images. The six experiments in-

volved the following motion tasks: 1) sitting still and rest-

ing the chin on a headrest, 2) sitting still without the head-

rests to allow for small natural head motion, 3) moving the

head horizontally at a speed of 10 degrees/second, 4) 20 de-

grees/second, 5) 30 degrees/second, 6) reorienting the head

randomly once every second to one of the nine predefined

locations in a semicircle in front of the participant. Fin-

gertip reflectance photoplethysmograms and electrocardio-

grams were recorded as gold-standard signals. We used the

provided electrocardiogram signals to compute the final HR

estimation errors.

MR-NIRP (RGB and NIR) [28] 15 videos of eight sub-

jects were recorded, once during a stationary task, and once

during a motion task involving talking and rigidly mov-

ing the head. All videos were simultaneously recorded

with RGB (FLIR Blackfly BFLY-U3-23S6C-C) and near-

infrared (NIR, Point Grey Grasshopper GS3-U3-41C6NIR-

C) cameras. Raw images were captured with 640×640 res-

olution (10-bit depth) at 30 fps with fixed exposure, gamma

correction turned off and gain set to zero. The ground-truth

PPG waveform was recorded using a CMS 50D+ finger

pulse oximeter at 60 fps. In this work we are only con-

sidering RGB camera recordings and therefore we do not

use the NIR videos.

4.2. Methods

We do not necessarily expect all iPPG approaches to be

impacted equally be skin type. We compare the perfor-

mance of simply spatially averaging and filtering the green

channel (GREEN [14]) camera signal with three state-of-

the-art unsupervised methods (ICA [15], CHROM [35],

POS [22]) which use heuristic physiological models for

recovering the BVP, and the current state-of-the-art deep

learning approach based on convolutional attention net-

works (CAN) [40]. Open source implementations of these

approaches can be found in [41].

We trained the CAN model on the largest of the three

datasets (AFRL [27]) using the provided contact pulse

oximeter recordings as training labels. We trained the

models separately on each of the six motion tasks from

the AFRL dataset with a participant-independent cross-

validation, leaving out 20% of the participants in each val-

idation split. The MMSE-HR and MR-NIRP datasets are

much smaller than AFRL and are not suited for training

the complex CAN model. Therefore, for these datasets we

used the model trained on AFRL motion Task 2. The par-

ticipants in MMSE-HR and MR-NIRP did not move their

heads out-of-plane, but had motions caused by facial ex-

pressions and talking. Therefore, Task 2 from the AFRL

dataset was deemed the most similar to the motion present

in the MMSE-HR and MR-NIRP datasets. To improve

the generalizability to the new datasets we used a subject-

dependent cross-validation to maximize the diversity of the

participants that the CAN model was trained on, using the

last 4 minutes of each video for training and the first 1

minute for testing.

In all cases the recovered BVP signal was filtered using

a sixth-order Butterworth bandpass filter with cut-off fre-

quencies of 0.7 and 2.5 Hz. The BVP signals were also pre-

processed for each method with an AC/DC normalization

by subtracting the pixel norm and dividing by the pixel stan-

dard deviation. The heart rate was estimated by computing

the Fast Fourier Transforms (FFTs) of the estimated BVP

signals and finding the frequency with the largest power

spectrum energy in the range 0.7 and 2.5 Hz.



Table 3. Blood volume pulse signal-to-noise ratio (in dB) for different iPPG methods on subjects with skin types I to VI.
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CAN CHROM ICA POS GREEN

Fitzpatrick Skin Types

Method I II III IV V VI

CAN [40] 2.48 ± 2.24 3.54 ± 0.58 3.04 ± 0.70 4.57 ± 0.90 -0.02 ± 3.00 -10.35 ± 0.91

CHROM [35] -0.16 ± 0.33 0.38 ± 0.09 0.37 ± 0.11 1.42 ± 0.24 1.06 ± 0.99 -4.34 ± 1.75

ICA [15] 0.12 ± 0.45 0.68 ± 0.12 0.43 ± 0.16 1.46 ± 0.41 2.39 ± 1.21 -5.00 ± 1.81

POS [22] 0.05 ± 0.36 0.70 ± 0.12 1.07 ± 0.15 1.49 ± 0.32 1.76 ± 1.13 -5.58 ± 1.55

GREEN [14] -6.01 ± 0.23 -4.58 ± 0.08 -5.09 ± 0.1 -6.14 ± 0.27 -5.09 ± 0.76 -9.64 ± 1.65

5. Results

Comparison Across Skin Types. First, we perform

a meta-analysis of the BVP SNR across the three datasets

by skin type. Table 3 shows the SNR for each skin type.

A bar chart reflects the numbers in the table. While the

performance is relatively similar for skin types I to V, the

BVP SNR drops dramatically for skin type VI. Therefore,

while darker skin types lead to BVP signals with weaker

amplitudes and are more prone to errors induced by differ-

ent sources of noise, this most dramatically affects skin type

VI and has only a modest effect on other skin types.

In addition to SNR, we compared the performance of

three other error measures (heart rate MAE, RMSE, cor-

relation). All of these measures capture the performance of

heart rate estimation from the BVP. We show this compar-

ison for the CHROM method for different skin types (the

trends in results were similar for all methods). The effect

of the reduction in BVP SNR is a severe drop in the perfor-

mance of HR estimates (see Table 4), the MAE and RMSE

increase three-fold for skin type category VI compared to

category V.

Comparison Across Genders. The differences in the

results for men and women are much less dramatic than the

differences across skin types. Overall, the videos of females

had marginally lower BVP SNR (men: 0.80, women: -0.35)

and higher HR MAE (men: 3.78, women: 4.49) (see Ta-

ble 5). All four metrics MAE, RMSE, SNR and ρ were

slightly worse on videos of females than males (see Ta-

ble 6).

Table 4. HR MAE, RMSE and ρ for the CHROM method on sub-

jects with skin types I to VI.

Fitzpatrick Skin Types

I II III IV V VI

MAE 3.42 4.09 4.23 2.14 3.23 13.58

RMSE 6.69 9.86 10.03 5.21 6.41 18.98

Corr., ρ 0.31 0.71 0.73 0.81 0.80 0.76

5.1. Comparison of Methods

The GREEN channel method performs poorly across all

skin types mainly because it is not very robust to head mo-

tions or facial expressions. Each of the skin type categories

had videos with significant motion which likely caused

large errors in the GREEN method signal estimates. It is

difficult to conclude much about how skin type affects this

method as all the results are poor.

The supervised neural network (CAN) model performed

significantly better than all unsupervised methods on skin

types II to IV. These are the skin types which are pre-

dominantly present in the AFRL dataset that the CAN was

trained on. On darker skin types V and VI all methods,

including CAN perform very poorly, with CAN perform-

ing worse than all of the unsupervised methods. Therefore,

even though deep learning models may be able to learn to

robustly recover the BVP signals in diverse noise scenarios

and could become invariant to darker skin types, a model

that was not trained on such videos may perform signifi-

cantly worse. This is a sign that the supervised model over-



Table 5. Blood volume pulse signal-to-noise ratio (in db) for dif-

ferent iPPG methods on men and women.

CAN CHROM ICA POS GREEN
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Gender

Method Female Male

CAN [40] 2.78 ± 0.62 3.55 ± 0.51

CHROM [35] -0.35 ± 0.12 0.80 ± 0.08

ICA [15] -0.43 ± 0.15 1.14 ± 0.11

POS [22] -0.43 ± 0.15 1.51 ± 0.10

GREEN [14] -5.55 ± 0.10 -4.63 ± 0.08

Table 6. HR MAE, RMSE and ρ for the CHROM method on men

and women.

Gender

Female Male

MAE 4.49 3.78

RMSE 10.44 9.17

Corr., ρ 0.63 0.76

fits to the training corpus. There is some hope that with

more data of participants with skin type VI this problem

could be partially rectified.

The unsupervised methods also perform best on interme-

diate skin types (III and IV) but performance drops for all

methods (CHROM, ICA, POS) on type VI. The CHROM

method seems to show the most robust (similar perfor-

mance) across all skin types, followed by the POS method.

6. Discussion

For this meta-analysis we combined three datasets, each

with different participants, behaviors (tasks) and captured

in different conditions (e.g., hardware and lighting condi-

tions). We find that skin types impact iPPG measurement,

but most significantly for the darkest skin type (VI). Per-

formance differences across all other skin types were only

small.

Other factors (including motion) have a significant im-

pact on the results, perhaps even more so than skin type.

Even though the motion tasks within each dataset for dif-

ferent videos and participants were similar, it is possible

that some videos have larger and more challenging motion

than others in the same skin type category. This is partly

captured by the relatively large error-bars, especially for

skin types in which the number of subjects is comparatively

small (e.g., I and VI).

There are several limitations that should be acknowl-

edged with these analyses. First, even after combining three

datasets, we only have one participant of skin type I and two

of skin type VI, making it difficult to draw highly general-

izable conclusions. It is crucial to continue to study this

issue as larger and more diverse datasets become publicly

available. Second, a similar problem of worse performance

on darker skin types might also occur with contact devices,

as shown by Fallow et al. [1]. BVP signals with lower am-

plitude caused by darker skin types could be more prone to

error artifacts. This could possibly lead to erroneous gold-

standard measurements, making it harder to validate video-

based iPPG methods.

Using NIR recordings could be a potential solution, as

NIR is robust to darker skin types because the NIR light

penetrates deeper into the skin. Currently, there is no public

dataset with NIR recordings and ground truth PPG signals

with a sufficiently large number and diverse participants to

validate this claim. Furthermore, the BVP SNR is weaker

in general in the NIR range compared to RGB [28], making

it less motion-robust.

7. Conclusions

It is important that machine vision systems, especially

those that may be used in medical or health related appli-

cations, are well validated and performance is characterized

to ensure that certain demographic groups are not exposed

to greater risks than others. To our knowledge, this is the

first meta-analysis of the impact of skin type on the per-

formance of iPPG systems. We find that the performance

of heart rate estimation from video is significantly worse

for people with skin types in category VI of the Fitzpatrick

scale. Across skin types I to V performance is relatively sta-

ble. We find that there are slight differences in performance

across genders with videos of females tending to have lower

accuracy, but the differences are not significant. The com-

munity should focus greater efforts on developing methods

that are more robust to differences in skin types. To this end,

datasets with better representation of all skin types would be

very helpful.
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