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Abstract

We investigate the regulation of human brain arousal in
the central nervous system and its synchronization with the
autonomic nervous system affecting the facial dynamics and
its behavioral gestalt. A major focus is made on the sens-
ing observable during natural human eye to eye communi-
cation. Although the inner state of the autopoietic system
is deterministic, its outer facial behavioral component non-
deterministic. Beside the introduction of general validity of
the classical empirical interpretation of the vigilance con-
tinuum during open eyes, we show that the facial behavior
can be used as suitable surrogate measurement for specific
states of mind. As a consequence we predict brainwaves
from face videos formulated as inverse problem of the un-
derlying stochastic process. Finally, we discuss the impact
and range of application field.

1. Introduction

Based on the concept of association of entropy produc-
tion in living systems, it is generally accepted that an in-
crease in order within an organism is compensated for by
an increase in disorder outside this organism [31]. Although
it seems that the dynamics of life are at odds with the sec-
ond law of thermodynamics, which states that the entropy
of an isolated system can only increase, this paradox is ap-
parently resolved by the open nature of living systems. This
basically states that those kind of systems can exchange ei-
ther heat or matter or both with their environment. In or-
der to sustain vital processes, living organisms continuously
consume energy, produces heat and entropy via metabolic
pathways and transfers entropy to the environment through
various waste channels to maintain a permanent thermal bi-
ological state. As aresult, the human body can be described
as an open thermodynamic system. Since entropy and its re-
lated variables vary with time, the dynamic of entropy typi-
cally describes the human physiological and developmental
processes in this context. This allows to measure the var-
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Figure 1. Brain arousal regulation of the vigilance continuum as
synopsis of commonly used viso-morphologically defined classifi-
cations of the EEG-stages occurring between relaxed wakefulness
during closed eyes and deep sleep. The vigilance is measured as
the connectivity in terms of EEG alpha waves between the visual
cortex and the frontal lobe. The stages A1l to B2 are defined by the
seminal works of Bente and Roth and are further investigated by
Ulrich, Olbrich and Hegerl [5, 15, 20, 25, 33, 34]. A decrease in
vigilance can lead to two different behaviors, 1) the organism de-
cides to go to sleep and the vigilance reverts to sleep stages or, 2)
the organism exhibits auto-stabilization behavior to counter regu-
late their vigilance level.

ious states of a living system, for example differentiating
between states of health and disease.

The challenge, however, is to understand how these human
individual processes are involved into this physical energy
regulation. In human machine interaction the role of the
central and vegetative nervous system is usually not observ-
able. However, these inner states are important mandatory
factors building sophisticated advanced machines able to re-
produce anthropomorphic associative abilities. Here, mind
and emotions are properties which machines are not able
to understand and to reproduce reasonable well yet. In this
study, we attempt to investigate the basic principle of the
thermodynamic regulation during sensing observable dur-
ing natural human eye to eye communication. From the the-
oretical background, we form the mathematical model and
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Figure 2. The physiological and behavioral feature time series of an user over the entire recording duration of approximately three hours.
The first row represents the dominant occipital alpha power as histogram count. At the beginning, in the middle and at the end we see
periods of higher alertness. These periods exactly correspond to the exhausting reaction time tests performed for measuring alertness and

sustained attention of each individual user. The second row represents the Photoplethysmography Imaging [21, 22,

] based heart rate

variability as low frequency/ high frequency ratio. Again, during the periods corresponding to the reaction time tests the activity of the
autonomic nervous system increases significantly like the EEG vigilance. By comparing the dynamics of the facial features in the last
row with the physiological brain arousal and the autonomic nervous system there’s again some similarity. In the multi-scale entropy [1, 9]
graph the facial features produce plateaus during the reaction time tests. Particular they seem to be correlated.

we show how learning can be interpreted with linear com-
plexity. In substantial experiments we verify the hypothesis
and finally predict brainwaves from face videos.

2. The Vigilance

If we summarize under vigilance such different terms,
like alertness, sustained attention and selective attention, we
are in fundamental danger of a categorical post-hoc fallacy.
Sustained and selective attention are certain measurable per-
formances, resulting from the interaction between a living
organism and its environment. Therefore these terms refer
to the psychology and include all kinds of behavior, out-
ward as well as inward directed. Alertness with its tonic
or phasic part does not refer to some concrete performance.
It refers to the mechanism enabling a certain performance.
This is part of the physiology domain of organismic func-
tions which has to be strictly distinguished from perfor-
mances. We differentiate between the physiological and
psychological phenomena because both phenomena are nei-
ther caused by physiological phenomena nor reducible to

them. The term vigilance dates back to the seminal work of
Head [14]. In its origin Head’s vigilance is neither a func-
tion nor a performance. It has more a semantic meaning
like Bateson’s idea of explanatory principles [4] and these
principles are synonymous to Carnap’s ideas of a theoret-
ical construct [7], finally Kant’s metaphysical Regulative
Ideen [17] as foundation of the transcendental dialectic [33].
We particular emphasize that Head’s vigilance is primarily
useful only for scientists, who are interested in the real-
ity behind the empirical phenomena. If someone assumes
the strictly mainstream position, accepting objectively mea-
surable facts by senses and introspection, Head’s vigilance
appears nonsensical [32]. Electroencephalography (EEG)
changes of vigilance by a complex spatio-temporal pro-
cess were first pointed out by Loomis and Davis[10, 18].
The authors distinguished two EEG stages between rest-
ing wakefulness and sleep. Half a century ago, the prac-
tical usefulness was further investigated by Bente and Roth
[5, 25]. They defined the stages into substages (see Figure
1). The first machine learning approach for the classifica-
tion of these stages is given by the work of Ulrich, Olbrich



and Hegerl [15, 20, 33, 34]. The vigilance is measured as
the connectivity in terms of EEG alpha waves between the
visual cortex and the frontal lobe. In this research the term
vigilance is used as a multivariate construct which is inves-
tigated in the domain of observable behavior.

3. The Model Space

The primary goal is to infer from a given initial facial
dynamics to the target brain arousal evolution describing the
state of mind. This can be expressed as an inverse problem

0 = G(M) (1)

where the operator GG describes the relation between the ob-
servation O and the model M. The problem reduced to esti-
mating from an observed random process x another related
process y. The two processes are related by a probabilistic
model p(z,y) which is unknown. The solution is given by
the unconstrained optimization problem

ar)g(rginE[lly — f()]1?]. 2)

If p(y) and p(x|y) are Gaussian and E[z|y] is linear in y,
the solution is linear. For zero mean y and z the solution
yields to the conditional mean estimate

E[y\a:] =wlx 3)

where
w = argmin E[(y — wa)Q] 4)
w= (E[zz"]) " E[zy] )

In case z is not linearly related to y or y is not Gaussian
distributed, the conditional estimate of y given z is nonlin-
ear. The computation of the nonlinear conditional mean
estimate leads to over-fitted or sub-optimal solutions, since
there are no convergence guarantees or the regularized
estimation yields to restricted distributions. According to
the Hardamand criterions the problem is ill-posed [12].

If we assume the model function f(x,) with a known
input 2, € R? to be a realization of a prior represented by
a Gaussian random process

f~GP0,k(x,z")) (6)
and the observations corrupted by Gaussian noise
yr = f(ar) + e (N

with g, ~ N(0,02). For a given training data set D =
{(zk,yx)|k = 1,2,...,n}, we are able to find the closed
form solution for the prediction [24]

p(f ()| D) = N(E[f (2.)], V[f (2)]) ®

with
Ef(z)] =kl (K +021)" 'y 9)

and
VIf(zs)] = k(@w, 7)) — kD (K + 02)) k. (10)

Usually the hyperparameters of the covariance function
k(z,x') and the noise variance o2 have to be learnt by
maximizing the marginal likelihood function using gradi-
ent descent methods. However, due to the recent progress
in the interpretation of stochastic processes, a more conve-
nient way of constructing the Gaussian process is given as
solution to the following nth order linear stochastic differ-
ential equation [16, 28]

d" f(t) df(t)
(07% dtn + ...+ ay F

+aof(t) =w(t), (1)

with w(t) a zero-mean Gaussian white noise process. Ac-
cording to Wiener’s spectral factorization [36] the Fourier
transform of the differential equation yields to

1
an (iw)™ + ... + a1 (iw) + agp

G(iw)

F(iw) = (

YW (iw).  (12)

Essentially this is a rational function and the causal trans-
fer function. The form of an all-pole filter. From the
Wiener-Khinchin theorem we know that a stationary covari-
ance function is given by the inverse Fourier transform of
the corresponding spectral density [8, 35]

1
C(t)=F'S(w)] = %/S(w) exp(iwt)dw,  (13)
where the spectral density of the process is given by
S(w) = gl Giw)|” (14)
with g. = |W (iw)|? the spectral density of the white noise

process. Converting the transfer function to the correspond-
ing state space formulation results in
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(15)
and
ye=(1 0 ... 0)f(t)+ex, (16)
H

with the feedback matrix F, the noise effect matrix L and the
observation matrix H. This kind of inference problem can be



solved with linear complexity using the traditional Kalman
filtering. Here, the optimization of the hyperparameters is
solved implicitly. For some standard covariance functions
the approximation of the transfer function is given by its
Taylor series expansion [16].

4. Experiments

We performed substantial experiments under laboratory
conditions in order to determine the statistical relationship
between the brain arousal, the cardiovascular activity and
the facial behavioral dynamics. Here, we focused on the
physiological continuous measurement of vigilance by EEG
sensors positioned on the frontal lobe and the visual cor-
tex. The facial behavioral dynamics were monitored by a
common RGB camera based facial alignment [26, 37]. The
cardiovascular activity by the camera based Photoplethys-
mography Imaging (PPGI) [21, 22, 23]. As standard psy-
chological performance-based surrogate measurement for
the brain arousal dynamics we instructed all user during the
experiments to participate in sustained attention and alert-
ness measurements to enable their maintenance of response
persistence and continuous effort over extended periods of
time [11]. We completed the sensor acquisition by mea-
sure the situational subjective level of sleepiness using the
Karolinska sleepiness scale (KSS) [2]. The completely syn-
chronized recordings were then automatically analyzed to
extract the features for performing the final statistical re-
gression analysis.

Data Collection

Uncompressed video, EEG and reaction-time of 100
users were recorded during the experimental laboratory ses-
sions. Each single sessions consists of a time length of ap-
proximately three hours. The gender balanced population
was selected to fit a normal based age-range between 18
and 65 years old persons. In Figure 3 three younger persons
of the database are shown wearing the EEG sensors and
a headset. All video data was recorded with a 25 frames
per second using an IDS RGB camera. The brain signals
were captured with EEG wet electrodes using a VARIO-
PORT analog to digital converter with a sample rate of 128
Hz. We divided the three hours recording time into different
parts where each user performed different tasks. The two
main parts were selected with a duration about one hour.
In the first part all users played an action sport computer
game and in the second part a train simulator game. Every
five minutes we asked the users via the headset to state their
subjective level of sleepiness on the KSS. Before and after
each game session we instructed the users to perform psy-
chomotor vigilance tasks (PVT) [11] over a time period of
approximately 15 minutes. At the start and end of each PVT
the users additionally stated their KSS score. To guaran-
tee data consistency, a manual pre-preprocessing check was

carried out after each recording. Utilizing recorded time-
stamp markers we were able to segment the different tasks
automatically.

Feature Space

All EEG signals were analysed by standard Fourier
based spectral method. To compensate eye blink artefacts
in the EEG signals we applied a common unsupervised ICA
approach. We selected a sliding time window of 60 sec-
onds with one seconds overlap for the short time Fourier
transform. In order to extract the alpha activity in the corre-
sponding brain regions, we band-pass filtered the frames of
spectral power in the range between 8 and 12 Hz. The EEG
vigilance level is determined based upon the ratio of high
frontal Alpha power and high occipital alpha power. High
occipital alpha power is assumed to reflect vigilance stage
Al alertness states and high frontal alpha power the stage
of transition to more sleepy states during closed eyes (see
Figure 1). In Figure 2 the first row represents the dominant
occipital alpha power as histogram count over the time pe-
riod of the entire recording of an user. At the beginning, in
the middle and at the end we see periods of higher alertness.
These periods exactly correspond to the exhausting reaction
time tests performed for measuring alertness and sustained
attention of each individual user.

For measuring the activity of the autonomic nervous sys-
tem we concentrated on the relationship between the sym-
pathetic and parasympathetic activity. Here, we used the
camera based PPGI method [21, 22, 23] to extract the RR-
interval of the quasi periodic blood volume changes out
of registered facial skin regions [26, 37]. Each obtained
pulse waveform is re-sampled to 256 Hz first. In the next
step a frequency domain based method [3, 29] using the
Lomb-Scargle periodogram [19, 30] is applied to extract
high and low frequency bands out of the RR-traces in order
to determine the heart rate variability. We used the bands
from 0.15 to 0.4 Hz as high frequency (HF) and from 0.04
to 0.15 Hz as low frequency (LF) regions. As activity level
the LF/HF ratio is used. High LF/HF values indicates a
stronger sympathetic activity analog to the fight or flight re-
sponse [6]. In Figure 2 the second row represents the PPGI
LF/HF ratio over the time period of the entire recording of
an user. During the periods corresponding to the reaction
time tests, the activity of the autonomic nervous system in-
creases significantly like the EEG vigilance. This seems to
be correlated.

The facial behavioral dynamics can be represented by sev-
eral different features. We focused on the ocular movements
in terms of eye gaze and eye blink behavior. We dropped all
head pose features since during the experiments all users
are instructed to follow the course of action on the nearby
computer screen. Thus, head pose dynamics will not occur
in a sufficient large manner. Initially the face was captured
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Figure 3. Three images from the data collection. These younger persons are wearing the EEG sensor cap and a headset for experiment

instructions. The camera is positioned below the computer monitor. During the experiments all participants performed several different
tasks like playing computer games and performing reaction time tests. After specific time periods they were asked to provide their

situational subjective sleepiness rating.

by a common face finder. The rough face region is used to
initialize the facial alignment using a cascaded regression
approach [26, 37]. From the set of registered landmarks the
head pose can be determined by either predicting it using
a separately trained pose regressor [37] or fitting a statisti-
cal 3D point distribution model to the target landmarks in
the image plane [27]. Over the set of eye landmarks we
computed the eye lid opening and fitted a 3D geometric eye
model to determine the eye gaze [13]. In Figure 2 the last
row represents the facial behavioral dynamics over the time
period of the entire recording of an user. We employed a
cross entropy analysis to provide robust measures of the
deterministic or stochastic content of the time series (reg-
ularity), as well as the degree of structural richness (com-
plexity), through operations at multiple data scales [!, 9].
By comparing the dynamics of the facial features with the
physiological brain arousal and the autonomic nervous sys-
tem activity we find again some similarity. In the multi-
scale graph the facial features produce plateaus during the
reaction time tests. This gave us a reason to conduct a more
detailed statistical analysis.

Statistical Analysis

To act on the assumption of some correlation between
the activity of the central and autonomic nervous system
and its impact on facial behavioral dynamics, we performed
a detailed statistical analysis of the pre-computed features
described in the previous section. Our primary concern
was to establish whether we are able to reconstruct brain
arousal states using video based facial features and what
feature behavior is forming the basis of the hypothesized
underlying predictive power.

In the first step we computed the correlation between
the dominant EEG occipital alpha power and the PPGI
LF/HF ratio over the entire database. To analyse we calcu-
lated the cumulative distribution function (CDF) of these
correlation values. The corresponding CDF ist visualized in
the following Figure 4. The correlation values are varying

from -0.8 to 0.8. with nearly exactly 50 percent coverage
for all negative correlations and 50 percent coverage for
all positive correlations. The observable anti-correlation
behavior appears to describe the loss of energy transport
via oxygen through the blood flow to the brain in order to
maintain states of hypervigilance. This can be interpreted
as transition to hypovigilance, e.q states of higher sleep
onset or drowsiness. The human body is starting to deac-
tivate the visual cortex and can’t pay attention anymore.
To verify the established brain-heart synchronization, we
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Figure 4. The cumulative distribution function of correlation val-
ues between the dominant EEG occipital alpha power and the
PPGI heart rate variability in terms of LF/HF ratio. A strong cor-
relation versus anti-correlation behavior.

computed the feature behavior of both instances over the
entire range of correlations. We decided to visualize each
feature using a box-plot diagram for each correlation bin.
Since the amount of samples in the absolute correlation
range between 0.5 and 0.8 is rather small, we decided to
assign these feature values to the 0.5 correlation bin. In
Figure 5 the box plot of the dominant EEG occipital alpha
power over the correlation between the PPGI heart rate
variability in terms of LF/HF ratio is visualized. A slightly
trend from positive to negative correlations. The occipital
alpha power increases for higher negative correlations in



contrast to the positive ones. For the range of positive
correlations exists a higher amount of uncertainty. In
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Figure 5. The box plot visualization of the dominant EEG occipital
alpha power over the correlation range between the PPGI heart rate
variability in terms of LF/HF ratio.

Figure 6 the box plot of the PPGI heart rate variability in
terms of LF/HF ratio is visualized. A strong decreasing
trend from positive to negative correlations. The PPGI
LF/HF ratio is higher for positive correlations in contrast
to the negative ones. Again, for the range of positive
correlations there exists a higher amount of uncertainty.
Essentially, for high correlation values the EEG occipital
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Figure 6. The box plot visualization of the PPGI heart rate vari-
ability in terms of LF/HF ratio over the correlation range between
the dominant EEG occipital alpha power.

alpha power is low and the sympathetic activity of the
autonomic nervous system is high. Here, the human body
attempts to preserve the energy supply to the brain in order
to maintain states of higher wakefulness. Once this energy
supply gets regulated by the parasympathetic activity, the
PPGI LF/HF ratio changes to a smaller values. The EEG
occipital alpha power increases shutting down the brain
region of the visual cortex. As a result the human should
feel sleepy and should not be able to pay attention anymore.

This is the state of hypovigilance. Since we monitored the
users subjective sleepiness rating, we decided to verify this
against the KSS scores. Analog to the previous processing
we computed the KSS score behavior over the entire
range of correlations. In Figure 7 the box plot of the KSS
scores as metric for the subjective sleepiness is visualized.
We are able to observe an increasing sleepiness trend
from positive to negative correlations. This acts as strong
indicator for the validity of the previous interpretation of
the vigilance and heart rate variability connection. Indeed,
the human body seems to regulate the vigilance level by
energy support activated through the autonomic nervous
system. In contrast to the classical vigilance interpretation
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Figure 7. The box plot visualization of the subjective level of
sleepiness expressed as KSS score over the correlation range be-
tween the dominant EEG occipital alpha power and the PPGI heart
rate variability in terms of LF/HF ratio.

during closed eyes a high level of EEG alpha power doesn’t
correspond to wakefulness states during open eyes. It does
more reflect the deactivation of the specific brain region
towards the state of sleep onset. In this case the visual
cortex followed by the frontal lobe. Thus, we arrive at the
conclusion that these states noticeable impact the human
performance carried out during the reaction time tests in
our experiments. We computed the reaction time for the
sustained attention and corresponding tap error behavior
for both features over the entire range of correlations
again. In Figure 8 the box plot of the sustained attention
reaction time in seconds is visualized. For higher negative
correlation values the reaction time is larger. In Figure 9
the box plot of the sustained attention tap errors as count
of wrong decision is visualized. There’s an increasing
amount of errors from positive to negative correlation
values observable. As expected, during states of higher
hypovigilance the users aren’t able to maintain attention
anymore as good as during fully wakefulness. In the final
step of the conducted feature analysis we performed the
same procedure for the facial ocular movements in terms of
eye blink and eye gaze dynamics. Since eye behavior can
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Figure 8. The box plot visualization of the sustained attention reac-
tion time in seconds over the correlation range between the domi-
nant EEG occipital alpha power and the PPGI heart rate variability

in terms of LF/HF ratio.
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Figure 9. The box plot visualization of the sustained attention re-
action time errors as wrong decision over the correlation range
between the dominant EEG occipital alpha power and the PPGI
heart rate variability in terms of LF/HF ratio.

be parameterized differently, we decided to compute the
eye blink frequency and the individual duration. The eye
gaze is parameterized by the eye gaze angular displacement
and velocity. We aggregated both instances of the eyes and
their features using a single scale of the multivariate sample
entropy [, 9]. In Figure 10 the box plot of the eye blink en-
tropy is visualized. An increased entropy for high negative
correlation values. This reflects an increase of complexity
which can be interpreted as a loss of deterministic behavior
during states of hypovigilance. We tried to inspect what
exactly happens with the individual eye blink parameters.
We often found an irregular increase of blink frequency and
longer blink duration. In Figure 11 the box plot of the eye
gaze entropy is visualized. We’re able to observe a stronger
change of the entropy values from positive to negative
correlations. This time the entropy decreases towards high
negative correlations with a loss of uncertainty. Unlike the

%1073

blink entropy

Q“J Q‘b\ b:p Q{‘L Q‘\ Q‘Q Q‘\ Q{‘L D"b Qh B“:

, , ( , , correlation
Figure 10. The box plot visualization of the eye blink dynamics as
a single scale of the multivariate sample entropy over the correla-
tion range between the dominant EEG occipital alpha power and

the PPGI heart rate variability in terms of LF/HF ratio.
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Figure 11. The box plot visualization of the eye gaze entropy over
the correlation range between the dominant EEG occipital alpha
power and the PPGI heart rate variability in terms of LF/HF ratio.

blink dynamics, this means an increase of deterministic
behavior like the eyes are staring into space.

In the final experiment we attempted to predict states
of vigilance as well as the common surrogate measure-
ments for the performance based indicators by means of
machine learning. We defined the dominant EEG occipital
alpha power, the KSS score, the PVT reaction time and tap
error as individual target variables. The predictor variables
are selected as the camera based features computed out
of facial regions solely. This pool of predictor variables
includes the PPGI based heart rate variability and the ocular
movements in terms of blink frequency, blink duration, the
eye gaze angular displacement and the eye gaze velocity.
By applying the coarse grained sample entropy approach
[1, 9] over the set of features we obtained the fused
complexity dynamics of the facial skin blood perfusion and
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Figure 12. The box plot visualization of correlation values for the
regression cross-validation against different targets. The predic-
tor variables are based on the camera based features computed out
of facial regions. From left to right: Vigilance corresponds to the
dominant EEG occipital alpha power. Kss corresponds to the situ-
ational subjective level of sleepiness, e.q. KSS score. Error corre-
sponds to the false tap answers during the reaction time tests and
rt corresponds to the measured PVT reaction time.

facial behavior. We solved the inverse problem by applying
the described Kalman filtering approach on state space
representation of the Taylor series approximated squared
exponential covariance function [16]. We performed a
leave-one-out cross validation on the entire dataset of users.
In Figure 12 the box plot of the correlation values for the
regression cross validation is visualized. A decreasing
performance from left to right. In the box plots vigilance
corresponds to the dominant EEG occipital alpha power,
KSS corresponds to the situational subjective level of
sleepiness. Error corresponds to the false tap answers
during the reaction time tests and RT corresponds to the
measured PVT reaction time. To determine the predictive
power of the individual features, we repeated the cross-
validation for different kinds of feature sets. To simulate a
potential application scenario, we selected the KSS score
to predict the user’s sleepiness as target. In Figure 13 the
box plot of the correlation values for the regression cross
validation using the different features against the KSS score
is visualized. Interestingly but not surprised regarding
the anti-correlation behavior presented in Figure 4, the
heart rate variability alone is not able to predict KSS states
reasonable well. However, the ocular dynamics perform
well and benefit from the heart rate variability.

5. Discussion

We studied the regulation of human brain arousal in the
central nervous system and its synchronization with the au-
tonomic nervous system affecting the facial dynamics. We
performed a detailed statistical analysis of the individual
signal behavior and predicted states of vigilance using a
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Figure 13. The box plot visualization of correlation values for
the regression cross-validation using different kinds of features
against the KSS target. From left to right: V1 corresponds to the
PPGI based heart rate variability, the ocular movements in terms of
blink frequency, blink duration, the eye gaze angular displacement
and the eye gaze velocity. V2 corresponds to the ocular move-
ments in terms of blink frequency, blink duration, the eye gaze
angular displacement and the eye gaze velocity. V3 corresponds
to the eye gaze angular displacement and the eye gaze velocity. V4
corresponds to the ocular movements in terms of blink frequency,
blink duration. V5 corresponds to the PPGI based heart rate vari-
ability.

video based surrogate measurement out of facial regions
solely. We demonstrated the possibility to reconstruct brain-
waves directly from face videos. Furthermore, it was shown
the obtained results can also be used to derive other kind of
markers. Sustained attention and sleepiness are only one
of these direct derivatives which have a broad application
field in the transport, control room and marketing sector.
In the medical sector the rigid and labile regulation of the
vigilance reflects a suitable biomarker for the diagnosis of
affective disorders. Particular in this sector, such kind of
markers are the essential requirements for the development
of new therapeutic methods and investigation of new phar-
maceuticals. The proper combination with the emotional
brain activity would pave the way for an entire new interpre-
tation of the dimensional valence-arousal model in affective
computing.
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