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Abstract

We investigate the regulation of human brain arousal in

the central nervous system and its synchronization with the

autonomic nervous system affecting the facial dynamics and

its behavioral gestalt. A major focus is made on the sens-

ing observable during natural human eye to eye communi-

cation. Although the inner state of the autopoietic system

is deterministic, its outer facial behavioral component non-

deterministic. Beside the introduction of general validity of

the classical empirical interpretation of the vigilance con-

tinuum during open eyes, we show that the facial behavior

can be used as suitable surrogate measurement for specific

states of mind. As a consequence we predict brainwaves

from face videos formulated as inverse problem of the un-

derlying stochastic process. Finally, we discuss the impact

and range of application field.

1. Introduction

Based on the concept of association of entropy produc-

tion in living systems, it is generally accepted that an in-

crease in order within an organism is compensated for by

an increase in disorder outside this organism [31]. Although

it seems that the dynamics of life are at odds with the sec-

ond law of thermodynamics, which states that the entropy

of an isolated system can only increase, this paradox is ap-

parently resolved by the open nature of living systems. This

basically states that those kind of systems can exchange ei-

ther heat or matter or both with their environment. In or-

der to sustain vital processes, living organisms continuously

consume energy, produces heat and entropy via metabolic

pathways and transfers entropy to the environment through

various waste channels to maintain a permanent thermal bi-

ological state. As a result, the human body can be described

as an open thermodynamic system. Since entropy and its re-

lated variables vary with time, the dynamic of entropy typi-

cally describes the human physiological and developmental

processes in this context. This allows to measure the var-

Figure 1. Brain arousal regulation of the vigilance continuum as

synopsis of commonly used viso-morphologically defined classifi-

cations of the EEG-stages occurring between relaxed wakefulness

during closed eyes and deep sleep. The vigilance is measured as

the connectivity in terms of EEG alpha waves between the visual

cortex and the frontal lobe. The stages A1 to B2 are defined by the

seminal works of Bente and Roth and are further investigated by

Ulrich, Olbrich and Hegerl [5, 15, 20, 25, 33, 34]. A decrease in

vigilance can lead to two different behaviors, 1) the organism de-

cides to go to sleep and the vigilance reverts to sleep stages or, 2)

the organism exhibits auto-stabilization behavior to counter regu-

late their vigilance level.

ious states of a living system, for example differentiating

between states of health and disease.

The challenge, however, is to understand how these human

individual processes are involved into this physical energy

regulation. In human machine interaction the role of the

central and vegetative nervous system is usually not observ-

able. However, these inner states are important mandatory

factors building sophisticated advanced machines able to re-

produce anthropomorphic associative abilities. Here, mind

and emotions are properties which machines are not able

to understand and to reproduce reasonable well yet. In this

study, we attempt to investigate the basic principle of the

thermodynamic regulation during sensing observable dur-

ing natural human eye to eye communication. From the the-

oretical background, we form the mathematical model and
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Figure 2. The physiological and behavioral feature time series of an user over the entire recording duration of approximately three hours.

The first row represents the dominant occipital alpha power as histogram count. At the beginning, in the middle and at the end we see

periods of higher alertness. These periods exactly correspond to the exhausting reaction time tests performed for measuring alertness and

sustained attention of each individual user. The second row represents the Photoplethysmography Imaging [21, 22, 23] based heart rate

variability as low frequency/ high frequency ratio. Again, during the periods corresponding to the reaction time tests the activity of the

autonomic nervous system increases significantly like the EEG vigilance. By comparing the dynamics of the facial features in the last

row with the physiological brain arousal and the autonomic nervous system there’s again some similarity. In the multi-scale entropy [1, 9]

graph the facial features produce plateaus during the reaction time tests. Particular they seem to be correlated.

we show how learning can be interpreted with linear com-

plexity. In substantial experiments we verify the hypothesis

and finally predict brainwaves from face videos.

2. The Vigilance

If we summarize under vigilance such different terms,

like alertness, sustained attention and selective attention, we

are in fundamental danger of a categorical post-hoc fallacy.

Sustained and selective attention are certain measurable per-

formances, resulting from the interaction between a living

organism and its environment. Therefore these terms refer

to the psychology and include all kinds of behavior, out-

ward as well as inward directed. Alertness with its tonic

or phasic part does not refer to some concrete performance.

It refers to the mechanism enabling a certain performance.

This is part of the physiology domain of organismic func-

tions which has to be strictly distinguished from perfor-

mances. We differentiate between the physiological and

psychological phenomena because both phenomena are nei-

ther caused by physiological phenomena nor reducible to

them. The term vigilance dates back to the seminal work of

Head [14]. In its origin Head’s vigilance is neither a func-

tion nor a performance. It has more a semantic meaning

like Bateson’s idea of explanatory principles [4] and these

principles are synonymous to Carnap’s ideas of a theoret-

ical construct [7], finally Kant’s metaphysical Regulative

Ideen [17] as foundation of the transcendental dialectic [33].

We particular emphasize that Head’s vigilance is primarily

useful only for scientists, who are interested in the real-

ity behind the empirical phenomena. If someone assumes

the strictly mainstream position, accepting objectively mea-

surable facts by senses and introspection, Head’s vigilance

appears nonsensical [32]. Electroencephalography (EEG)

changes of vigilance by a complex spatio-temporal pro-

cess were first pointed out by Loomis and Davis[10, 18].

The authors distinguished two EEG stages between rest-

ing wakefulness and sleep. Half a century ago, the prac-

tical usefulness was further investigated by Bente and Roth

[5, 25]. They defined the stages into substages (see Figure

1). The first machine learning approach for the classifica-

tion of these stages is given by the work of Ulrich, Olbrich



and Hegerl [15, 20, 33, 34]. The vigilance is measured as

the connectivity in terms of EEG alpha waves between the

visual cortex and the frontal lobe. In this research the term

vigilance is used as a multivariate construct which is inves-

tigated in the domain of observable behavior.

3. The Model Space

The primary goal is to infer from a given initial facial

dynamics to the target brain arousal evolution describing the

state of mind. This can be expressed as an inverse problem

O = G(M) (1)

where the operator G describes the relation between the ob-

servation O and the model M . The problem reduced to esti-

mating from an observed random process x another related

process y. The two processes are related by a probabilistic

model p(x, y) which is unknown. The solution is given by

the unconstrained optimization problem

argmin
f(x)

E
[
‖y − f(x)‖2

]
. (2)

If p(y) and p(x|y) are Gaussian and E
[
x|y

]
is linear in y,

the solution is linear. For zero mean y and x the solution

yields to the conditional mean estimate

E
[
y|x

]
= wTx (3)

where

w = argmin
w

E
[
(y − wTx)2

]
(4)

w = (E
[
xxT

]
)−1E

[
xy

]
(5)

In case x is not linearly related to y or y is not Gaussian

distributed, the conditional estimate of y given x is nonlin-

ear. The computation of the nonlinear conditional mean

estimate leads to over-fitted or sub-optimal solutions, since

there are no convergence guarantees or the regularized

estimation yields to restricted distributions. According to

the Hardamand criterions the problem is ill-posed [12].

If we assume the model function f(x∗) with a known

input x∗ ∈ R
d to be a realization of a prior represented by

a Gaussian random process

f ∼ GP(0, k(x, x′)) (6)

and the observations corrupted by Gaussian noise

yk = f(xk) + εk (7)

with εk ∼ N (0, σ2
n). For a given training data set D =

{(xk, yk)|k = 1, 2, ..., n}, we are able to find the closed

form solution for the prediction [24]

p(f(x∗)|D) = N (E[f(x∗)],V[f(x∗)]) (8)

with

E[f(x∗)] = kT
∗
(K + σ2

nI)
−1y (9)

and

V[f(x∗)] = k(x∗, x∗)− kT
∗
(K + σ2

n)I)
−1k∗. (10)

Usually the hyperparameters of the covariance function

k(x, x′) and the noise variance σ2
n have to be learnt by

maximizing the marginal likelihood function using gradi-

ent descent methods. However, due to the recent progress

in the interpretation of stochastic processes, a more conve-

nient way of constructing the Gaussian process is given as

solution to the following nth order linear stochastic differ-

ential equation [16, 28]

an
dnf(t)

dtn
+ ...+ a1

df(t)

dt
+ a0f(t) = w(t), (11)

with w(t) a zero-mean Gaussian white noise process. Ac-

cording to Wiener’s spectral factorization [36] the Fourier

transform of the differential equation yields to

F (iω) = (
1

an(iω)n + ...+ a1(iω) + a0
)

︸ ︷︷ ︸

G(iω)

W (iω). (12)

Essentially this is a rational function and the causal trans-

fer function. The form of an all-pole filter. From the

Wiener-Khinchin theorem we know that a stationary covari-

ance function is given by the inverse Fourier transform of

the corresponding spectral density [8, 35]

C(t) = F−1[S(ω)] =
1

2π

∫

S(ω) exp(iωt)dω, (13)

where the spectral density of the process is given by

S(ω) = qc|G(iω)|2 (14)

with qc = |W (iω)|2 the spectral density of the white noise

process. Converting the transfer function to the correspond-

ing state space formulation results in

df(t)

dt
=








0 1
. . .

. . .

0 1
−a0 −a1 . . . −an−1








︸ ︷︷ ︸

F

f(t) +








0
...

0
1








︸ ︷︷ ︸

L

w(t)

(15)

and

yk =
(
1 0 . . . 0

)

︸ ︷︷ ︸

H

f(t) + εk, (16)

with the feedback matrix F, the noise effect matrix L and the

observation matrix H. This kind of inference problem can be



solved with linear complexity using the traditional Kalman

filtering. Here, the optimization of the hyperparameters is

solved implicitly. For some standard covariance functions

the approximation of the transfer function is given by its

Taylor series expansion [16].

4. Experiments

We performed substantial experiments under laboratory

conditions in order to determine the statistical relationship

between the brain arousal, the cardiovascular activity and

the facial behavioral dynamics. Here, we focused on the

physiological continuous measurement of vigilance by EEG

sensors positioned on the frontal lobe and the visual cor-

tex. The facial behavioral dynamics were monitored by a

common RGB camera based facial alignment [26, 37]. The

cardiovascular activity by the camera based Photoplethys-

mography Imaging (PPGI) [21, 22, 23]. As standard psy-

chological performance-based surrogate measurement for

the brain arousal dynamics we instructed all user during the

experiments to participate in sustained attention and alert-

ness measurements to enable their maintenance of response

persistence and continuous effort over extended periods of

time [11]. We completed the sensor acquisition by mea-

sure the situational subjective level of sleepiness using the

Karolinska sleepiness scale (KSS) [2]. The completely syn-

chronized recordings were then automatically analyzed to

extract the features for performing the final statistical re-

gression analysis.

Data Collection

Uncompressed video, EEG and reaction-time of 100

users were recorded during the experimental laboratory ses-

sions. Each single sessions consists of a time length of ap-

proximately three hours. The gender balanced population

was selected to fit a normal based age-range between 18

and 65 years old persons. In Figure 3 three younger persons

of the database are shown wearing the EEG sensors and

a headset. All video data was recorded with a 25 frames

per second using an IDS RGB camera. The brain signals

were captured with EEG wet electrodes using a VARIO-

PORT analog to digital converter with a sample rate of 128

Hz. We divided the three hours recording time into different

parts where each user performed different tasks. The two

main parts were selected with a duration about one hour.

In the first part all users played an action sport computer

game and in the second part a train simulator game. Every

five minutes we asked the users via the headset to state their

subjective level of sleepiness on the KSS. Before and after

each game session we instructed the users to perform psy-

chomotor vigilance tasks (PVT) [11] over a time period of

approximately 15 minutes. At the start and end of each PVT

the users additionally stated their KSS score. To guaran-

tee data consistency, a manual pre-preprocessing check was

carried out after each recording. Utilizing recorded time-

stamp markers we were able to segment the different tasks

automatically.

Feature Space

All EEG signals were analysed by standard Fourier

based spectral method. To compensate eye blink artefacts

in the EEG signals we applied a common unsupervised ICA

approach. We selected a sliding time window of 60 sec-

onds with one seconds overlap for the short time Fourier

transform. In order to extract the alpha activity in the corre-

sponding brain regions, we band-pass filtered the frames of

spectral power in the range between 8 and 12 Hz. The EEG

vigilance level is determined based upon the ratio of high

frontal Alpha power and high occipital alpha power. High

occipital alpha power is assumed to reflect vigilance stage

A1 alertness states and high frontal alpha power the stage

of transition to more sleepy states during closed eyes (see

Figure 1). In Figure 2 the first row represents the dominant

occipital alpha power as histogram count over the time pe-

riod of the entire recording of an user. At the beginning, in

the middle and at the end we see periods of higher alertness.

These periods exactly correspond to the exhausting reaction

time tests performed for measuring alertness and sustained

attention of each individual user.

For measuring the activity of the autonomic nervous sys-

tem we concentrated on the relationship between the sym-

pathetic and parasympathetic activity. Here, we used the

camera based PPGI method [21, 22, 23] to extract the RR-

interval of the quasi periodic blood volume changes out

of registered facial skin regions [26, 37]. Each obtained

pulse waveform is re-sampled to 256 Hz first. In the next

step a frequency domain based method [3, 29] using the

Lomb–Scargle periodogram [19, 30] is applied to extract

high and low frequency bands out of the RR-traces in order

to determine the heart rate variability. We used the bands

from 0.15 to 0.4 Hz as high frequency (HF) and from 0.04

to 0.15 Hz as low frequency (LF) regions. As activity level

the LF/HF ratio is used. High LF/HF values indicates a

stronger sympathetic activity analog to the fight or flight re-

sponse [6]. In Figure 2 the second row represents the PPGI

LF/HF ratio over the time period of the entire recording of

an user. During the periods corresponding to the reaction

time tests, the activity of the autonomic nervous system in-

creases significantly like the EEG vigilance. This seems to

be correlated.

The facial behavioral dynamics can be represented by sev-

eral different features. We focused on the ocular movements

in terms of eye gaze and eye blink behavior. We dropped all

head pose features since during the experiments all users

are instructed to follow the course of action on the nearby

computer screen. Thus, head pose dynamics will not occur

in a sufficient large manner. Initially the face was captured



Figure 3. Three images from the data collection. These younger persons are wearing the EEG sensor cap and a headset for experiment

instructions. The camera is positioned below the computer monitor. During the experiments all participants performed several different

tasks like playing computer games and performing reaction time tests. After specific time periods they were asked to provide their

situational subjective sleepiness rating.

by a common face finder. The rough face region is used to

initialize the facial alignment using a cascaded regression

approach [26, 37]. From the set of registered landmarks the

head pose can be determined by either predicting it using

a separately trained pose regressor [37] or fitting a statisti-

cal 3D point distribution model to the target landmarks in

the image plane [27]. Over the set of eye landmarks we

computed the eye lid opening and fitted a 3D geometric eye

model to determine the eye gaze [13]. In Figure 2 the last

row represents the facial behavioral dynamics over the time

period of the entire recording of an user. We employed a

cross entropy analysis to provide robust measures of the

deterministic or stochastic content of the time series (reg-

ularity), as well as the degree of structural richness (com-

plexity), through operations at multiple data scales [1, 9].

By comparing the dynamics of the facial features with the

physiological brain arousal and the autonomic nervous sys-

tem activity we find again some similarity. In the multi-

scale graph the facial features produce plateaus during the

reaction time tests. This gave us a reason to conduct a more

detailed statistical analysis.

Statistical Analysis

To act on the assumption of some correlation between

the activity of the central and autonomic nervous system

and its impact on facial behavioral dynamics, we performed

a detailed statistical analysis of the pre-computed features

described in the previous section. Our primary concern

was to establish whether we are able to reconstruct brain

arousal states using video based facial features and what

feature behavior is forming the basis of the hypothesized

underlying predictive power.

In the first step we computed the correlation between

the dominant EEG occipital alpha power and the PPGI

LF/HF ratio over the entire database. To analyse we calcu-

lated the cumulative distribution function (CDF) of these

correlation values. The corresponding CDF ist visualized in

the following Figure 4. The correlation values are varying

from -0.8 to 0.8. with nearly exactly 50 percent coverage

for all negative correlations and 50 percent coverage for

all positive correlations. The observable anti-correlation

behavior appears to describe the loss of energy transport

via oxygen through the blood flow to the brain in order to

maintain states of hypervigilance. This can be interpreted

as transition to hypovigilance, e.q states of higher sleep

onset or drowsiness. The human body is starting to deac-

tivate the visual cortex and can’t pay attention anymore.

To verify the established brain-heart synchronization, we

Figure 4. The cumulative distribution function of correlation val-

ues between the dominant EEG occipital alpha power and the

PPGI heart rate variability in terms of LF/HF ratio. A strong cor-

relation versus anti-correlation behavior.

computed the feature behavior of both instances over the

entire range of correlations. We decided to visualize each

feature using a box-plot diagram for each correlation bin.

Since the amount of samples in the absolute correlation

range between 0.5 and 0.8 is rather small, we decided to

assign these feature values to the 0.5 correlation bin. In

Figure 5 the box plot of the dominant EEG occipital alpha

power over the correlation between the PPGI heart rate

variability in terms of LF/HF ratio is visualized. A slightly

trend from positive to negative correlations. The occipital

alpha power increases for higher negative correlations in



contrast to the positive ones. For the range of positive

correlations exists a higher amount of uncertainty. In

Figure 5. The box plot visualization of the dominant EEG occipital

alpha power over the correlation range between the PPGI heart rate

variability in terms of LF/HF ratio.

Figure 6 the box plot of the PPGI heart rate variability in

terms of LF/HF ratio is visualized. A strong decreasing

trend from positive to negative correlations. The PPGI

LF/HF ratio is higher for positive correlations in contrast

to the negative ones. Again, for the range of positive

correlations there exists a higher amount of uncertainty.

Essentially, for high correlation values the EEG occipital

Figure 6. The box plot visualization of the PPGI heart rate vari-

ability in terms of LF/HF ratio over the correlation range between

the dominant EEG occipital alpha power.

alpha power is low and the sympathetic activity of the

autonomic nervous system is high. Here, the human body

attempts to preserve the energy supply to the brain in order

to maintain states of higher wakefulness. Once this energy

supply gets regulated by the parasympathetic activity, the

PPGI LF/HF ratio changes to a smaller values. The EEG

occipital alpha power increases shutting down the brain

region of the visual cortex. As a result the human should

feel sleepy and should not be able to pay attention anymore.

This is the state of hypovigilance. Since we monitored the

users subjective sleepiness rating, we decided to verify this

against the KSS scores. Analog to the previous processing

we computed the KSS score behavior over the entire

range of correlations. In Figure 7 the box plot of the KSS

scores as metric for the subjective sleepiness is visualized.

We are able to observe an increasing sleepiness trend

from positive to negative correlations. This acts as strong

indicator for the validity of the previous interpretation of

the vigilance and heart rate variability connection. Indeed,

the human body seems to regulate the vigilance level by

energy support activated through the autonomic nervous

system. In contrast to the classical vigilance interpretation

Figure 7. The box plot visualization of the subjective level of

sleepiness expressed as KSS score over the correlation range be-

tween the dominant EEG occipital alpha power and the PPGI heart

rate variability in terms of LF/HF ratio.

during closed eyes a high level of EEG alpha power doesn’t

correspond to wakefulness states during open eyes. It does

more reflect the deactivation of the specific brain region

towards the state of sleep onset. In this case the visual

cortex followed by the frontal lobe. Thus, we arrive at the

conclusion that these states noticeable impact the human

performance carried out during the reaction time tests in

our experiments. We computed the reaction time for the

sustained attention and corresponding tap error behavior

for both features over the entire range of correlations

again. In Figure 8 the box plot of the sustained attention

reaction time in seconds is visualized. For higher negative

correlation values the reaction time is larger. In Figure 9

the box plot of the sustained attention tap errors as count

of wrong decision is visualized. There’s an increasing

amount of errors from positive to negative correlation

values observable. As expected, during states of higher

hypovigilance the users aren’t able to maintain attention

anymore as good as during fully wakefulness. In the final

step of the conducted feature analysis we performed the

same procedure for the facial ocular movements in terms of

eye blink and eye gaze dynamics. Since eye behavior can



Figure 8. The box plot visualization of the sustained attention reac-

tion time in seconds over the correlation range between the domi-

nant EEG occipital alpha power and the PPGI heart rate variability

in terms of LF/HF ratio.

Figure 9. The box plot visualization of the sustained attention re-

action time errors as wrong decision over the correlation range

between the dominant EEG occipital alpha power and the PPGI

heart rate variability in terms of LF/HF ratio.

be parameterized differently, we decided to compute the

eye blink frequency and the individual duration. The eye

gaze is parameterized by the eye gaze angular displacement

and velocity. We aggregated both instances of the eyes and

their features using a single scale of the multivariate sample

entropy [1, 9]. In Figure 10 the box plot of the eye blink en-

tropy is visualized. An increased entropy for high negative

correlation values. This reflects an increase of complexity

which can be interpreted as a loss of deterministic behavior

during states of hypovigilance. We tried to inspect what

exactly happens with the individual eye blink parameters.

We often found an irregular increase of blink frequency and

longer blink duration. In Figure 11 the box plot of the eye

gaze entropy is visualized. We’re able to observe a stronger

change of the entropy values from positive to negative

correlations. This time the entropy decreases towards high

negative correlations with a loss of uncertainty. Unlike the

Figure 10. The box plot visualization of the eye blink dynamics as

a single scale of the multivariate sample entropy over the correla-

tion range between the dominant EEG occipital alpha power and

the PPGI heart rate variability in terms of LF/HF ratio.

Figure 11. The box plot visualization of the eye gaze entropy over

the correlation range between the dominant EEG occipital alpha

power and the PPGI heart rate variability in terms of LF/HF ratio.

blink dynamics, this means an increase of deterministic

behavior like the eyes are staring into space.

In the final experiment we attempted to predict states

of vigilance as well as the common surrogate measure-

ments for the performance based indicators by means of

machine learning. We defined the dominant EEG occipital

alpha power, the KSS score, the PVT reaction time and tap

error as individual target variables. The predictor variables

are selected as the camera based features computed out

of facial regions solely. This pool of predictor variables

includes the PPGI based heart rate variability and the ocular

movements in terms of blink frequency, blink duration, the

eye gaze angular displacement and the eye gaze velocity.

By applying the coarse grained sample entropy approach

[1, 9] over the set of features we obtained the fused

complexity dynamics of the facial skin blood perfusion and



Figure 12. The box plot visualization of correlation values for the

regression cross-validation against different targets. The predic-

tor variables are based on the camera based features computed out

of facial regions. From left to right: Vigilance corresponds to the

dominant EEG occipital alpha power. Kss corresponds to the situ-

ational subjective level of sleepiness, e.q. KSS score. Error corre-

sponds to the false tap answers during the reaction time tests and

rt corresponds to the measured PVT reaction time.

facial behavior. We solved the inverse problem by applying

the described Kalman filtering approach on state space

representation of the Taylor series approximated squared

exponential covariance function [16]. We performed a

leave-one-out cross validation on the entire dataset of users.

In Figure 12 the box plot of the correlation values for the

regression cross validation is visualized. A decreasing

performance from left to right. In the box plots vigilance

corresponds to the dominant EEG occipital alpha power,

KSS corresponds to the situational subjective level of

sleepiness. Error corresponds to the false tap answers

during the reaction time tests and RT corresponds to the

measured PVT reaction time. To determine the predictive

power of the individual features, we repeated the cross-

validation for different kinds of feature sets. To simulate a

potential application scenario, we selected the KSS score

to predict the user’s sleepiness as target. In Figure 13 the

box plot of the correlation values for the regression cross

validation using the different features against the KSS score

is visualized. Interestingly but not surprised regarding

the anti-correlation behavior presented in Figure 4, the

heart rate variability alone is not able to predict KSS states

reasonable well. However, the ocular dynamics perform

well and benefit from the heart rate variability.

5. Discussion

We studied the regulation of human brain arousal in the

central nervous system and its synchronization with the au-

tonomic nervous system affecting the facial dynamics. We

performed a detailed statistical analysis of the individual

signal behavior and predicted states of vigilance using a

Figure 13. The box plot visualization of correlation values for

the regression cross-validation using different kinds of features

against the KSS target. From left to right: V1 corresponds to the

PPGI based heart rate variability, the ocular movements in terms of

blink frequency, blink duration, the eye gaze angular displacement

and the eye gaze velocity. V2 corresponds to the ocular move-

ments in terms of blink frequency, blink duration, the eye gaze

angular displacement and the eye gaze velocity. V3 corresponds

to the eye gaze angular displacement and the eye gaze velocity. V4

corresponds to the ocular movements in terms of blink frequency,

blink duration. V5 corresponds to the PPGI based heart rate vari-

ability.

video based surrogate measurement out of facial regions

solely. We demonstrated the possibility to reconstruct brain-

waves directly from face videos. Furthermore, it was shown

the obtained results can also be used to derive other kind of

markers. Sustained attention and sleepiness are only one

of these direct derivatives which have a broad application

field in the transport, control room and marketing sector.

In the medical sector the rigid and labile regulation of the

vigilance reflects a suitable biomarker for the diagnosis of

affective disorders. Particular in this sector, such kind of

markers are the essential requirements for the development

of new therapeutic methods and investigation of new phar-

maceuticals. The proper combination with the emotional

brain activity would pave the way for an entire new interpre-

tation of the dimensional valence-arousal model in affective

computing.
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