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Abstract

Regular monitoring of blood pressure (BP) is an effec-

tive way to prevent cardiovascular diseases, especially for

elderly people. At present, BP measurement mainly relies

on cuff-based devices which are inconvenient for users and

may cause discomfort. Therefore, many new approaches

have been proposed to achieve cuff-less BP detection in re-

cent years. However, the accuracy of the existing approach-

es still needs to be improved. In this study, holistic-based

PPG and its first and second derivative features are ex-

tracted and a new multi information fusion artificial neu-

ral network (MIF-ANN) is designed to effectively fuse and

exploit multiple input data. Experimental results on a pub-

lic database which contains 12000 subjects show that the

proposed network can model the relation between Photo-

plethysmography (PPG) and BP well, achieving averagely

accuracy of 91.33% for 5-category BP stratification. Ad-

ditionally, this study verified that multi information fusion

based on meticulously designed network plays an important

role in improving the accuracy of BP detection.

1. Introduction

Blood pressure (BP) is an import physiological param-

eter for assessing cardiovascular health which refers to the

lateral pressure acts on the vessel wall when the blood flows

in the blood vessel. Abnormal BP increases the risk of car-

diovascular and cerebrovascular diseases (CCVD) such as

cerebral apoplexy, atherosclerosis and heart failure [2, 10].

Therefore, early detection and control of abnormal BP like

hypertension and hypotension could effectively prevent C-

CVD. At present, cuff-based BP measurement devices have

been widely used in hospital which are not convenient and

comfortable for users; this shortcoming greatly limited the

wide application of BP detection, especially for daily con-

tinuous monitoring.

In the past decades, many new approaches have been

proposed to achieve cuff-less BP measurement. Among

them, pulse transit time (PTT) based method was thorough-

ly verified by researchers. In 1981, Geddes et al. initially

analyzed the relationship between BP and PTT, and found a

good linear correlation between the two [6]. In 2001, Chan

et al. used electrocardiograph (ECG) and photoplethysmog-

raphy (PPG) signals to calculate PTT from which the BP

value was estimated with a calibration for each subjec-

t [3]. They adopted the mean error (ME) between predict-

ed BP and ground-truth BP as the evaluation standard and

achieved ME of 7.5 mmHg for systolic blood pressure (S-

BP) and 4.1 mmHg for diastolic blood pressure (DBP). In

2017, Kachuee et al. proposed a calibration-free BP estima-

tion method based on PTT [14]. Their best results were ob-

tained using adaptive boosting (AdaBoost), achieving mean

absolute error (MAE) of 11.17 mmHg for SBP and 5.35

mmHg for DBP. Afterwards, the research on deep learning

started to rise, and in 2018, Su et al. used PTT alongside

other features as the input of a recurrent neural network

(RNN) to model the relation between PTT and BP [22].

They achieved root mean square error (RMSE) of 3.90 and

2.66 mmHg for SBP and DBP respectively. Although the

effectiveness of PTT based method was verified repeatedly,

its shortcomings are also obvious. Firstly, the calculation of

PTT requires two sensors to synchronously collect physio-

logical signals such as ECG and PPG, which increases the

complexity of BP detection. Besides, the time delay of the

collected signals from the two sensors must be accurately

calculated, which requires precise synchronization and a lot

of efforts for signal preprocessing.

Due to the aforementioned reasons, this study focuses

on BP measurement using single PPG signal. As shown

in Figure 1, the features of pulse wave PPG signal such as

cycle length, amplitude and morphological characteristics
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are closely related to cardiovascular status, for example, the

gradient of rapid ejection period is thought to be positively

correlated with systolic blood pressure, and the amplitude

ratio of systolic peak to dicrotic peak is associated with

arteriosclerosis [19, 18, 26, 11]. In 2013, Kurylyak et al.

extracted 21 features from a PPG cycle and these features

were then fed into an artificial neural network (ANN) to es-

timate BP [16]. Their BP prediction results are good but the

dataset they used is too small. Liang et al. used the continu-

ous wavelet transform (CWT) to extract temporal-spectrum

PPG features as the input of a convolutional neural network

(CNN) to achieve BP stratification [17]. They divided BP

into three categories: normotension, prehypertension and

hypertension, realizing accuracy of 80.52%, 92.55%, and

82.95% for the three classification respectively. Wang et al.

compared three methods for BP estimation based on MIM-

IC [20, 12] database: linear regression, support vector ma-

chine (SVM) and ANN, and their best results were obtained

using ANN with MAE of 4.02 ± 2.79 mmHg for SBP and

2.27 ± 1.82 mmHg for DBP [24]. The shortcoming is that

their experiments were conducted on only 90 patients. Dey

et al. utilized the time and frequency domain features ex-

tracted from PPG, velocity plethysmography (VPG - the

first derivative of PPG) and acceleration plethysmography

(APG - the second derivative of PPG) signals for BP esti-

mation based on Lasso regression and achieved MAE of 6.9

mmHg and 5.0 mmHg for SBP and DBP respectively [5].

But their experiments were based on self-collected data of

205 volunteers and they have not explained whether their

data contains hypotension or hypertension individuals. Vis-

vanathan et al. combines time domain PPG features with

personal information such as age, height and weight to clas-

sify BP levels using SVM and achieved a high accuracy of

100% [23], but their method was verified on only 32 cases

and their smartphone dataset cannot be publicly accessed.

In 2019, Somayyeh et al. proposed a whole-based method

to extract PPG features which significantly improved the

anti-noise performance [21], but their BP estimation accu-

racy is not that ideal which just reached grade C according

to the British Hypertension Society (BHS) standard. Based

on the above analysis, it is obvious that combining artificial

extracted features with machine learning or deep learning

algorithms is the main research direction of PPG-based BP

measurement and the detection accuracy of BP still needs

to be improved.

In this article, a new method is proposed to achieve 5-

category BP stratification as it is sufficient to judge car-

diovascular status by BP levels rather than precise BP val-

ues. The method uses holistic-based features extracted from

PPG, VPG and APG as the input of a specially designed

neural network, which are less sensitive to noise compared

with non-holistic-based features. The main contributions of

this article are as follows:

1. The experiments are conducted on a large, precise-

ly specified database which contains 12000 samples with

available arterial blood pressure (ABP) and PPG record-

ed simultaneously at 125 Hz for each sample. The large

database conduces to train a good general model using ma-

chine learning or deep learning algorithms;

2. Holistic-based features of both time and frequency

domain are extracted from PPG, VPG and APG, which

improved the robustness to noise, and therefore can pro-

mote PPG-based cuff-less BP measurement moving toward-

s practical application using consume-level cameras;

3. A new artificial neural network structure is designed

to realize the fusion and effective utilization of multiple in-

formation. Furthermore, the neural network architecture

can be flexibly adjusted to meet the requirements of differ-

ent tasks. The details of the designed neural network will

be described in the later sections.

Figure 1. An example of single cycle pulse wave signal.

2. Method

The overall framework of the proposed method is shown

in Figure 2 where both the arterial blood pressure (ABP)

and PPG signals are from a public UCI machine learn-

ing blood pressure (UCI-ML-BP) database which is avail-

able online at http://archive.ics.uci.edu/ml/datasets/Cuff-

Less+Blood+Pressure+Estimation [13, 8]. This section will

explain the proposed method in detail to show how it works.

2.1. Generate BP category labels

The ABP signals in UCI-ML-BP database are used to

extract SBP and DBP so that BP category labels can be de-

termined on the basis. The extraction method is shown in

Figure 3. When the ABP signal is of high quality, SBP and

DBP can be obtained by a simple peak detection algorithm

with averaged peak values corresponds to SBP and aver-

aged valley values corresponds to DBP. But in most cases,

the ABP signal is not that ideal and exists one or more ir-

regular interference which may result from the motions in



Figure 2. The overall framework of the proposed BP stratification

method.

the process of BP measurement. So, an abnormal detec-

tion method is applied to find and discard abnormal peak

and valley values. First, the standard deviation and mean

of peak (valley) values are calculated, then compute the de-

viation between each peak (valley) value and the mean. If

the absolute value of a deviation is larger than two times of

standard deviation, the corresponding peak (valley) will be

discarded as noise. After the above procedures, all SBP and

Figure 3. SBP and DBP extraction from ABP signal.

DBP of total 12000 records in the UCI-ML-BP database are

obtained and Figure 4 is the distribution of the extracted S-

BP and DBP. It is clear that the database covers all kinds of

BP categories such as hypotension, normotension, prehy-

pertension and hypertension with SBP between 69 and 196

mmHg while DBP between 50 and 163 mmHg. Given SBP

and DBP, BP category labels can be determined now. Ac-

cording to the seventh report of the Joint National Commit-

tee on Prevention, Detection, Evaluation, and Treatment of

High Blood Pressure (JNC7), BP can be divided into four

categories: normotension, prehypertension, stage 1 hyper-

tension and stage 2 hypertension [4]. This study added one

hypotension category on the basis of JNC7, and Table 1 is

the detailed stratification criteria. The obtained BP category

labels will be used as the prediction result of artificial neural

network (ANN).

Figure 4. Histogram of extracted SBP and DBP from UCI-ML-BP

database: (a) Distribution of systolic blood pressure; (b) Distribu-

tion of diastolic blood pressure.

Table 1. Stratification criteria of blood pressure.

BP category SBP (mmHg) operator DBP (mmHg)

hypotension <90 and <60

normotension 90∼119 or 60∼79

prehypertension 120∼139 or 80∼89

stage 1 hypertension 140∼159 or 90∼99

stage 2 hypertension ≥160 or ≥100

2.2. Holistic­based features extraction

Other algorithms usually detect BP based on the feature

values calculated from the feature points of a PPG signal.

These features are highly related to the form of the PPG

signal and a slight noise in PPG signal may influence the ex-

tracted feature values significantly. The proposed holistic-

based method uses continuous values of the original signal

for BP stratification. Compared to non-holistic-based meth-

ods, our method is less sensitive to noise and therefore can

tolerate stronger interference. The extracted holistic-based

Figure 5. Single period PPG waveform and its derivatives after

segmentation.

features contain PPG and its derivatives as the derivatives

also carry valuable information related to cardiovascular

circulation [25]. Firstly, the PPG signal is normalized and

its first-order derivation (VPG) and second-order derivation



(APG) are calculated. Then, the single-cycle segmentation

of PPG, VPG and APG signal is performed. Figure 5 shows

the segmented single period PPG, VPG and APG wave-

forms.

Afterwards, an interpolation procedure is performed to

make sure that all feature vectors extracted from UCI-ML-

BP database are the same length. The sampling rate of PPG

signals is 125 Hz and according to our calculation from

PPG, the minimum and maximum heart rate in UCI-ML-BP

database are 48 and 125 beats per minute (bpm), respective-

ly. So, it is sufficient to record all points of a single cycle

for all PPG signals if the length of feature vectors is larg-

er than 156. In this study, the length of feature vectors for

PPG, VPG and APG is set to 200. The interpolation ap-

proach is simple, that is, padding with zeros in the end of

the original single period PPG, VPG and APG waveforms.

Figure 6 shows an example of the obtained feature vectors

after padding zeros.

Figure 6. Extracted holistic-based feature vectors from PPG, VPG

and APG. All feature vectors are interpolated to equal length.

Apart from the above time domain features, temporal-

spectrum information is further extracted for training ar-

tificial neural network and improving BP stratification ac-

curacy. Generalized Morse wavelet (GMW) is an accurate

analytic wavelet for extracting temporal-spectrum features,

which uses β and γ two parameters to adjust its waveform,

its frequency domain representation is:

Ψβ,γ(ω) = 2H(ω)(
eγ

β
)

β
γ ωβexp(−ωγ) (1)

where H(ω) is Heaviside step function, e is Euler number, β

and γ are two variable parameters which can be controlled

to compare with original PPG signal and obtain wavelet co-

efficients. Compared with Morse wavelet which is only ap-

proximated analytic, GMW is completely analytic and is

capable of more effective extraction of local features in the

pulse wave. Thus, GMW is chosen as the base of continu-

ous wavelet transform (CWT). Figure 7 shows an example

of extracted temporal-spectrum graph.

Figure 7. Extracting temporal-spectrum features using CWT: (a)

Original PPG waveform of 24 seconds; (b) Extracted temporal-

spectrum graph using generalized Morse wavelet.

2.3. Neural network design and hyperparameters

The performance of a single neural network classifier de-

pends heavily on the choice of network parameters, so it is

very difficult to design an optimal neural network classifi-

er for a complex classification task. To solve this problem,

the multi information fusion artificial neural network (MIF-

ANN) is designed to improve BP stratification accuracy

which combines multiple ANN classifiers for processing d-

ifferent input data respectively. Figure 8 is the schematic

structure of MIF-ANN.

Figure 8. Overall architecture of the proposed multi information

fusion artificial neural network.

As shown in Figure 8, the temporal-spectrum graph is

used as the input of a convolutional neural network (CNN)

which contains 4 CNN blocks. Each CNN block consists

of convolutional layer, activation layer, batch normalization

and max pooling. As for activation layer, ReLU is adopted

as the activation function to accelerate the training process.

Batch normalization is used to reduce covariate shift and



mitigate vanishing gradient problem. Max pooling layer is

used for dimensionality reduction. Afterwards, the CNN

outputs are flattened and passed to a dense (fully connected)

layer [15].

The single period PPG, VPG and APG feature vectors

are fed to 3 long short-term memory (LSTM) networks, re-

spectively. LSTM is an improvement of recurrent neural

network (RNN). RNN is capable of processing short time

sequences, but when the data is long, gradient disappear-

ance and gradient explosion problem will occur. Therefore,

LSTM is proposed which achieved long dependence pro-

cessing by combining forgetting gate, input gate and output

gate [9, 7].

The outputs of four networks are then concatenated and

passed into a multi-layer perceptron (MLP) model which

consists of two dense layers and one output layer. The final

output layer uses softmax function shown in (2) to produce

predicted result of BP categories.

Si =
eyi

∑k
j=1

eyj

(2)

where k is the number of output elements, yi is the ith out-

put of the final dense layer, and the sum of Si is 1. Ap-

parently, the softmax function maps the outputs of multiple

neurons into (0,1) interval, and the outputs of softmax can

be regarded as the probability of belonging to each category.

The MIF-ANN were trained with learning rate of 0.001

and batch size of 256. The maximum number of training e-

pochs was set to 400, with stopping performed if the results

of 15 consecutive trainings have no improvement. The cat-

egorical cross entropy loss function shown in (3) is adopted

to optimize the network:

loss = −
1

n

n∑

i=1

[yi ln zi + (1− yi) ln (1− zi)] (3)

where n is the number of categories (equal to the number

of output elements), y is the expected output, z is the actual

output of neural network which can be formulated as:

z = wT x + b (4)

here, w is the matrix of MIF-ANN weight vectors, x is the

input vector, b is the bias vector. Apparently, the value of

categorical cross entropy loss function is close to 0 when

actual output is close to expected output.

3. Results

3.1. Experimental setup

In order to evaluate the performance of the proposed

method, the public UCI-ML-BP database is used as our

ABP and PPG data source so that all researchers who

would like to do further comparison fairly could access

this database easily. UCI-BP database contains 12000 da-

ta records gathered at several hospitals and each record

consists of synchronously collected PPG and ABP signal-

s with sampling frequency of 125 Hz and time length of

24 seconds [8]. All the modeling, training and testing were

based on tensorflow-gpu-1.11.0 and keras-2.2.5 deep learn-

ing toolbox using python3.6 environment [1]. Considering

the amount of data and the extreme computational complex-

ity when training the MIF-ANN model, a high-performance

workstation is used which contains 128GB physical memo-

ry and NVIDIA Tesla P100 16GB GPU memory.

3.2. Experimental results

The experiments were conducted using K fold cross vali-

dation (KF-CV), which improved the robustness in training

a good general model. KF-CV method is simple but effec-

tive: Suppose the dataset has N samples, divide these sam-

ples into K parts, K-1 parts are used for training the clas-

sifier, and the remain one part is used for validation. After

K times of iteration, all samples have been trained and vali-

dated. Figure 9 shows the loss curve and accuracy curve of

the training process of the final iteration where the training

accuracy converges to about 96%. Note that the K value in

the experiment is set to 10.

Figure 9. Training curves of MIF-ANN network: (a) The loss

curve; (b) The accuracy curve.

The test result of BP stratification is shown in Table 2

where other well-established methods using single PPG sig-

nal are compared. Note that most of the compared methods

are to achieve BP estimation, and therefore, the BP estima-

tion result is further utilized to determine BP category ac-

cording to the stratification criteria shown in Table 1. Exper-

imental results show that the proposed method outperforms

other methods in terms of BP stratification with average test

accuracy of 91.33%. The test accuracy is similar to training

accuracy which means the MIF-ANN model is not overfit-

ting. The correct rate (CR) of recognizing hypotension, nor-

motension, prehypertension, stage 1 hypertension and stage

2 hypertension are 89.67%, 94.35%, 90.44%, 85.21% and

91.50% respectively which verified that it is feasible to eval-

uate BP on a large dataset using single PPG signal. This is a



Table 2. Comparison of well-established methods based on UCI-ML-BP database using single PPG signal. Note, LT, NT, PHT, HT1 and

HT2 represent hypotension, normotension, prehypertension, stage 1 hypertension and stage 2 hypertension respectively. CR stands for the

correct rate of recognizing corresponding BP category.

Author Used methods
CR of

LT
CR of NT CR of PHT CR of HT1 CR of HT2

Average

accuracy

Liang et

al. [17]

Temporal-spectrum PPG

features; CNN
77.65% 83.08% 88.07% 82.50% 84.26% 82.41%

Wang et

al. [24]

Time and frequency

domain PPG features;

fully connected ANN

81.24% 88.53% 84.36% 87.12% 89.13% 86.52%

Dey et al. [5]

Time and frequency

domain PPG features;

Lasso regression

62.32% 79.96% 79.57% 60.02% 62.65% 71.43%

Visvanathan

et al. [23]

Time domain PPG

features; SVM
61.33% 81.40% 70.28% 62.47% 54.72% 72.54%

Somayyeh et

al. [21]

Time domain

holistic-based PPG

features; non-linear

regression

86.54% 86.05% 89.75% 81.20% 84.77% 83.95%

Our method

Holistic-based time and

frequency domain PPG

features; MIF-ANN

89.67% 94.35% 90.44% 85.21% 91.50% 91.33%

big step for pushing PPG-based cuff-less BP measurement

from theoretical research to practical application.

Furthermore, the accuracy of BP stratification using sin-

gle PPG feature and multiple PPG features are compared to

verify whether the fusion of multi information is reasonable

and effective. The comparison result is shown in Table 3

which validated that the accuracy of BP stratification can be

significantly improved by combining multiple information

from time and frequency domain PPG signal and its first

and second derivatives using the specially designed MIF-

ANN model.

Table 3. Comparison of BP stratification results using single PPG

feature and multiple PPG features.

Input features Model

Average accuracy of

recognizing BP

categories

PPG LSTM 79.40%

VPG LSTM 81.95%

APG LSTM 61.78%

Temporal-spectrum

graph
CNN 83.25%

PPG + VPG + APG +

temporal-spectrum

graph

MIF-ANN (3

LSTMs +1 CNN)
91.33%

4. Conclusions

A new PPG-based BP stratification approach is proposed

in this study which combines time and frequency domain

features of PPG and its first and second derivatives to im-

prove BP detection accuracy. Correspondingly, the MIF-

ANN model which consists of one CNN and three LSTM

networks is designed to achieve the effective fusion of mul-

tiple input features. Our experiments are based on a public

large database for the purpose of training a good general-

ized BP stratification model, and the experimental result-

s show that the proposed method outperforms other well-

established methods with average classification accuracy of

91.33% for 5-category BP stratification, which is a big step

for accelerating cuff-less continuous BP monitoring moving

towards practical application.

The extracted features are holistic-based which im-

proved the tolerance for noise of PPG signal compared to

other non-holistic-based features, and the newly designed

MIF-ANN model can be easily expanded to process more

inputs while all the input data are trained independently.

Furthermore, the proposed method is verified on a public

database so that other researchers who would like to do fur-

ther comparison can access the data easily. The main focus

of our future research is on whether the trained MIF-ANN

model is suitable for the pulse wave collected by ourselves

using mobile phone cameras or other PPG sensors. Be-

sides, individual information such as age, gender and height

should be added to our model for personalized calibration in

future work.
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