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Abstract

Current research focuses on non-contact means to cap-

ture physiological signals like the heart rate. One promis-

ing approach uses videos (imaging PPG, iPPG). The com-

mon procedure to derive the heart rate by iPPG comprises

three steps: segmentation of a region of interest, usage of

colour information from that region to yield a pulse signal

and analysis of that signal to estimate the heart rate. This

contribution proposes a novel approach to yield a region

of interest using a Gaussian mixture model based level set

formulation. The proposed method aims to segment a ho-

mogeneous region on an individual basis. To that end, we

model the probability distributions for the pixel skin and

non-skin class by two separate Gaussian mixture models.

The proportion of the posterior probabilities are then in-

cluded in the formulation of the level set function. The pro-

cedure yields a region of interest, which is used to derive

a pulse signal from its average intensity or additional pro-

cessing steps. We tested the method on own data and data of

the 1st Challenge on Remote Physiological Signal Sensing.

It is shown that the proposed method can improve the results

for heart rate estimation on moving subjects. The potential

of our approach is underlined by the promising result in the

challenge.

1. Introduction

The heart rate is one of the most important vital parame-

ters and an essential element of modern medicine. imaging

photoplethysmography (iPPG) uses videos to yield the heart

rate without any contact. The technique captures the vary-

ing light absorption due to subtle blood volume changes in

skin tissue. iPPG thus allows to obtain a pulse signal from

which the heart rate can be derived [24, 28]. The path from

video to heart rate usually consists of a three step proce-

dure: (1) segmentation of a region of interest (ROI), i.e. an

area defined for further processing, (2) signal extraction, i.e.

colour information from that region used to yield a pulse

signal and (3) heart rate estimation, i.e. the pulse signal

analyzed to estimate the heart rate.

Many studies focus on the signal extraction. An early

solution was introduced by Verkruysse et al.. The method

uses the green channel and averages its intensity of all pix-

els within the ROI. The green channel offers a beneficial

trade-off between absorption by haemoglobin and penetra-

tion depth and thus typically shows the highest signal-to-

noise-ratio considering a single colour channel [24, 29].

Other more complex solutions combine colour channels to

yield a better signal-to-noise ratio. Generally one can distin-

guish between data-driven channel combinations and chan-

nel combinations based on a priori knowledge [28]. Data-

driven methods make use of source separation techniques

like independent component analysis [17]. Though widely

implemented, the results using such methods are equivo-

cal and their practical application is further complicated by

additional constraints like permutation indeterminacy [26].

Methods based on a priori knowledge rely on the obser-

vation, that the effect of blood pulsation and artifacts are

differently pronounced in channels of different colour or

projection spaces. Researchers have proposed multiple al-

gorithms to exploit such differences by combining colour

channels. CHROM [6] and POS [25] are amongst the most

popular methods. Both methods combine the red, green

and blue colour channel to yield a signal, which reflects the

blood pulsation very well while suppressing artifacts and

specular reflections.

Heart rates be estimated by detecting single heart beats

in the pulse signal. However, due to the typically low sig-

nal quality they are identified most often in the frequency

domain, using fast Fourier transform (FFT) to transform the

filtered signal and examine its frequency components, as

in [1, 23].

To segment the ROI, most works rely on either static
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bounding boxes, e.g. Verkruysse and Lewandowska [24,

13] or use tracking of feature points to compensate for sub-

ject motion [20, 8]. Respectively statistical skin detec-

tion [18], neuronal-network based skin detection [12] or

static colour thresholds [3] help to reduce the number of

pixels not contributing to the signal. Another approach de-

fines the ROI using facial landmarks to increase the number

of skin pixels, e.g. [11]. Trumpp et al. used Bayesian skin

detection in combination with a level set approach to seg-

ment skin from background [23]. This approach not only

considers skin regions but aims for homogeneous areas be-

cause they are assumed to contribute to an improved signal-

to-noise-ratio.

Similar to Trumpp, this contribution proposes a level set

approach as well, but uses different constraints and sub-

stantially differs by relieving the dependency on pre-trained

skin classification and expressing fore- and background

models as multivariate distributions, allowing a more pre-

cise segmentation of skin in cases of non-uniform fore- and

background. It uses Gaussian mixture model (GMM) to

train an individual model for the pixels’ classes (skin and

non-skin) for each video and embeds this model into a level

set function. Since the algorithm is initialized in the face re-

gion at the start of the video, the derived ROI contains skin

areas of the face but is not limited to them. Due to its inde-

pendence from facial landmarks or other shape constraints,

it is further adaptable to movement, rotation or partial oc-

clusion of the subject.

In the next section, we will first provide the foundations

of the algorithm, namely details on GMM and level sets.

Based on that, we will present the implementation of the al-

gorithm. Afterwards, testing data sets and evaluation meth-

ods are presented. At last, our results are shown and dis-

cussed.

2. Methods

2.1. Gaussian Mixture Models

GMM is a common way to model a unknown data dis-

tribution. A GMM models the data by multivariate normal

distributions, which are called components of the mixture

model. Thereby a mixture of K Gaussians is described by

a set of normal density functions

K
∑

k=1

πkN (µk, σ
2
k) (1)

where N (µ, σ2) is a Gaussian distribution with mean µ

and standard deviation σ. Expanding this formulation to

n-dimensional orders, σ2
k is replaced with the n×n covari-

ance matrix Σk. Each component is assigned a weight πk,

which add up to one. The weights themselves are the prior

probability for each component. The Gaussian distribution

represents the likelihood function for a given component.

Using Bayes’ theorem the posterior probability of an obser-

vation x belonging to component k is given by

p(zk = 1|x) = πk ·
N (x|µk,Σk)

∑K

j=1 πj · N (x|µj ,Σj)
(2)

Here zk = 1 denotes that x belongs to component k. Since

the probability distribution is not known, it has to be es-

timated from the observed data. Given N observations

x1,...,N , this estimation is performed by the expectation-

maximization algorithm (EM-Algorithm).

For now let yik be shorthand for p(zk = 1|xi) from equa-

tion 2. Starting with an initial estimation for the mixture

components given by the K-means algorithm, the expecta-

tion step consists of evaluating equation 2 for all observa-

tions and components [21].

The maximization step then updates each components con-

figuration according to the new estimates. The priori prob-

ability is replaced by the average of new posteriors for this

component according to

πk
′ =

1

N

N
∑

i=1

yik (3)

Means and variances are updated accordingly by calculating

µk
′ =

∑N

i=1 yikxi
∑N

i=1 yik
(4)

and

Σk
′ =

∑N

i=1 yik(xi − µi
′)(xi − µi

′)T
∑N

i=1 yik
(5)

The process of alternating expectation and maximization

steps is repeated until the log-likelihood of the model, given

by equation 6, converges to a local maximum.

ln p(X) =
N
∑

i=1

ln
K
∑

k=1

πkN (xi|µk,Σk) (6)

2.2. Active Contours with Level Set

Active contours describe the method of evolving a curve

in order to segment an object from its surroundings within

an image. From a starting initialization, the curve moves

inwards or outwards, guided by a set of restraints, until it

reaches some kind of object boundary [22].

Level set functions use an implicit representation of the

object boundary, i.e. they define a continuous function over

the image space, so that every pixel can be labelled as back-

or foreground. The level set function is propagated towards

the object boundary over a series of iteration steps. The

level set function Φ(x, ti) is therefore defined for every
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pixel x at iteration step ti. The inside or foreground is then

defined by all pixels where Φ(x) > k for a given threshold

k [22].

One fundamental approach to a level set based

foreground-background segmentation was formulated as

energy minimization term by Chan and Vese [5]. For a con-

tour C the energy F is described as

F (C, c1, c2) = µ · length(C) + ν · area(insideC)

+ λ1 ·

∫

insideC

|u0 − c1|dxdy

+ λ2 ·

∫

outsideC

|u0 − c2|dxdy

(7)

where u0 is the intensity of the current pixel, c1 and c2 are

the average intensities for for- and background and µ, ν, λ1

and λ2 are weighting parameters. A larger µ penalises the

curvature of the contour, positive ν favours shrinking of the

contour over growing.

After discretization and linearization, Chan and Vese ar-

rive at a calculation scheme of the φ function for location

(i, j) [4]

φn+1
i,j − φn

i,j

∆t
=

δh(φ
n
i,j) ·

[

µ

h2
∆x

−









∆x
+φ

n+1
i,j

√

(∆x
+
φn
i,j

)2

h2 +
(φn

i,j+1
−φn

i,j−1
)2

(2h)2









+
µ

h2
∆y

−









∆y
+φ

n+1
i,j

√

(φn
i+1,j

−φn
i−1,j

)2

(2h)2
+

(∆y

+
φn
i,j

)2

h2









− ν − λ1(ui,j − c1(φ
n))

2
+ λ2(ui,j − c2(φ

n))
2

]

(8)

Here the gradient of the function φ is approximated by the

finite differences

∆x
−
φi,y = φi,j − φi−1,j , ∆x

+φi,j = φi+1,j − φi,j ,

∆y
−
φi,y = φi,j − φi,j−1, ∆y

+φi,j = φi,j+1 − φi,j

(9)

Furthermore ∆t is an artificial time step between two con-

secutive iteration steps, h is the artificial distance between

two pixels and δh is the following approximation of the

dirac function:

δh(φ
n
i,j) =

1

π · (1 + (φn
i,j)

2)
(10)

3. Skin Segmentation with GMM and Level

Sets

3.1. Overview

The aim of this contribution is to extend the level-set

formulation for skin segmentation and to define a suitable

ROI for iPPG, i.e. define a foreground that serves as ROI.

One specific limitation of the method described by Chan

consists in the handling of background as homogeneous re-

gion. Background is not bound to be homogeneous, but

can feature different coloured objects, e.g. doors, paint-

ings or furniture. Additionally, the subject can wear dif-

ferent coloured clothing. Since these areas belong to the

background class in the special case of skin segmentation,

the approach of segmenting two homogeneous regions pro-

posed by the original level set segmentation is not optimal.

In order to perform the skin segmentation necessary for fur-

ther signal extraction we combine the colour based GMM

with a level set approach to account for spatial dependen-

cies. The proposed procedure requires an individual ini-

tialization, i.e. training a skin and a non-skin model, and

applies a modified level set formulation to segment the ROI

using the model based probabilities.

3.2. Global Parameters of Skin and Non-Skin Mod-
els

To model different coloured objects for skin and non-

skin regions, the number of components for the skin class

and non-skin class have to be set beforehand. After visual

observation of the colour distribution histograms of sam-

pling videos, the number of GMM components was set to

four for the non-skin class and to two for the skin class. The

observation confirmed the assumption that at least three dif-

ferent colour components are present in the non-skin region:

Hair, clothing and background where the background itself

may contain other objects as well.

As displayed in figure 1 the face region may consists of sev-

eral dominant colours. Experiments varying the number of

components for the skin class have shown that using only

one component tends to dismiss parts of the skin region,

where shadows lead to darker areas. On the other hand,

three or more components increased the risk of adding fa-

cial hair and eyes to the skin area. Accordingly the skin

model was set to two components, taking into account skin

inhomogeneity and discriminating against hair or other oc-

clusions.

Figure 2 shows the colour cloud of a whole frame and the

corresponding skin and non-skin GMMs. Note that one

component of the skin class is mainly shadowed by a non-

skin component, indicating that the colour is also present in

the background, e.g. hair.
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Figure 1: Histogram of pixels in the face region of a sin-

gle subject, projected on blue (top), green (middle) and red

(bottom) colour channel.

3.3. Initialization

The individual GMMs for skin and non-skin are both

generated from the first frame of the sample video. This ini-

tialization step has to be executed once for each video file.

At first a face detection algorithm determines the position of

the subjects face. The presented algorithm identifies the ob-

jects position with a cascade classifier using Haar features.

Here the pre-trained Haar cascade, supplied by the OpenCV

framework [21], is implemented. Pixels within the resulting

bounding box are marked for training the skin GMM, while

pixels on the outside of the box contribute to the estimation

of the non-skin GMM.

3.4. Segmentation

After calculating the models for skin and non-skin, a

level set function is used to derive a implicit segmentation.

Therefore the data term (ui,j − c(φn))2 in equation 8 of the

Chan & Vese model, which penalizes the euclidean distance

between pixel value and average fore- or background inten-

sity in RGB space, is replaced by a proportion of posterior

probabilities originating form the GMM models. Especially

given a RGB triple u0, the penalizing terms for the skin and

non-skin class are given by

distskin(u0) =
pskin(u0)

pskin(u0) + pnonSkin(u0)
(11)

(a) Colour cloud

B
lu
e

Green

Red

(b) Representation of skin (red) and

non-skin (blue) GMMs. Each blob is

centred at its mean with radii of its di-

agonal elements of Σ

Figure 2: Colour cloud and calculated GMMs using EM

algorithm for a single subject.

and

distnonSkin(u0) =
pnonSkin(u0)

pskin(u0) + pnonSkin(u0)
(12)

Posterior probabilities pskin and pnonSkin are the cumula-

tive posteriors of the respective model, e.g. pskin is calcu-

lated by

pskin(u0) =

K
∑

k=1

πk · N (u0|µk,Σk) (13)

In order to limit the effect on locations where both skin and

non-skin models yield a low posterior probability but a high

proportion, additional weighting factors are introduced by

wskin(u0) = −
1

log(pskin(u0))
(14)

and

wnonSkin(u0) = −
1

log(pnonSkin(u0))
(15)

Substituting the data term in equation 8, the following

4324



iterative solution to calculate φ is employed

φn+1
i,j =

[

φn
i,j + δh · (µ ·

(

φn
i+1,j · divR

+ φn
i−1,j · divL+ φn

i,j+1 · divU + φn
i,j−1 · divD

)

− ν − λ1 · wskin(ui,j) · distskin(ui,j)

+ λ2 · wnonSkin(ui,j) · distnonSkin(ui,j))

]

·
1

1 + δh · µ · (divR+ divL+ divU + divD)
(16)

The inverse gradient in equation 16 of the φ function is de-

fined by following functions

divR =
1

√

(∆x
+φ

n
i,j)

2 + (
φn
i,j+1

−φn
i,j−1

2 )2

divL =
1

√

(∆x
−
φn
i,j)

2 + (
φn
i,j+1

−φn
i,j−1

2 )2

divU =
1

√

(∆y
+φ

n
i,j)

2 + (
φn
i+1,j

−φn
i−1,j

2 )2

divD =
1

√

(∆y
−
φn
i,j)

2 + (
φn
i+1,j

−φn
i−1,j

2 )2

(17)

The calculation is repeated until the solution converges to a

local maximum, i.e. the difference between the last function

and the current one is lower than a previously set threshold,

or a maximum number of iterations is reached.

4. Data and Evaluation Strategy

4.1. Video Data

To evaluate the proposed algorithm a set of validation

videos was recorded. Seven subjects were recorded for a

duration of 30 seconds. During this time the subjects were

instructed to move their head. This data set will further be

denoted as movement data set. The videos were captured

by a RGB camera (IDS UI-3370CP-C-HQ) positioned at a

distance of 30 to 50 cm to the subjects head. The resulting

field of view covered the head and parts of the upper body of

the subject, as in figure 3. Recordings took place in an office

building under uncontrolled daylight and ceiling lighting.

Daylight intensity and subjects’ position relative to ceiling

differed, resulting in uncontrolled illumination. The record-

ing parameters were set to a video size of 320× 420 pixels,
recorded at 100 fps. The recorded 12 bit videos were trans-

formed to colour depth of 8 bit per channel for image seg-

mentation and signal extraction. For validation purposes, a

Figure 3: Frames and segmented ROI before (left) and after

(right) movement.

reference photophlethysmogram (PPG) was recorded dur-

ing the video recording using a finger clip (ADInstruments

MLT1020FC).

Additionally, the proposed algorithm was tested on the

video data supplied for the first Challenge on Remote Phys-

iological Signal Sensing (RePSS) [14]. The data consists

of videos from the VIPL-HR V2 database [16] and Oulu

BioFace (OBF) Database [14, 27]. The supplied data set

contains 500 subjects with five 10 second video sequences

each. The provided samples are recorded in various loca-

tions, under different illumination conditions, with varying

resolutions and video qualities. This data will further be

denoted as RePSS data set.

4.2. Signal Processing

The aforementioned procedure yields a ROI that can be

used as base for the subsequent processing steps, namely

signal extraction and heart rate estimation.

For signal extraction, as discussed in the introduction,

multiple strategies have been described. In this contribution

we choose the green channel as it doesn’t require further

calculation steps. We add CHROM [6] and POS [25] as

more complex solutions that are widely acknowledged and

have been shown to be powerful.

For heart rate estimation, we consider sequences of 10

seconds duration. The heart rate is estimated for each seg-

ment independently by the following procedure: First, sig-

nal segments are band pass filtered in order to remove trends

and high frequency components originating from image

noise or artefacts. The cut-off frequencies are set to 0.5Hz
for the high pass filter and 4Hz for the low pass filter. Sec-

ondly, we transform the filtered signal to frequency domain

using the FFT. Lastly, the frequency component having the

highest amplitude within the range of 50 to 180 bpm is pre-

sumed to originate from the heart rate. This procedure is

equally applied to all methods of signal extraction, i.e. the

green channel, CHROM or POS. Figure 5 demonstrates the

procedure.
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4.3. Reference Methods

In order to allow a meaningful assessment of the pro-

posed approach to define a suitable ROI, we compare it

against state of the art methods. The compared methods

differ in the definition of the ROI and its tracking, respec-

tively, as follows: VJ static: The ROI is obtained by using

the Viola & Jones face detection implemented in OpenCV

on the first frame of each video [21]. The resulting bound-

ing box is kept static over the whole video.

VJ dynamic: We use the same initial ROI as VJ static, but

instead of keeping it at a static position it is moved accord-

ing to an average displacement vector. The average dis-

placement is obtained by averaging over all displacement

vectors calculated with the Kanade-Lucas-Tomasi tracker

on a set of feature points within the initial ROI [9, 2]. The

displacement is calculated between every frame of the se-

quence.

VJ skin: This method equals VJ dynamic but in addition a

skin classifier is applied to the dynamic ROI. The method

additionally tries to exclude non-skin pixel from entering

the ROI. Skin is classified by a Bayesian classifier, as de-

scribed by Jones et al. [10].

Subsequent steps after ROI segmentation, i.e. signal

extraction and heart rate detection, are identical for all ROI

handlings and include using the green channel, CHROM

and POS.

5. Results and Discussion

5.1. Evaluation Metrics

In order to compare different approaches and methods,

the accuracy and mean absolute error (MAE) are evaluated.

The MAE is calculated as the average of absolute differ-

ences between the reference and estimated heart rate over

all video sequences of a data set.

To quantify the accuracy of an algorithm, the estimated

heart rate is compared to the reference. If the estimated

heart rate lies within a predefined range around the refer-

ence heart rate, it is assumed as true positive. This range is

set to HRref ± 5 bpm as in Rasche et al. [19]. The ac-

curacy is defined as the number of true positives divided by

the overall number of estimation.

5.2. Results

The results on the movement data set, as given in table 1,

show that our method outperforms standard procedures for

ROI segmentation. Using the green channel on a static ROI

performs slightly better than a moving ROI. Moving of the

ROI probably introduces additional artefacts, which pol-

lute the signal. In turn, the proposed algorithm produces

a more smooth ROI, which leads to less disturbances in the

extracted signal as shown in figure 5a and 5b.

Figure 4: Segmented ROI in pixelated frames from the

RePSS challenge data [15].

Heart rate estimations on the RePSS data set are not as

accurate as on the movement data set. This was expected,

since the videos feature more difficult lighting conditions,

stronger image noise, a lower frame rate and were com-

pressed using a lossy video codec. Another source of error

was the implemented face detection, which failed on some

of the sample videos. Since a precise location of the face

is important to train the GMMs, future work will therefore

include a more robust face detection. Though low heart rate

detection rates limit the significance of the results on the

RePSS data set, an improvement using the proposed algo-

rithm can be observed.

5.3. Discussion

The presented approach was shown to improve the heart

rate estimation compared to state of the art methods. The

obtained results still do not suffice the needs, particularly in

the RePSS data set. This finding can be explained, in parts,

by the challenging nature of the used data sets. Accuracies

of 90 percent and above, as reported when using other data,

will be difficult to obtain. However, the presented approach

leaves space for improvements. As stated before, the used

face detection limits the performance of the method and will

be replaced in the future. In addition, we are going to pur-

sue to include additional constraints in order to improve the

level set formulation.

The proposed algorithm to segment a ROI also partici-

pated in the First Challenge on Remote Physiological Signal

Sensing [15]. It featured 1000 10-second video sequences

for which the heart rate had to be estimated. Rankings

were based on the MAE metric. The heart rates submit-

ted to the challenge by us were obtained by using the pre-

sented method to segment a ROI and further processed by

the CHROM pulse extraction. Though all videos were pix-

elated around the mouth and eye area and challenging light-

ing conditions, as shown in figure 4, the method yielded a

promising result underlining the potential of the proposed

approach.
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(a) Extracted signal using the proposed algorithm.

Top: raw signal, middle: filtered signal, bottom: fre-

quency spectrum with estimated HR (black) and refer-

ence HR (red).
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(b) Extracted signal using the tracked ROI with skin

detection. Top: raw signal, middle: filtered signal, bot-

tom: frequency spectrum with estimated HR (black)

and reference HR (red).

Figure 5: Signal processing steps for subject 6.

Green channel CHROM POS

ROI ID Accuracy MAE Accuracy MAE Accuracy MAE

VJ static 0.2381 24.87 0.6667 12.77 0.7143 11.06

VJ dynamic 0.1905 24.61 0.5714 15.28 0.6667 12.49

VJ skin 0.3333 18.82 0.6190 10.18 0.6190 12.05

LS GMM 0.4762 18.19 0.8571 5.91 0.8571 4.13

Table 1: Accuracy and MAE for different combinations of ROIs and pulse extraction methods on the movement data set.

6. Conclusion

We have shown that the selection of skin region has a

high impact on the performance of heart rate estimation al-

gorithms. Furthermore our experiments suggest, that seg-

menting a continuous and homogeneous region is more

valuable to pulse extraction than pixelwise skin classifica-

tion. Our calculated ROI can further be used to increase the

performance of other pulse extraction methods as CHROM

or POS significantly, as it constructs a ROI which inhab-

its less noise and motion artefacts than static skin detection

or tracking of feature points in order to transform the ROI.

Every method profits from better video quality and stable

illumination. Our experiments have confirmed, that combi-

nations of the colour channels can lead to better heart rate

detection. Still the raw signals from the green channel can

be used for other applications, e.g. analysis of the pulse

waves morphology as conducted by Fleischhauer et al. [7].

Our work demonstrated that heart rate estimation is possi-

ble even under severe motion of the subject, but for other

applications using the pulse wave, movement still poses a

difficult challenge, which we will continue to address.
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Green channel CHROM POS

ROI ID Accuracy MAE Accuracy MAE Accuracy MAE

VJ static 0.1709 23.53 0.3315 16.89 0.3331 16.32

VJ dynamic 0.1693 23.36 0.3283 16.39 0.3455 15.95

VJ skin 0.1385 26.28 0.3411 16.77 0.3279 17.21

LS GMM 0.1845 22.92 0.3579 13.61 0.3283 16.62

Table 2: Accuracy and MAE for different combinations of ROIs and pulse extraction methods on the RePSS data set.
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