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Abstract

While most rPPG approaches extract the pulse signal-

s based on single facial region of interest (ROI), this re-

search proposes a new method to extract pulse signals from

ROIs with multiple scales. The idea is that rich pulse fea-

tures can be extracted by varying ROI scales and combining

these features would contribute to the accuracy improve-

ment. The proposed framework consists of three main steps:

1) constructing facial ROI pyramid with multiple scale lev-

els, 2) blood volume pulse (BVP) signals extraction, and 3)

signal fusion using convex combination with Gaussian and

uniform priors, respectively. This paper also investigates

how the commonly used algorithms perform under multi-

scale ROIs. Experiments were conducted using one publicly

available dataset and one self-collected dataset. The results

show that the ROI with a size slightly smaller than the face

boundary achieves on average higher measurement accura-

cy. The high-quality pulse signal appears not consistently

in one scale level but rather in multiple levels according to

measurement environments and motion statuses. Therefore,

the fusion of multiple pulse signals is beneficial to the mea-

surement accuracy improvement.

1. Introduction

Recent years have witnessed a rapid growth of remote

photoplethysmography (rPPG), a technology that measures

blood volume pulse (BVP) and heart rate in a non-contact

way based on optical/physiological principles [33]. Com-

pared to the conventional photoplethysmography (PPG) that

utilizes a contact pulse oximeter under green and infrared

light [4], rPPG utilizes a consumer-level digital camera un-

der visible light, which broadens the pulse measurement

application including incubator monitoring [5], fitness ex-

ercise [35], face anti-spoofing [10], sleep monitoring [25],

etc. Despite its wide application, a large amount of scientif-

ic problems makes it an active research topic.

The choice of a facial ROI acts as the first key step of the

system. First, the pulsatile signal strength varies at differ-

ent locations on the face due to the distribution of capillar-

ies beneath the skin surface. The location of an ROI has a

direct impact on the quality of the raw rPPG measuremen-

t. Second, the shape of an ROI always leads to unneces-

sary inclusion of undesired pixels like eyes, mouth, hair, or

background pixels, thus, introducing rigid/non-rigid motion

artifacts. Third, the scale of an ROI determines the propor-

tion of different face location pixels in the ROI, which also

affects the shape of the raw rPPG measurement. The lo-

cation, shape, and scale of an ROI are factors that directly

determine the signal separation model used for pulse extrac-

tion. It is crucial to choose a good ROI to guarantee a higher

measurement accuracy.

Prior researches have paid attention to the relationship

between facial subregion and rPPG signal quality. Kwon

et al. [6] divided the face into seven regions and evaluated

the quality of the signal of each region. They found that a

forehead and both cheeks have a potential to be good can-

didates for pulse extraction, while the signal quality from

a mouth and a chin is relatively low. Poh et al. [17] pro-

posed to select an ROI of 60% of the width of the full face

and full height. Zhao et al. [37] used an ROI below the

eye line that covers the skin region within the nose, mouse,

and cheeks. Tulyakov et al. [24] divided the warped fa-

cial region into subregions and proposed self-adaptive ma-

trix completion (SAMC) to dynamically select regions use-

ful for robust heart rate estimation. Wang et al. [31] treated

every facial subregion as an independent sensor for pulse

measurement and proposed an algorithm to exploit the re-

dundancy of an image sensor to distinguish the pulse signal

from motion-induced noise. The signal strength variation is

partially due to the physiological facts of the human anato-

my, e.g., the cheek, lips, and chin region comprise a higher

proportion of capillaries that results in higher absorption of

light compared to other regions of the face. However, the

region with higher pulsatile strength is not necessarily suit-

able for rPPG extraction because these regions may inter-

vened by non-rigid motions like eye-blinking, talking, and

smile, etc.

Image resolution and video compression also have an

impact on rPPG measurement accuracy. Due to some

recording device and transmission limitations, the resulting
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image is sometimes compressed and the ROI has low reso-

lution, resulting in a decrease in signal-to-noise-ratio of the

extracted pulse signal [14, 34]. To mitigate this limitation,

McDuff [13] proposed to use a deep image super resolution

networks prior to rPPG pulse extraction pipeline. Zhao et

al. [36] discarded the blue and red channel signals that are

polluted heavily by video compression and proposed sin-

gular spectrum analysis (SSA) decompression and spectral

masking algorithm to refine the extracted pulse signal.

Eulerian video magnification (EVM), firstly proposed by

Wu et al. [32] to reveal subtle color variations in the im-

age, has shown to be effective for rPPG pulse extraction

[3, 19]. Instead of using the ROI directly, EVM-based rPPG

approaches first construct a Gaussian pyramid and then the

highest level images are used for rPPG extraction. Essen-

tially, EVM acts as a feature extraction model that converts

to image representations to other feature space for further

learning of rPPG related features.

This paper introduces multi-scale image processing tech-

niques into rPPG signal extraction, which has not been ful-

ly investigated in the published literature. The basic idea

of this paper is to increase the diversity of the BVP sig-

nal by building multi-scale facial ROIs, from which com-

plementary pulse features can be extracted. Combining the

candidate features would contribute to the final signal qual-

ity improvement. To this end, we propose multi-scale fa-

cial ROIs by scaling up and down the original ROI, result-

ing in multiple averaged rPPG measurements (traces) that

vary in waveform. rPPG features are extracted from these

traces in each level, respectively, and fused to obtain the fi-

nal pulse signal. The subregion selection and partial ROI

based approaches, together with the EVM-based approach-

es in essence deal with single-scale ROI. On the contrary, by

varying the scale of an ROI, the number of candidate pulse

signals is increased, which mitigates the limitation of some

core rPPG algorithms that at most n − 1 independent dis-

tortions can be suppressed by linearly combining n source

signals.

The contributions of this paper are summarized as fol-

lows:

1) We propose a novel rPPG pulse extraction framework

based on multi-scale feature extraction and fusion. To the

best of our knowledge, this is the first attempt to investigate

simultaneous pulse signal extraction on multi-scale facial

ROIs.

2) We analyze some (linear combination) rPPG ap-

proaches’ response to multi-scale facial ROIs, revealing the

distribution of signal quality between multiple scale levels

under various motion statuses and recording setups.

3) We demonstrate the effectiveness of the proposed al-

gorithm on two benchmarking datasets in comparison with

state-of-the-art methods. Our approach achieves higher ac-

curacy than state-of-the-art rPPG methods.

2. Related work

2.1. Remote photoplethysmography

The models used for rPPG pulse extraction include: 1)

blind source separation (BSS) based model, e.g., principle

component analysis (PCA) [15, 8] and independent compo-

nent analysis (ICA) [18]; 2) skin reflection model, which is

based on the optical/physiological principles [2, 26, 29, 28];

and 3) deep learning based models [20, 22, 1, 16]. This

paper is mostly related to the skin reflection model, more

specifically, CHROM [2] and POS [26]. These algorithm-

s extract pulse signal by projecting the traces to axes re-

lated to specular and diffusion reflectance, followed by a

fine-tuning step. These algorithms extract the pulse signal

by linearly combining the trace. The trace averaged over a

single-scale ROI always has three color channels. At most

two independent sources signal can be eliminated. Howev-

er, in the real world situation, the trace contains many more

independent sources [30]. Therefore, diversity of the trace

is desired for better signal separation performance.

2.2. Multi­scale image processing

Multi-scale image processing plays an important role

in many computer vision tasks such as image compres-

sion, image denoising, image restoration, image enhance-

ment, and super-resolution. Learning a discriminative im-

age representation is one of the main objectives of a visual

processing system. Usually, multi-scale image transform-

s may contribute to a good representation that captures the

scale of an object in the real world. Image pyramid is one

of multi-scale image representations that transforms image

with repeated smoothing and subsampling. Image pyramid

is widely used in keypoint detection [11], image classifica-

tion [7], image segmentation [9], etc.

The advantage of multi-scale image processing lies in

the fact that some features that are not significant at cer-

tain scale may become significant in other scales. Multi-

scale image representation generates rich feature diversity

in scale space, which is beneficial to the related vision task.

Based on this idea, we introduce multi-scale image process-

ing technique to the field of rPPG pulse extraction, in an

attempt to exploit the effectiveness of the combination for

accuracy improvement.

3. The proposed method

3.1. Overview

Fig. 1 depicts the overview of the proposed rPPG signal

extraction method, which consists of three main steps: 1)

video pyramid establishment, 2) BVP signal extraction, and

3) multi-scale signal fusion. Each frame is cropped by a set

of multi-scale facial ROIs, resulting in a video pyramid with

multiple scale levels. The images are spatially averaged to
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Figure 1. Overview of the proposed rPPG signal extraction framework.

obtain the rPPG traces. Each trace is then fed into a BVP

signal extraction algorithm to obtain the initial pulse signal.

They are then fused together to obtain the final pulse signal.

3.2. Video pyramid establishment

The key to establishing a video pyramid is the multi-

scale facial ROIs. Let wl, hl be the width and height of the

facial ROI of level l, the multi-scale facial ROI are defined

as follows:

wl = w0 ·
(

1

2

)l

hl = h0 ·
(

1

2

)l (1)

for l = −1, 0, 1, ..., where w0, h0 are the width and height

of the ROI in level 0. The multi-scale facial ROIs share

the same center (cx, cy). We designate the ROI in level 0
as the bounding box that tightly encompasses the boundary

of the whole face, which can be obtained by a commonly

used face detector and tracker. To construct the multi-scale

facial ROIs, on one hand, we half the initial ROI size, i.e.,

l = 1, 2, .... These ROIs mainly cover the skin region, i.e.,

no background pixels are involved. As these ROIs cover

different facial regions, the color variations are different ac-

cordingly. For example, some ROIs involve eye-blinking or

talking artifact while others do not. By this means, some

artifacts are initially separated to some extent. On the other

hand, we double the initial ROI size, i.e., l = −1. The pur-

pose is to involve some background pixels because it is ben-

eficial to consider the behavior of background when apply-

ing the signal extraction algorithm, i.e., the specular reflec-

tion and the background color variation are closely related

to non-rigid motion artifacts. Fig. 2 illustrates the multi-

scale facial ROIs of a given frame.

The pixels within the multi-scale facial ROIs are con-

verted to the raw rPPG traces by spatial averaging, which is

level -1

level 0

level 1

level 2

level 3

Figure 2. Multi-scale facial ROIs.

calculated by the following equation:

Il,c(t) =
1

Area(Rl(t))

∑

x,y∈Rl(t)

Ic(x, y, t) (2)

for l = −1, 0, 1, ..., where Ic(x, y, t) denotes the pixel in-

tensity at coordinate (x, y) of the t-th frame, c ∈ {R,G,B}
denotes the color channel, Rl(t) denotes the ROI of level

l and the t-th frame, Area(Rl(t)) is calculated as the total

number of pixels within Rl(t). The ROIs in every frame are

determined by a face tracker. The raw rPPG trace is calcu-

lated by concatenating the averaged pixel intensity Il,c(t)
over all t, which is denoted as Il(t).

The multi-scale facial ROIs increase the diversity of the

raw traces. An illustration can be seen in Fig. 3. In the first

video (Rows 1 and 2), the eye-blinking artifacts are more

significant in trace level 0 (red) than in trace level 2 (green).

This is because ROI level 0 covers the entire eyes region

while the percentage of eye-pixels is relatively low in ROI

level 2. For the second video (Rows 3 and 4), two traces

are anti-phase due to the fact that ROI level 0 covers back-

ground pixels while ROI level 3 does not. The increased

diversity of rPPG traces leads to rich pulse features extract-

ed by the BVP signal extraction algorithm. Some of the

pulse features are complementary and thus contribute to the

improvement of the final pulse signal quality.
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Figure 3. Illustration of the raw traces extracted from multi-scale

facial ROIs. First row: example video 1, in which the subject is

blinking eyes; second row: rPPG traces extracted from video 1,

ROI level 0 (red) and level 2 (green); third row: example video 2,

in which the subject moves his body horizontally; last row: rPPG

traces extracted from video 2, ROI level 0 (red) and level 3 (blue).

3.3. BVP signal extraction

The BVP signal needs to be extracted from the multi-

scale rPPG traces. Numerous BVP extraction approach-

es have been proposed. In this paper, we employ Plane-

Orthogonal-to-Skin (POS), which is first proposed by Wang

et al. [26] and widely adopted by various rPPG researches.

POS is based on the skin reflection model. POS defines a

projection plane orthogonal to the vector [1, 1, 1]T in order

to eliminate the dependency of skin tone. The raw traces are

projected on two vectors on this plane in order to separate

the BVP signal and the motion artifacts. The projected sig-

nals are further fused by α-tuning to obtain the final BVP

signal. We apply POS to the raw trace Il(t) for all scale lev-

els. Therefore, in this section, we temporally omit the level

index l for the raw traces Il(t) and denote it simply as I(t).
Specifically, the raw trace is first processed by the temporal

normalization,

In(t) = N · I(t) (3)

where N ∈ R
3×3 is a diagonal matrix whose i-th diagonal

gives the reciprocal of mean value of the i-th row of I , i.e.,

Nii = 1/µ(Ii) (4)

The temporally normalized trace is then projected on t-

wo vectors defined by a projection matrix, Pp = [0 1 −
1;−2 1 1] where each row denotes a projection axis orthog-

onal to each other. The projected signals can be written as

follows:

S1(t) = InG(t)− InB(t) (5)

S2(t) = InG(t) + InB(t)− 2InR(t) (6)

In order to separate the specular and pulsatile compo-

nents, the projected S1 and S2 need to be processed by α-

tuning,

x(t) = S1(t) + αS2(t) (7)

where α = σ(S1(t))/σ(S2(t)), and σ(·) denotes the stan-

dard deviation. x(t) is the extracted BVP signal, in this

paper, we also call it the POS feature. We apply POS algo-

rithm to the trace of each level, resulting in a total number

of L BVP signals, where L denotes the number of levels in

the video pyramid. Hereafter, we denote xl(t) as the POS

feature x(t) extracted in level l.

Applying POS to multi-scale traces is a generalization

of the original POS algorithm. When we set l = 0, the

proposed algorithm becomes POS. The purpose of apply-

ing multi-scale POS feature extraction is to facilitate easy

pulse extraction. In the conventional (single-scale) POS ex-

traction, all the motion artifacts are combined with the B-

VP signal. A linear POS operation has limited strength to

extract clear BVP signal at all motion circumstances and

recording environments. Instead, with the help of multis-

scale facial ROIs, the motion artifacts are partially separat-

ed. The resulting traces in each level contains fewer signal

sources, which eases the pulse extraction.

The skin reflection model does not consider the back-

ground changes. One issue may arise when applying POS

to level l = −1, where background pixels are involved. We

argue that the POS algorithm is applicable to level l = −1
as long as the skin pixels dominate the ROI. This condi-

tion is mild and the following cases can satisfy: the subject

keeps stationary or the motion is not vigorous.

3.4. Multi­scale signal fusion

The final pulse signal is computed by fusing the candi-

date POS features extracted from multi-scale traces. Due to

the fact that the candidate POS features are assumed to be

complementary, we cast the signal fusion problem as fea-

ture combination rather than feature selection. To this end,

the convex combination is employed:

p(t) =

L
∑

l=−1

λl · xl(t) (8)

where λl denotes the weight of level l and is subject to the

constraint
∑

l λl = 1 to prevent intensity augmentation.

The key step is to determine the weight for each level. A

natural thought is to compute a pulsatile measure and as-

sign a larger weight to the level with a higher score. How-

ever, we tested two pulsatile measures, i.e., autocorrelation

that measures the periodicity of the candidate pulse [12] and

signal-to-noise-ratio (SNR) that measures the ratio between

the spectral power in and out of the common heartbeat fre-

quency range [27]. Unfortunately, the results are discourag-

ing.

As an alternative, we notice that the POS features have

different pulsatile energy in different levels. Larger weights

should be assigned to those levels with stronger pulsatile

energy. We exploit two priors to determine the weights. The
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first is Guassian prior,

λl(µ0, σ0) =
1√
2πσ2

0

exp

(

(l − µ0)
2

2σ2
0

)

(9)

where µ0 and σ0 denote the center and standard deviation of

the level index, respectively. The Gaussian prior is based on

the observation that the pulsatile strength in middle-levels is

stronger than that of the lower and higher levels.

The second is uniform prior,

λl =
1

L+ 2
(10)

for l = −1, 0, 1, ..., L. The uniform prior assigns equal

weights to all the POS candidates.

The operations discussed above are within the range of

a time window. For long time monitoring, we concatenate

the windowed output to obtain the long-time pulse signal.

Specifically, given a video of length N , we first divide the

sequence into segments of length T , apply the proposed al-

gorithm to obtain the windowed output, and apply overlap

adding [2] to concatenate them to obtain the final output.

4. Experimental setup

4.1. Datasets

We employ two datasets for the evaluation of the per-

formance of the proposed algorithm, one publicly avail-

able dataset PURE [23] and one self-collected dataset Self-

RPPG.

PURE [23]: A benchmark video dataset involving 10

healthy subjects (8 male, 2 female). The video sequences

are of size 640 × 480 pixels, 30 Hz, and stored in PNG

format. 6 head motions are performed: 1) steady (sitting

still, no movement), 2) talking, 3) slow translation (head

movements parallel to the camera plane with slow speed),

4) fast translation (head movements parallel to the camer-

a plane with fast speed), 5) small rotation (subjects rotate

their heads with angles of 20◦), and 6) medium rotation

(subjects rotate their heads with angles of 35◦). The rich

head motion types make this dataset suitable for this re-

search to investigate their impact to the multi-scale pulse

signals.

Self-RPPG: The PURE dataset is restricted to head mo-

tions. In order to simulate real world situations, we col-

lected a more challenging dataset. Fore categories are con-

sidered: 1) stationary (sitting still, no movement), 2) head

translation (head movement horizontally with medium and

fast speed), 3) recovery (heart rate recovery after a 3-

minute running on a treadmill), and 4) biking (subjects per-

form exercises on a biking machine). The dataset contains

13 healthy subjects (10 male, 3 female). 78 video sequences

were recorded of 30 fps, 640 × 480 pixels, 1-minute dura-

tion, and stored in uncompressed AVI format. Ground-truth

pulse waveforms are recorded simultaneously using a pulse

oximeter (Model CMS50E, Contec Medical).

Fig. 4 shows some snapshots of the datasets.

Figure 4. Sample images of the datasets. First row: PURE, second

row: Self-RPPG.

4.2. Evaluation metrics

Three commonly used metrics are employed to evaluate

the performance of the algorithms.

Signal-to-noise-ratio (SNR) was first defined by De

Haan et al. [2] and is widely adopted in rPPG field to mea-

sure the quality of the estimated pulse signal compared with

the ground truth, which is defined as follows:

SNR = 10 log10

(

∑5
f=0.8 U(f)P 2(f)

∑5
f=0.8(1− U(f))P 2(f)

)

(11)

where P (f) denotes the power spectrum of the extracted

pulse waveform, f denotes the frequency in Hz, and U(f)
denotes a template separating signal and noise, which is de-

fined as:

Û(f) =







1, fr − γ
2 ≤ f ≤ fr +

γ
2

1, 2fr − γ
2 ≤ f ≤ 2fr +

γ
2

0, otherwise

(12)

where fr denotes the ground-truth heart rate calculated by

transforming the pulse signal to the Fourier domain by dis-

crete Fourier transform (DFT), and γ denotes the spectral

window length.

We calculate one heart rate value HR for each windowed

output and compare it with the ground truth HRr. The mean

absolute error (MAE) and root mean squared error (RMSE)

are used to evaluate the accuracy,

MAE =
1

M

M
∑

t=1

|HR(t)− HRr(t)| (13)

RMSE =

√

√

√

√

1

M

M
∑

t=1

(HR(t)− HRr(t))2 (14)

where M denotes the total number of heart rate estimations.
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4.3. Compared methods

Two state-of-the-art rPPG core algorithms, CHROM [2]

and POS [26], are chosen for comparison because they

achieved very good performance in most of the rPPG ap-

plications. Due to the fact that they are designed for single

scale ROI, we apply them to the traces in each level individ-

ually. By doing this we can investigate how they perform

with varying ROI scales, which has not be studied before in

the published literature. In addition, the proposed algorithm

with Gaussian and uniform priors are also compared.

4.4. Implementation details

The face bounding box of the initial scale (l = 0) is man-

ually selected for the first frame and tracked by Kanade-

Lucas-Tomasi (KLT) tracker [21] for the following frames.

We have a total number of 5 scale levels (L = 3), window

length T = 1.6s. We use λ = [0.05, 0.2, 0.5, 0.2, 0.05]T

for Gaussian prior and λ = [0.2, 0.2, 0.2, 0.2, 0.2]T for u-

niform prior. We use a 10s time window and 1s step size

when calculating the heart rate.

5. Results and discussion

The performance of the proposed algorithm in compari-

son with the compared methods on two datasets are reported

in Tables 1 and 2.

5.1. Response to ROI scale variation

The results in Tables 1 and 2 show that POS and

CHROM in levels l = 0, 1 have better accuracy (e.g., S-

NR, MAE, and RMSE). The performance gets worse when

l increases or decreases. The trend can be seen in Fig. 5,

where the trace and pulse of a video in Self-RPPG dataset

are plotted. Compared with conventional single-scale POS

or CHROM, the changes brought about by the proposed

multi-scale facial ROIs can be summarized in the following

three aspects. First, the traces in higher levels, e.g., l = 3, 2,

exhibit a large amount of camera quantization error (Fig. 5,

last row, column 4-5). This is because the spatial size of

the ROI is small and the camera quantization error cannot

be fully eliminated by spatial averaging. Second, the B-

VP signals are the most prominent in middle levels, e.g.,

l = 1, 0, which is the most effective range for the skin re-

flection model (Fig. 5, last row, column 3). This is in agree-

ment with previous research where ROIs that are slightly

smaller than or tightly bound the face boundary were wide-

ly used. Third, the lowest level contains significant motion

artifacts (Fig. 5, last row, column 1-2), which is caused by

non-skin pixels that are not considered in the skin reflection

model.

The results imply that CHROM and POS have their suit-

able ROI scales, i.e., ROIs that are too large or too small

will make the algorithms ineffective. The results also imply

Category 01 02 03 04 05 06

SNR (dB)

CHROMl
−1

9.96 3.42 7.04 5.58 7.43 6.65

POSl
−1

10.90 4.38 7.36 6.03 8.30 6.62

CHROMl0
12.13 5.45 9.12 6.37 8.66 7.66

POSl0
13.21 6.22 9.56 7.90 9.93 8.69

CHROMl1
13.44 5.13 12.82 12.19 11.18 10.30

POSl1
13.73 5.53 12.11 11.21 11.79 10.74

CHROMl2
10.08 4.84 9.02 8.58 7.94 7.80

POSl2
9.96 4.97 9.21 8.48 8.20 7.69

CHROMl3
5.18 2.68 5.08 4.34 3.85 4.04

POSl3
5.65 2.82 5.22 4.53 4.11 4.49

proposed g 13.79 6.58 12.37 11.42 11.77 11.09

proposed u 11.90 6.47 10.64 9.60 9.57 9.16

MAE (bpm)

CHROMl
−1

1.93 3.35 2.72 7.35 2.05 3.40

POSl
−1

1.98 9.31 2.20 4.16 2.74 2.57

CHROMl0
1.87 4.92 1.66 4.28 2.53 2.92

POSl0
1.74 3.68 1.61 2.06 1.51 1.68

CHROMl1
1.89 4.18 1.60 1.81 1.45 1.65

POSl1
1.65 3.58 1.61 1.78 1.48 1.58

CHROMl2
1.81 3.54 1.67 1.91 1.51 1.62

POSl2
1.85 4.35 1.70 2.02 1.47 1.62

CHROMl3
2.82 8.95 2.80 6.03 5.04 6.89

POSl3
2.78 8.71 1.94 6.46 5.12 4.85

proposed g 1.74 2.99 1.63 1.77 1.48 1.58

proposed u 1.76 3.22 1.65 1.81 1.48 1.61

RMSE (bpm)

CHROMl
−1

2.95 15.65 5.13 10.22 3.82 5.65

POSl
−1

3.15 13.02 3.35 6.78 5.00 4.60

CHROMl0
2.86 8.50 2.14 6.62 4.92 5.28

POSl0
2.49 6.25 2.11 3.21 2.02 2.21

CHROMl1
2.90 7.56 2.11 2.66 1.95 2.11

POSl1
2.14 5.72 2.11 2.35 1.99 2.03

CHROMl2
2.74 5.93 2.25 3.06 2.03 2.08

POSl2
2.76 7.40 2.31 3.41 1.95 2.09

CHROMl3
5.67 15.29 5.15 8.42 7.68 9.35

POSl3
6.13 16.55 3.17 8.42 8.21 7.84

proposed g 2.51 4.22 2.15 2.33 1.97 2.04

proposed u 2.53 5.41 2.15 2.38 1.98 2.08

Table 1. Results on PURE dataset. 01-Steady, 02-Talking, 03-Slow

translation, 04-Fast translation, 05-Small rotation, 06-Medium ro-

tation. The best scores of each column are highlighted in boldface.

the effectiveness of the multi-scale facial ROIs in generat-

ing diverse pulsatile features that cannot be processed by

state-of-the-art core rPPG algorithms.

5.2. Performance of the proposed algorithm

The results in Table 1 show that the proposed algorithm

achieves comparable performance to the compared methods
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Category Stationary Translation Recovery Biking

SNR (dB)

CHROMl
−1

7.21 2.23 4.49 -3.16

POSl
−1

8.40 3.30 4.78 -3.56

CHROMl0
9.58 4.11 6.44 2.33

POSl0
10.87 5.49 7.47 2.34

CHROMl1
9.98 7.58 7.51 2.45

POSl1
11.27 8.38 7.95 2.20

CHROMl2
8.45 6.13 5.89 2.26

POSl2
9.12 6.13 5.99 2.14

CHROMl3
6.34 4.64 4.20 1.77

POSl3
6.64 4.73 4.20 1.43

proposed g 11.94 9.08 8.63 3.98

proposed u 11.47 8.38 8.31 3.57

MAE (bpm)

CHROMl
−1

1.15 11.90 3.05 33.19

POSl
−1

1.46 9.73 1.83 37.49

CHROMl0
0.70 6.32 1.25 10.69

POSl0
0.66 4.19 1.32 11.87

CHROMl1
0.66 2.67 0.92 5.10

POSl1
0.77 1.19 0.91 8.91

CHROMl2
0.72 2.10 1.00 6.36

POSl2
0.86 1.76 1.01 6.79

CHROMl3
0.76 2.06 1.38 8.79

POSl3
1.00 1.70 1.47 8.52

proposed g 0.74 0.70 0.82 4.82

proposed u 0.79 0.88 0.79 3.16

RMSE (bpm)

CHROMl
−1

2.82 14.57 7.91 39.52

POSl
−1

3.03 12.51 4.56 42.81

CHROMl0
1.87 8.91 3.61 15.02

POSl0
1.80 6.06 3.37 16.51

CHROMl1
1.77 4.33 2.63 8.58

POSl1
2.07 2.40 2.68 12.68

CHROMl2
1.83 3.47 3.22 9.01

POSl2
2.24 2.86 2.76 9.61

CHROMl3
1.88 3.27 3.38 12.98

POSl3
2.59 3.67 4.01 11.65

proposed g 2.03 1.36 2.47 7.32

proposed u 2.11 1.54 2.30 5.03

Table 2. Results on Self-RPPG dataset. The best scores of each

column are highlighted in boldface.

on PURE dataset, e.g., the proposed algorithm has better S-

NR score in ‘Steady’, ‘Talking’, and ‘Medium rotation’ cat-

egories, while the POS and CHROM have better SNR score

in ‘Slow translation’, ‘Fast translation’, and ‘Small rotation’

categories. The MAE and RMSE results exhibit similar ten-

dency to SNR. The results in Table 2 show that the proposed

algorithm outperforms the compared methods in SNR by a

large margin, e.g., increased by 0.67 dB in ‘Stationary’, 0.7

Figure 5. Trace and extracted pulse plot on different scale level-

s. First row: snapshot of a video, in which the subject moves his

head horizontally. Second row: traces averaged over correspond-

ing ROIs. Third row: pulse signals (green line) extracted by POS

in comparison with the ground truth PPG signal (red line).

dB in ‘Translation’, 0.58 dB in ‘Recovery’, and 1.53 dB in

‘Biking’, respectively. The results imply that by combining

POS features extracted in multi-scale ROIs are beneficial

to signal quality improvement, which means that the multi-

scale POS features are complementary to each other.

l
l

l
l

Figure 6. Estimated heart rate (blue lines) in comparison with the

ground truth heart rate (red line) on Self-RPPG dataset. Vertical

axis denotes the heart rate in beats per minute (bpm) and horizontal

axis denotes time in second of a video.

Fig. 6 depicts the heart rate comparison on Self-RPPG

dataset. We only depict l = 1, 2 results because their per-

formances are better than other scale levels. One can see the

accuracy by comparing the overlap between the blue line

(estimated heart rate) and the red line (ground truth heart
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rate). The results show that all the methods achieve accu-

rate results for the stationary case, while the performance

degrades for other cases that involve motion. The accuracy

in ‘Biking’ is on average lower than that in ‘Translation’,

which means that the accuracy drop becomes larger when

the motion gets vigorous. Nevertheless, the proposed algo-

rithm achieves the highest accuracy.

To visualize the response of the compared methods to the

scale levels, we draw the SNR map as is shown in Fig. 7. Let

pte ∈ R
T be the estimated pulse signal in the time window

of length T , ptg ∈ R
T be the corresponding ground truth

PPG signal. We compute the SNR of pte ∈ R
T according

to Equ. (11), where the ground truth heart rate is estimat-

ed based on ptg ∈ R
T using DFT. We set window length

T = 5s (150 frames) and step size to be 1 frame. The region

with brighter color represents the place where the extracted

BVP signal has higher similarity to the ground truth PPG.

From Fig. 7 one can see that the presence of the clean pulse

is not consistent at a certain level. It depends on the motion

types and is time-varying. Therefore, the feature combina-

tion strategy is beneficial to the accuracy improvement.

S
ta
ti
o
n
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y

T
ra
n
sl
at
io
n

R
ec
o
v
er
y

B
ik
in
g

Figure 7. SNR map of a sample video. Vertical axis denotes scale

levels and horizontal axis denotes time of a video.

5.3. Comparison between priors

In order to investigate the fusing effectiveness of the two

priors, we give the box plot of SNR results on two datasets,

as is shown in Fig. 8. The results show that the SNR ac-

curacy of two fusion priors has the same tendency between

Figure 8. Box plot of SNR results of two fusion priors on two

datasets.

motion types, i.e., they have higher accuracies on station-

ary cases and lower accuracies on tougher cases like biking

or talking. T-test results show that the SNR results of t-

wo priors have no significant difference except for Biking

in Self-RPPG (p = 0.2287 > 0.05) and Talking in PURE

dataset (p = 0.7397 > 0.05).

6. Conclusions

The basic idea of this paper is to increase the diversi-

ty of the BVP signal by building multi-scale facial ROIs,

from which complementary pulse features can be extract-

ed. Combining the candidate features contributes to the

improvement of the final signal quality. Experimental re-

sults demonstrate that varying the scale of facial ROI has a

detrimental effect on state-of-the-art rPPG approaches, but

the final pulse signal quality can be improved by combing

multi-level pulse candidates. The reason can be explained

that clean pulse signal appears not consistently in one level

but rather depends on the subject status, recording setups,

etc. This research demonstrates the effectiveness of varying

ROI scale for rPPG pulse extraction. Moreover, it is known

that the forehead and cheeks have the strongest rPPG signal.

Therefore, to vary both the position and scale of the ROIs

would further improve the measurement accuracy.
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