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Abstract

Deep neural networks are a key component of behav-

ior prediction and motion generation for self-driving cars.

One of their main drawbacks is a lack of transparency: they

should provide easy to interpret rationales for what triggers

certain behaviors. We propose an architecture called Atten-

tional Bottleneck with the goal of improving transparency.

Our key idea is to combine visual attention, which identi-

fies what aspects of the input the model is using, with an

information bottleneck that enables the model to only use

aspects of the input which are important. This not only pro-

vides sparse and interpretable attention maps (e.g. focus-

ing only on specific vehicles in the scene), but it adds this

transparency at no cost to model accuracy. In fact, we find

slight improvements in accuracy when applying Attentional

Bottleneck to the ChauffeurNet model in comparison to a

traditional visual attention model that degrades accuracy.

1. Introduction

Deep neural networks are powerful function estimators

and have been a key component in self-driving software

systems [2, 13]. Such networks are, however, notoriously

cryptic – their hidden layer activations may have no obvious

relation to the function being estimated by the network. Ex-

plainability of deep neural networks has thus seen growing

interest in computer vision and machine learning [5, 11],

with visual attention-based approaches like Kim et al. [7]

being specifically applied to autonomous deep driving net-

works. Visual attention finds spatially varying scalar atten-

tion weights α(x, y) ∈ [0, 1] typically by learning a multi-

layer perceptron from a set of input features F = {f(x, y)}.

Attended features A = {a(x, y)} obtained as a(x, y) =
α(x, y)f(x, y) are then used by the model instead of the

original features F. The model is trained end-to-end, lead-

ing the attention weights to link the network’s output to its

input – visualizing the weights as a 2D heatmap thus pro-

vides insight into the areas of the input image that the net-

work attends to. Furthermore, to be easily interpretable, at-

tention needs to be sparse (i.e. low entropy), while ideally

also enhancing the performance of the original model. Un-
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Figure 1. An overview of our interpretable driving model. Our

model takes a top-down input representation I and outputs the fu-

ture agent poses Y along with an attention map. An Attentional

Bottleneck encodes the inputs I to a latent vector z while also

producing an interpretable attention heat map. The motion gener-

ator operates in a partially observable environment using only the

dense scene context S ⊂ I along with z to predict poses Y .

fortunately, given the complexity of the driving task, we find

that a straightforward integration of attention maps tends to

find all potentially salient image areas, resulting in limited

interpretability (e.g. Figure 3).

In this work, we manage to achieve sparse and salient

attention maps and good final model performance, by at-

taching attention to a bottlenecked latent representation of

the input. However, given the information loss in the bottle-

neck, we need to provide the model direct access to a subset

of dense inputs (e.g. road lane geometry and connectivity

information) that are harder to compress. This frees up the

bottleneck branch to focus on selecting the most relevant

parts of the dynamic input (e.g. nearby objects), while re-

taining the model performance.

End-to-end driving models that directly process a cam-

era image as input have several scene elements confounded

into nearby pixels thus making a separation into dense and

sparse input subsets infeasible. Therefore, we focus on im-

proving the interpretability of a driving model that uses a

mid-level input representation. This means that instead of

directly using low-level sensor data, the model uses higher-

level semantic information like objects detected by a per-
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Figure 2. Top-down rendered inputs I (left) and outputs Y (right)

for the ChauffeurNet model. The subset of dense scene context

inputs S are shown in the top row.

ception system. As a proxy for such a network, we work

with the recently published ChauffeurNet [2] model, al-

though the ideas presented are more generally applicable.

To generate sparser and more interpretable attention

maps, we propose an architecture called Attentional Bot-

tleneck (Figure 1) that combines visual attention with the

information bottleneck approach [9] of training deep mod-

els through supervised learning [1, 4, 6]. We define z as

a bottleneck latent representation of an attention weighted

feature encoding AI = αI · FI of the input features FI .

We leverage the mid-level input representation to separate

the subset of dense inputs into a set S ⊂ I. Conditioned on

z and S , the motion generator finally predicts the target Y .

Our goal is to learn both the attention weighting function

αI and an encoding z that is maximally informative about

the target Y . To prevent z from being the identity encoding

of the inputs and to focus the network on specific areas of

causality, we impose an information bottleneck constraint

on the complexity of z by a pooling operation. We preserve

spatial information in the attention map by incorporating a

positional encoding step, and encode non-local information

by using Atrous convolutions.

We evaluate our approach on the large-scale dataset from

[2] and show quantitative and qualitative results illustrat-

ing that our generated attention maps result in much sparser

(and thus more interpretable) visualization of the internal

states than a baseline visual attention model. We also show

that our approach improves the motion generation accuracy

in contrast to a traditional visual attention model that results

in decreased accuracy.

2. Related Work

Explainability of deep neural networks has seen grow-

ing interest in computer vision and machine learning [5].

In landmark work, Zeiler et al. [12] utilized deconvolution

layers to visualize the internal representation of a ConvNet.

Bojarski et al. [3] developed a richer notion of contribution

of a pixel to the output, while other approaches [14, 8] have

explored synthesizing an image causing high neuron acti-

vations. However, a difficulty with de-convolution based

approaches is the lack of a formal notion of contribution of

Rendered 
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Figure 3. Comparison of attention maps from our model against

those from a baseline visual attention model. Note that our

heatmaps are much sparser and thus more interpretable.

spatially-extended features (rather than pixels).

Attention-based approaches [11] have been increasingly

employed for improving a model’s ability to explain by pro-

viding spatial attention maps that highlight areas of the im-

age that the network attends to. Kim et al. [7] utilize an

attention model followed by additional salience filtering to

show regions that causally affect the output. To reduce the

complexity of explanations, Wang et al. [10] introduce an

instance-level attention model that finds objects (i.e. cars

and pedestrians) that the network needs to pay attention to.

Such attention may be more intuitive and interpretable for

users to understand the model’s behavior.

However, the model needs to take the whole input con-

text as an additional input, which may compromise the

causality of the attention – explanations may not represent

causal relationships between the system’s input and its be-

havior. To preserve the causality, we use a top-down rep-

resentation of the environment as an input, which consists

of information around the agent rendered in separable chan-

nels.

3. Visual Attention

ChauffeurNet. Bansal et al. [2] introduced a mid-to-mid

driving network called ChauffeurNet that recurrently pre-

dicts future poses of the agent by processing a top-down

representation of the environment as an input. The inputs I
to this network consist of information about the roadmap,

traffic lights, dynamic objects, etc. rendered in separate

channels into a common top-down view coordinate system

around the agent. The model predicts future agent poses Y
in the same top-down view (see Figure 2).

The rendered inputs I are fed to a convolutional Fea-

tureNet, which outputs features F that capture the envi-

ronmental context and the intent. This feature F (of size

w×h×d) contains a set of d-dimensional latent vectors over

the spatial dimension, i.e. F = {f1, f2, . . ., fl}, where

fi ∈ Rd and l (= w × h) is the spatial dimension of the

extracted features. The feature encoding F is fed to a recur-

rent neural network, AgentRNN, which predicts the output

agent poses Y .

ChauffeurNet with Visual Attention. The goal of

visual attention is to find an attended feature A =
{a1,a2, . . . ,al}, where ai ∈ Rd from the original fea-
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ture F. As discussed by several works [11, 7], the attended

features can be computed as ai = π(αi, fi) = αifi for

i = {1, 2, . . . , l}, where αi are scalar attention weights in

[0, 1] satisfying
∑

i αi = 1. These weights are estimated

from the input features F typically by a multi-layer per-

ceptron, i.e. αi = fMLP(fi) where the parameters of fMLP

are learned as part of training the entire model end-to-end.

Since the attention weights vary spatially and depend on the

input (via the features F), they can be visualized as an at-

tention heatmap aligned with the input image, with brighter

regions reflecting areas salient for the task.

To allow us to explain the driving decisions made by

ChauffeurNet, we apply this vanilla visual attention ap-

proach by replacing the original features F with the at-

tended features A as shown in Figure 4. As shown in Fig-

ure 3, this approach generates vague and verbose attention

maps which do not add to the interpretability of the model.

Therefore, we use this approach as a baseline for our “At-

tentional Bottleneck” approach.

4. Attentional Bottleneck

We propose a novel architecture called Attentional Bot-

tleneck with a focus on generating sparse and fine-grained

visual explanations. We encode the environment I through

an information bottleneck that serves to restrict information

in the input to only the most relevant parts of the input, and

thus allows the driving model to focus on specific features

in the environment. We tie this feature selection to the spa-

tial distribution of features by employing a spatial attention

mechanism before the bottleneck. While the driving task in-

volves focusing on specific objects and entities in the scene

for the immediate driving decisions, humans also employ

a holistic understanding of some elements of the environ-

ment e.g. of the overall map. We find that compressing

this kind of dense information through the bottleneck either

leads to dense attention maps or degrades the model per-

formance. Therefore, we leverage the mid-level separable

input representation and provide the model full access to a

subset of inputs S ⊂ I containing the dense context about

the environment, through a separate branch. This frees up

the bottleneck branch to focus on specific parts of the input

(e.g. specific objects) making the attention map sparser and

more interpretable.

Grounding Attentional Bottleneck into AgentRNN. Like

the baseline model, the inputs I are first encoded into fea-

tures FI by the FeatureNet network. To capture non-local

information, we propose an Atrous Spatial Attention layer

that computes the attention weights αI and outputs the

attended features AI . The attended features are depth-

concatenated with a positional encoding V followed by a

multi-layer perceptron gMLP, and an average pooling layer

ChauffeurNet ChauffeurNet

w/ Visual Attention

Ours

FeatureNet
(ConvNet)

AgentRNN
(Motion Generator)

Visual Attention

FeatureNet
(ConvNet)

AgentRNN
(Motion Generator)

FeatureNet
(ConvNet)

Avg Pooling

Visual Attention

FeatureNet
(ConvNet)

AgentRNN
(Motion Generator)

Figure 4. Attentional Bottleneck design compared with a baseline

visual attention model applied to ChauffeurNet.

to generate the final bottleneck representation z.

z =

l∑

i=1

gMLP([ai;vi]) (1)

The dense scene context inputs S are similarly encoded

into features FS using another FeatureNet network with

identical architecture. We modify AgentRNN to incorpo-

rate the bottleneck vector by concatenating it with each of

the features fi ∈ FS .

5. Experiments

We trained our models end-to-end on the large-scale

dataset from [2] with ChauffeurNet’s default losses. To

quantitatively evaluate motion generation performance, we

use two widely-used Euclidean distance-based metrics: (i)

the average displacement error (ADE) 1

K

∑K

k=0
||p̂k −

p
gt
k ||2 , and (ii) the final displacement error (FDE) ||p̂K −

p
gt
K ||2, where K = 10 is the total number of predicted way-

points, and the superscript gt denotes the ground-truth val-

ues. To measure the sparseness of the generated attention

maps, we measure the entropy of the generated attention

heat map α, i.e. S(α) = −
∑l

i=1
αi logαi.

Analysis. Figure 6 compares our motion generation and

attention sparsity metrics across different model variants.

We observe that the incorporation of visual attention for im-

proving the interpretability of the baseline model degrades

its performance as measured by the larger ADE and FDE

numbers (model B). This is not the case with our atten-

tional bottleneck model where we observe improved ADE

and FDE numbers (model C) – possibly due to improved

focus by the model on specific causal factors. Examples in

Figure 3 compare our attention maps to those from the vi-

sual attention model, and confirm that the latter generates

verbose attention heat maps – finding all potentially salient
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Figure 5. We provide typical examples of attention heat maps in diverse driving scenarios. Our model attends to driving-related visual cues

like highlighting stop/yield signs, crosswalks or cars ahead that cause braking, road contours on curved roads, or multiple pinch points

from parked cars on narrow roads.
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Figure 6. Comparison of motion generation performance and at-

tention map sparsity between baseline ChauffeurNet, visual atten-

tion and our Attentional Bottleneck design.

objects. In contrast, our model provides much sparser at-

tention heat maps which are easier to associate with spe-

cific objects or rendered features and are thus easier to in-

terpret. Figure 5 shows several examples of our attention

output across common driving scenarios that involve slow-

ing down, stopping, avoiding obstacles etc. This is evident

by comparing their distributions as shown in Figure 7 where

the attention weights from our model are mostly concen-

trated around zero probability values.

6. Conclusions

We described an approach for improving interpretablity

of a mid-to-mid deep driving model by augmenting a visual

attention model with an attentional bottleneck layer. Our

results highlight sparse attention maps which are easy to

interpret and do not degrade model performance. We see

opportunity in taking this further to generate instance level

attention maps and to also use these maps as a guide to im-

proving the performance of the baseline driving model.
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