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Figure 1: Embedding space of unknown and badly segmented objects based on ResNet152 features. Darker regions symbolize

higher global density. Contour lines are regions of highest density [13] of gaussian kernel density estimates of the data

conditioned to the classes depicted on the thumbnails. Bandwidth selection for the gaussian kernel density estimates is done

using Scott’s rule [31] and we select α = 0.2 for the highest density regions. Dimensionality reduction has been performed

using PCA down to 50 dimensions followed by t-SNE [34] with perplexity of 30, early exaggeration of 12 and learning rate

of 200.

Abstract

When deploying deep learning technology in self-driving

cars, deep neural networks are constantly exposed to do-

main shifts. These include, e.g., changes in weather con-

ditions, time of day, and long-term temporal shift. In

this work we utilize a deep neural network trained on the

Cityscapes dataset containing urban street scenes and in-

fer images from a different dataset, the A2D2 dataset, con-

taining also countryside and highway images. We present

a novel pipeline for semantic segmenation that detects out-

of-distribution (OOD) segments by means of the deep neu-

ral network’s prediction and performs image retrieval af-

ter feature extraction and dimensionality reduction on im-

age patches. In our experiments we demonstrate that the

deployed OOD approach is suitable for detecting out-of-

distribution concepts. Furthermore, we evaluate the im-

age patch retrieval qualitatively as well as quantitatively

by means of the semi-compatible A2D2 ground truth and



obtain mAP values of up to 52.2%.

1. Introduction

The advances of convolutional neural networks (CNNs)

in the recent years enabled the use of machine learning for

complex computer vision tasks that had been considered out

of reach before. Among them is the semantic segmentation

that facilitates complex scene understanding [20]. Appli-

cations like e.g. autonomous driving, medical imaging or

surveillance are problem domains that induce a high risk

and lead to fatal consequences when using CNNs in an au-

tonomous and unsupervised fashion. Thus it is of utmost

importance to monitor CNNs and ask for human interven-

tion when questionable predictions are detected [11].

In general, there are many aspects of a machine learning

pipeline for computer vision that require supervision, not

necessarily by humans. Starting with data collection at the

very beginning it is of high importance to collect a sample

of the visual world that represents the sub environment for

which a CNN’s deployment is desired. As the visual world

has basically an infinite variability, a sufficient representa-

tion (in particular in safety relevant scenarios) is not easy

to accomplish. Additionally, the acquisition of annotation

can be an expensive and time consuming task. A variety of

publications presented different possible approaches. While

some publications try to reduce the cost of label acquisition

with techniques like semi supervised learning [24], weakly

supervised learning [2, 19, 24] or active learning [28, 32],

more recent works on self-supervised learning [7,16] try to

extract visual features without requiring labeled data. Fur-

thermore, generating synthetic data for training neural net-

works is also considered. Publications in this direction in-

clude the rendering of highly realistic images [35] or using

generative adversarial networks (GANs) for generation and

augmentation of already collected data [30].

Similar to the data acquisition phase, monitoring is also

required when a trained model is deployed in the (open)

real world – which is under constant change over time and

space. As we cannot assume that available training sam-

ples represent the target real world environment well, it is

highly relevant to track possible prediction failures and situ-

ations that are completely new to the model at hand. Impor-

tant research areas that tackle these problems include uncer-

tainty or confidence estimation as well as out-of-distribution

(OOD) detection. Works in the field of uncertainty or confi-

dence estimation include Bayesian methods [8, 15, 38], en-

semble methods [17] as well as approaches that acquire in-

formation from intermediate layers of the network or from

its predictions to train a second model that serves as confi-

dence estimator [6, 11, 23, 27]. The task of OOD detection

has been broadly studied for image recognition [6,11,18,23]

and most of these methods are applicable to the problem of

semantic image segmentation. Approaches specifically de-

signed for semantic segmentation include e.g. [3, 22]. Both

try to measure confidence on pixel level which is in contrast

to the method used in this work. The authors of [3] utilize

shared convolutional features to predict segmentation con-

fidence with an additional output branch. Using a negative

dataset as a proxy for OOD objects, they train their auxiliary

model to predict model confidence. In [22] the authors pro-

pose to use ensembles of models to calibrate the prediction

confidence. This is however computationally expensive, es-

pecially for state-of-the-art semantic segmentation models

in the context of street scene segmentation.

During autonomous driving, even a simple change of lo-

cation can result in a severe domain shift resulting in unseen

objects. Additionally, the real world is subject to continu-

ous transformation. Therefore it is indispensable to update

deep learning models regularly. This results in a continuous

feedback loop between the previously described steps of a

machine learning pipeline, the data acquisition stage and

the deployment phase. Our work makes important contri-

butions to a more efficient workflow of this process. Us-

ing a meta classification and regression approach termed

MetaSeg [27] to find unknown objects, we can group the de-

tected entities into visually and semantically related groups

in order to enhance data exploration in the presence of do-

main shift. Using predicted segmentation masks and image

retrieval within newly collected data, our approach can be

used to find classes that may be underrepresented or miss-

ing in the training dataset. This knowledge can be used for

example to improve the existing model by partly labeling

novel object classes and including them into the next train-

ing round. In summary the contributions of this work are as

follows:

1. We show that MetaSeg predicts the intersection over

union of out of domain samples reliably.

2. Using MetaSeg we demonstrate that we are able to de-

tect unknown object classes.

3. By extracting visual features we are able to group the

found entities into an embedding space with semanti-

cally related neighborhoods.

4. We perform an evaluation on the task of image retrieval

with a variety of common deep learning architectures

as feature extractors.

To the best of our knowledge, this is the first work that re-

liably detects OOD samples in semantic segmentation and

reveals their semantic similarity.

The remainder of this work is structured as follows: In

section 2 and section 3 we describe the theoretical founda-

tions of our OOD detection and retrieval pipeline. Using the

Cityscapes dataset [4] as source domain and the A2D2 [9]



dataset as target domain (out of domain sample) we demon-

strate in section 4.1 that we are able to reliably detect un-

known objects in the presence of domain shift. Comple-

menting the meta segmentation analysis we conduct exper-

iments on an image retrieval task and present in section 4.2

qualitative and quantitative results to demonstrate that this

technique can be used to enhance data exploration for se-

mantic image segmentation.

2. Out-of-Distribution Detection

Under the premise that objects of unknown classes

mostly cause suspicious predictions, we can quantify this

effect and use it for OOD detection. Therefore we deploy

an approach that estimates segmentation quality for each

predicted segment by means of statistical properties. This

approach is termed MetaSeg [27] and was developed further

in [21,29]. Based on a structured dataset of metrics that ag-

gregate dispersion measures of the softmax output as well

as geometric properties of each predicted segment, a regres-

sion model is trained to predict the segmentation quality (in

terms of segment-wise intersection over union (IoU) with

the ground truth, also known as the Jaccard index [14]). To

this end, we train a small fully-connected neural network

on the set of metrics solely corresponding to in-distribution

data. In what follows we describe this procedure in more

detail, starting with the construction of metrics as proposed

in [29]:

Given the output fz(y|x,w) of the semantic segmenta-

tion model for input x, weights w and pixel z over class

labels y ∈ C = {y1, . . . , yK}, we compute the pixel-wise

classification entropy

Ez(x,w) = −
1

log(K)

∑

y∈C

fz(y|x,w) log fz(y|x,w) , (1)

the probability margin

Mz(x,w) = 1− fz(ŷz(x,w)|x,w)

+ max
y∈C\{ŷz(x,w)|x,w)}

fz(y|x,w) ,
(2)

and the variation ratio

Vz(x,w) = 1− fz(ŷz(x,w)|x,w) , (3)

with ŷz(x,w) = argmaxy∈C fz(y|x,w) being the pre-

dicted class of pixel z.

After computing these dispersion measures for each

pixel they are aggregated over each segment using differ-

ent schemes like mean/variance over boundary/inner pixels

and relative quantities between these. This results in a total

of 75 metrics for each segment which are used as input for

the meta segmentation network to predict the segment-wise

IoU (for further details we refer to [27] and [29]). This ap-

proach has the advantage that predicted segments are rated

as a whole whereas other methods that predict the confi-

dence pixel wise, such as eqs. (1) to (3)) (hence providing

uncertainty heat maps), typically have a concentration of

low confidence at the boundary of objects.

Recalling the assumption that unknown concepts are

coming with suspicious segmentations, we detect predicted

segments with low estimated IoU values below a chosen

threshold. Subsequently, each detected segment is framed

by a bounding box, i.e., the rectangular box containing all

pixels of the predicted segment with minimal width and

height. The corresponding crops of the original image are

then subject to further processing and retrieval analysis.

3. Retrieval

After detecting image crops corresponding to segments

with low estimated quality (potential unknown OOD ob-

jects) from newly collected data, further exploration of

these crops can reveal weaknesses of the CNN with re-

spect to the given domain shift. One promising approach

is content-based image retrieval [1] which can help finding

similarities in the crops and ultimately rate the relevance of

clusters with low effort.

Image retrieval is a well known problem with numerous

applications in, e.g., search engines, automatic 3D recon-

struction or document analysis. Typically retrieval starts

with a query image which acts as an anchor to sort the avail-

able data points. Ranking is almost always done by calcu-

lating a visual similarity and sorting all available samples

according to the similarity value. Thus there are two deci-

sions to make: First one needs to extract visual features and

then apply a distance function.

For extracting visual features we evaluate a VGG16 net-

work [33], different sizes of a ResNet [10], WideResNet [37]

and DenseNet [12] all pretrained on ImageNet [5] (imple-

mentation and pretrained weights are taken from the Py-

Torch [25] library). For all these networks we remove the

final fully connected layers, i.e., we only use their back-

bones for feature generation. Unlike the other evaluated

architectures, the original VGG network does not include

global average pooling before the fully connected layers.

To be able to extract features of a fixed dimensionality, in-

dependently of the size of the input image, we also perform

global average pooling to the VGG backbone. As all eval-

uated network architectures have a limit on the minimum

input size we only detect segments with a predefined mini-

mum bounding box height and width. Another necessity for

this choice is that the visual information in a small window

of the image would be very low which is not beneficial for

grouping objects based on visual similarity.

After computing feature vectors of image crops – which

we term embeddings – we desire to explore their similar-

ities. The most common and intuitive distance function

is probably the euclidean distance (eq. (4)). Another fre-



quently used metric is the cosine similarity (eq. (5)) which

can be beneficial for high dimensional data [26] like the fea-

ture vectors extracted from neural networks,

L2(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 x, y ∈ R
n , (4)

cos(x, y) =

∑n

i=1 xiyi
√

∑n

i=1 x
2
i

√

∑n

i=1 y
2
i

x, y ∈ R
n \ {0} .

(5)

In order to reduce noise in the computed embeddings and

to focus on features that are relevant for the detected ob-

jects, a dimensionality reduction can improve retrieval per-

formance significantly. To accomplish this we will evalu-

ate in section 4.2 different numbers of dimensions. For a

dimension lower than four we will utilize the t-distributed

stochastic neighbor embedding (t-SNE) [34] method. It is

a method specifically designed for visualizing high dimen-

sional data in low dimensional spaces while minimizing the

Kullback-Leibler divergence between joint probabilities of

the reduced and original space. For a more detailed expla-

nation we refer to [34]. All other dimensionality reductions

are performed using principal component analysis (PCA).

In summary, our complete OOD detection and retrieval

pipeline looks as follows:

1. Gather semantic segmentation predictions of newly

collected samples.

2. Rate all predicted segments according to their IoU

estimated by MetaSeg (trained solely on the in-

distribution domain).

3. Detect segments with estimated IoU < 0.5 that are,

however, still predicted to belong to classes that are of

high interest 1. For each candidate segment, the corre-

sponding bounding box is used to provide a crop of the

original input image.

4. Feed each crop through an embedding network pre-

trained on ImageNet and compute vectors of visual

features.

5. (Optional) Reduce the dimensionality of the embed-

ding space.

6. Perform retrieval by nearest neighbor search in the re-

sulting embedding space.

4. Experimental Evaluation

For our experimental evaluation we use a state-of-the-

art DeepLabv3+ semantic segmentation model. The imple-

mentation and pretrained weights on the Cityscapes training

1In our experiments we focus on the classes wall, fence, traffic light,

traffic sign, person, rider, car, truck, bus, train, motorcycle and bicycle.
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Figure 2: Intersection over union for segments that have a

predicted IoU below a given threshold.

dataset are taken from the GitHub repository of [36]. The

architecture uses a WideResNet38 backbone and achieves a

mIoU of 83.5% on the Cityscapes test dataset on the stan-

dard label set and an mIoU of 92.2% on the category labels.

We use the Cityscapes training set as source domain and the

A2D2 dataset [9] as target domain in which we try to find

objects that are not well represented in the source domain.

While Cityscapes only contains urban street scenes, A2D2

in addition provides scenes from highways and countryside.

Therefore A2D2 is a suitable choice for exploring concepts

not contained in Cityscapes. In fact, there are classes in

A2D2, for example tractor or obstacles / trash, that are not

present in Cityscapes. The class road blocks has a large por-

tion in common with the Cityscapes classes fence, wall and

guard rail but also contains “highway fences” from German

highways that are not present in urban environments. This

makes A2D2 highly suitable as a target domain to simulate

newly collected data that has to be explored and analysed in

terms of domain shift and possible new object classes that

should be integrated into the next version of the model. As

A2D2 provides quite a large number of images (30 000 in

total), we randomly sample 2 000 images and additionally

include all images that contain instances of the tractor class

as this class is completely new to the semantic segmentation

model. This leaves us with approximately 2 100 images.

All models and experiments were implemented using the

PyTorch framework [25] and the source files can be found

in our GitHub repository2.



Figure 3: Two sample images from the A2D2 dataset. Each of them consists of four panels. Top left: Per pixel entropy

heatmap, top right: prediction of MetaSeg (green color represents high predicted IoU values, red represents low ones),

bottom left: annotation over input image, bottom right: predicted semantic segmentation.
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Figure 4: Number of (not) detected instances of selected

classes from the A2D2 dataset. The minimum size was set

to 128× 128 pixels, green: not detected, red: detected.

4.1. Out­of­Distribution Detection

So far the performance of MetaSeg [27] has not been

evaluated on datasets that are different from the domain

MetaSeg has been trained on. To demonstrate the suitability

of MetaSeg to find badly segmented objects on out of do-

main samples, we evaluate the DeepLabv3+ model [36] on

the A2D2 dataset. First, we calculate the mIoU of the se-

mantic segmentation model on the target domain to have

a reference in terms of segmentation quality. However,

the label sets of A2D2 and Cityscapes are not compatible,

as discussed earlier. Hence, we perform a label map-

ping from the full A2D2 label set to the Cityscapes train-

2https://github.com/RonMcKay/OODRetrieval
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Figure 5: Number of not detected instances of selected

classes from the A2D2 dataset. The minimum size was set

to 128× 128 pixels, green: not detected, red: detected.

ing set. To minimize mapping errors we further map the

Cityscapes classes onto their coarse category ids. Excluding

the void class this leaves us with the seven categories flat,

construction, object, nature, sky, human and vehicle. Note

that we made a small tweak where we mapped the rider

class of Cityscapes to the vehicle instead of the default hu-

man category. This is motivated by the different annotation

styles, i.e., a person riding a bicycle is annotated as bicy-

cle in the A2D2 dataset which is in contrast to the annota-

tion in Cityscapes where the person is annotated as a rider.

DeepLabv3+ achieves a remarkable test accuracy of 99.2%
on the Cityscapes test set with respect to the coarse cate-

gories. Evaluating the DeepLabv3+ on the A2D2 dataset

with this label mapping still results in a mIoU of 77.4%.



In order to demonstrate the effectiveness of MetaSeg

we compute the mIoU under different thresholds, removing

segments with an estimated IoU above the specified thresh-

old from the evaluation. This leads to a minimal perfor-

mance of around 20% as shown in fig. 2. Although the

thresholding does not work as nicely as for the Cityscapes

validation set, the experiment shows that we are able to

identify badly segmented regions and detect them confi-

dently by means of the predicted IoU.

Two example predictions can be seen in fig. 3. On the left

the unknown tractor object is segmented very poorly which

is detected by MetaSeg. On the right the truck as well as

the highway fence are badly segmented which is detected

as well.

Next, we performed an experiment to test whether un-

known objects are consistently segmented with low qual-

ity, i.e., low IoU, and also if MetaSeg predicts a low IoU.

This would be an indispensable property to be able to find

these objects reliably. Under the assumption that large ob-

jects with low predicted IoU are most critical, we collect

all segments that have a predicted IoU of less than 0.5 and

a minimum size of 128 × 128 pixels and count how many

instances of each class are covered by at least one of these

segments. We count an instance as covered by a segment

when the total number of pixels of that instance inside the

segment is at least 50% of the total segment size. For the

evaluation we also only consider ground truth instances that

have a minimum size of 128× 128 pixels, for a given class

their number represents the amount of instances. Note that,

in this scenario we do not use the label mapping as we want

to explore the behavior of our approach with respect to all

A2D2 classes. Figure 4 shows that MetaSeg detects 77.3%
of the instances belonging to the tractor class (which is a

class not present in the source domain). Reviewing the re-

maining 22.7% of tractor instances that were not detected

they are mostly in scenarios where the tractor was obscured

to a large degree by other vehicles or in situations where the

tractor was not on the road but on a nearby farming field.

When analyzing the 16.2% of road blocks instances, we ob-

serve that they are almost exclusively segments of “highway

fences”. The classes nature object as well as truck have also

a relatively high share of detected segments. This is due to

the fact that large trucks and forests / grasslands that cover

a big portion of the image are rather rare in urban environ-

ments. The building cluster consists to a large degree of

tunnels and bridges that span the street. Figure 5 shows

classes that are common in the Cityscapes dataset. The fact

that almost no segments belonging to these classes are de-

tected (except for a few cars, sidewalks and poles) further

demonstrates the performance of MetaSeg on this out-of-

distribution detection task. Performing this same evalua-

tion on the Cityscapes test set leads to an average of 0.06
detected segments per image whereas we detect 0.82 seg-

ments per image in the A2D2 dataset. This shows that we

are consistently detecting out of distribution objects.

4.2. Retrieval Task

In this section we present a qualitative and quantitative

evaluation of the retrieval task described in section 3. Fig-

ure 1 depicts an embedding space of features computed by

a ResNet152. Dimensionality reduction has been performed

using principal component analysis down to 50 dimensions

followed by t-SNE [34] (the original feature space had a di-

mensionality of 2048). Therefore, each predicted segment

that has been detected by MetaSeg is mapped to a data point

/ sample in R
2. Qualitatively the space seems to be well

separated into different clusters of objects. Note that this is

achieved without using any ground truth of A2D2. In or-

der to visualize that the embedded features of detected seg-

ments are clustered according to their semantics, we assign

the A2D2 color code to the embedded samples. Herein,

the class assigned to the predicted segment is the class of

the ground truth segment that has maximal overlap with the

predicted segment.

The classes that contribute the majority of data points in

the embedding space are nature object, road blocks, build-

ings and truck. All of them are well separated into indi-

vidual clusters. The tractor class, although having a rela-

tive share of only 1.3% does also form a cluster close to

trucks, which are semantically related. Embeddings with

the ground truth class sky seem to emerge from situations

with borderline weather conditions like rain or direct sun-

light. In both cases the neural network tends to make false

predictions within sky regions. In addition, one can notice

that in highway scenes the sky covers a much larger area

than in urban scenes. However, due to the training data

consisting of urban scenes, the segmentation network is po-

tentially biased towards predicting buildings in case the sky

looks unusual.

For measuring retrieval performance quantitatively we

use the mean average precision (mAP) which is defined as

mAP =
1

Q

Q
∑

q=1

APq , where (6)

APq =

∑n

i=1 p(i) · r(i)

t
, (7)

with p(i) being the precision when cutting off the retrieval

list at position i, r(i) an indicator function equaling 1 if ele-

ment i is relevant with respect to the query and 0 otherwise,

n is the total number of data points and Q the total number

of queries. It holds that mAP ∈ (0, 1], being 1 if all relevant

objects are at the top of the retrieval list for each query and

minimal if all relevant objects are at the end of each retrieval

list.
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Figure 7: Class-wise retrieval results for a DenseNet201

feature extractor using PCA to reduce to 50 dimensions

followed by t-SNE [34] to reduce the embedding dimen-

sionality to two dimensions. For measuring similarity the

Euclidean distance has been used. The classes have been

sorted from left to right in descending order according to

their frequency in the embedding space. Results are mea-

sured in mAP percentage.

In fig. 6 the quantitative retrieval results with respect to

different feature extractors, embedding space dimensional-

ities and distance metrics are summarized in terms of mAP.

The Euclidean distance benefits from the t-SNE embedding

into a lower dimensional space. This is in contrast to the

cosine similarity that performs worse in low dimensional

spaces. However, the results for cosine similarity show a

small performance increase when going from two to three

dimensions. Over the range of dimensions, the cosine simi-

larity results appear to be more stable. Regarding the differ-

ent feature extractors, deeper networks with more filters ex-

tract more meaningful features which are better in retrieving

visually similar objects. The overall best performing net-

work is the DenseNet201 with 52.2% mAP followed by the

WideResNet101 with 51.3% mAP. The large gaps between

global and class wise mAP is due to a few under represented

classes like, e.g., poles or sidewalk. In our experiments they

have only a few samples and a high visual variability due

to many distracting background objects. This is why these

classes get a mAP in the range of 0.16− 0.38% and reduce

the average over classes. Figure 7 depicts the mAP values

for the best performing setup (DenseNet201 with PCA/t-

SNE reduced to two dimensions) split up into the different

classes that are present in the embedding space. The results

are sorted from left to right in descending order according

to their frequency in the embedding space. In practice, the

frequency of an unknown object is very likely to be an im-

portant indicator. Therefore, it should be estimated before

making a decision whether to acquire new data for training.



Figure 8: Sample prediction from the A2D2 dataset. Pan-

els are the same as in fig. 3. The trailer on the very left

hand side is labeled as tractor, presumably based on previ-

ous frames. This can hardly be established without utiliz-

ing temporal information or expert knowledge. The overall

badly predicted segmentation is likely caused by recording

against direct sunlight.

Our retrieval results in terms of mAP show that retrieval is

useful for such an estimation and for data selection in gen-

eral.

Intuitively the qualitative results in fig. 1 seem to be bet-

ter than the achieved mAP results from fig. 6. The reasoning

behind this is as follows. When looking at the label set of

A2D2, which is where we extract the ground truth infor-

mation for the retrieval task, the visual variability of some

classes is too high to perform retrieval on them based on

visual similarity. The class utility vehicle, e.g., contains not

only trams but also excavators and other construction ma-

chines which have a rather low visual similarity. Another

example is the tractor class. Figure 8 shows a trailer on the

very left hand side. Without any further context, classifying

this trailer to belonging to a tractor is challenging. Previous

frames however reveal that the trailer is mounted to a trac-

tor, therefore it is presumably labeled as tractor. In order to

compute visual features that are correlated with the other

tractor class instances, sequential models could be con-

sidered for exploiting correlations in consecutive frames.

The described issues only represent a few of the challenges

that we face when extracting ground truth information from

pixel label annotation for evaluation of the retrieval task.

In general the retrieval evaluation suffers from the coarse

semantic classes and inconsistencies among the datasets.

Datasets that provide a label set with more fine-grained ob-

ject classes might increase the quantitative retrieval results

significantly. Nonetheless, the qualitative and quantitative

results show that the embedding space is suitable for explor-

ing newly collected data and that the proposed pipeline can

be used to accelerate feedback from the deployment phase

to an update of the training dataset. Note that the proposed

pipeline is of generic nature, in a sense that the user has the

freedom to choose any OOD detection method as well as

any semantic segmentation model.

5. Conclusion and future work

In this work we have demonstrated and validated how

to use prediction quality estimation methods, such as

MetaSeg, and image retrieval to explore newly collected

data that might be affected by domain shift. We are able to

detect object classes that are unknown to the semantic seg-

mentation network due to missing samples in the training

set. Data exploration can be guided by image retrieval on

visual features that are gathered by common deep learning

architectures which are trained on the task of image clas-

sification. However, dataset selection for evaluating this

kind of methods leaves room for further improvement. Also

benchmarking in the fields of OOD detection and uncer-

tainty on OOD samples in semantic segmentation remains

tedious due to the lack of appropriate datasets. We believe

that these subjects deserve to be further addressed in the fu-

ture.

In terms of future work, we plan to explore possibili-

ties to utilize the detected segments. Methods like active

learning or semi supervised learning can be used to reduce

annotation cost for new object classes and still incorporate

them into a new training set. The knowledge gained from a

human in the loop in an active learning setting could also be

used to automatically retrain the embedding network. This

way the visual features would be more meaningful in the

context of the current environment and thus increase re-

trieval performance. Another possible research direction

is the utilization of temporal correlation between adjacent

frames or segmentation networks that are trained to be un-

certain on unlabeled classes like, e.g., the void classes of

Cityscapes.
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