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Abstract

Not only correct scene understanding, but also ability

to understand the decision making process of neural net-

works is essential for safe autonomous driving. Current

work mainly focuses on uncertainty measures, often based

on Monte Carlo dropout, to gain at least some insight into

a models confidence. We investigate a mixture of experts

architecture to achieve additional interpretability while re-

taining comparable result quality.

By being able to use both the overall model output as

well as retaining the possibility to take into account individ-

ual expert outputs, the agreement or disagreement between

those individual outputs can be used to gain insights into the

decision process. Expert networks are trained by splitting

the input data into semantic subsets, e.g. corresponding to

different driving scenarios, to become experts in those do-

mains. An additional gating network that is also trained on

the same input data is consequently used to weight the out-

put of individual experts. We evaluate this mixture of expert

setup on the A2D2 dataset and achieve similar results to a

baseline FRRN network trained on all available data, while

getting additional information.

1. Introduction

Redundancy concepts as well as explainability are essen-

tial to ensure reliability of machine learning models and to

use those models in practice. This is particularly true for

autonomous driving tasks, where reliable and traceable or

explainable outputs are of utter importance. Indeed, there

exist strict requirements within the approval process to be

able to use machine learning models in a production ve-

hicle, mainly being able to trace individual decisions and
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Figure 1. Overview of the mixture of expert (MoE) output and a

visualization of different cases of agreement between experts and

overall MoE output.

being able to reason about them. A first step towards being

able to get reliable conclusions was to intrinsically measure

uncertainties of machine learning models and deep neural

networks in particular [10], both epistemic (or model) and

aleatoric (sensor or data noise) uncertainties. Those uncer-

tainty models usually rely on either Bayesian deep learning

approximations (as in [10]), or rely on having neural net-

works output parameters of mixture models [2].

An alternative approach is to use combination techniques

and architectures, that combine several (possibly redundant)

submodules or -models. An exemplary approach to capture

uncertainties has been proposed by [13] using deep ensem-

bles to estimate epistemic uncertainties. One advantage of

those combination architectures is the possibility to develop

subfunctions and tasks independently and individually, and

to combine them later in order to improve on security for

individual functional components. Ensembling techniques

and fusion architectures are currently already being used to

combine outputs of different subcomponents or even sev-

eral separate version of the same model, either trained on



different subsets of the whole dataset, or just with differ-

ing initialization. However, those techniques were mainly

used to boost benchmark results or to combine several in-

put modalities within one, larger model architecture.

In this work, we examine a further class of models, that

can be seen as a parameterized generalization of ensem-

bling techniques, so called Mixture of Experts (MoE) mod-

els. Furthermore, we try to derive the possibility to reuse the

different outputs to get estimates about the certainty (or un-

certainty) of an output, while also retaining the possibility

to have access to alternative outputs (also cf. Figure 1).

Mixtures of experts were first proposed by Jacobs et al.

in [9]. A MoE comprises several specialized models (ex-

perts), where each individual expert tries to approximate

the target function on some subset of the input space. Pos-

sibilities to instead use subsets of the available class or la-

bel space for individual experts are discussed in the con-

clusion. A further component of a MoE architecture is the

gate, a trainable component that selects which expert’s out-

put is best suited a particular input. In contrast to other

approaches that combine several models (like ensembles,

fusion, stacking, etc.), the decision-taking logic is explicitly

realized within the gate, which itself has parameters that

can be optimized during training. In fact, this gate can also

be represented as a neural network and trained either sepa-

rately or in combination with the experts.

Classical MoE approaches assume passing inputs in par-

allel through each of the experts as well as through the gate.

In case both, the experts and the gate, are realized as neural

networks, it is reasonable to use a shared feature extraction

in early layers for each of the experts and the gate.

In this work, we used semantic image segmentation as an

exemplary task, using deep neural networks (DNNs) both to

implement the experts as well as the gate.

2. Related Work

Most current work on explainability and uncertainty es-

timation is based on the work by Yarin Gal on estimat-

ing Bayesian neural networks [5], using a technique com-

monly referred to as Monte Carlo dropout. [10] extended

this work by applying Monte Carlo dropout to semantic

segmentation tasks. Uncertainty measures as obtained by

this Bayesian neural network approximation was consecu-

tively further also used to weight individual task losses dur-

ing training in multi-task settings [11].

One challenge for all approaches for uncertainty estima-

tion is to adjust the estimated uncertainties to the statisti-

cal variance as measured on a test set. [8] is thus looking

into different architectures and how well various uncertainty

modeling approaches are calibrated, but on the task of end-

to-end vehicle control. Other approaches are able to gen-

erate multiple plausible segmentation outputs to deal with

multimodal outputs or ambiguous situations [12]. Such out-

puts could be further extended to deduce explainability from

multiple output hypotheses. Finally, [3] are even evaluat-

ing different decision rules and their individual implications

to draw conclusion from neural network output values (as

given by a softmax layer) other than maximum a-posteriori.

Previous work on mixture of expert models mostly fo-

cuses on fusing inputs from different modalities. In this

particular case an individual expert is trained per modality

or input type. In [15] a CNN expert is chosen for each of

the three modalities: appearance (RGB image), depth and

motion (optical flow). The gate weights feature maps as ex-

tracted from all the experts, and weights them in order to

get the best combination of these modalities with an over-

all goal of compensating for sensor noise and adapting to

environment changes.

In [18], a mixture of experts for robust semantic segmen-

tation is defined. The experts are trained separately on in-

puts from different modalities. They use the UpNet archi-

tecture (as defined in [19], an architecture similar to the U-

Net architecture for semantic segmentation [17]) as a base

architecture for their experts. Feature maps are extracted

from the contracting part of each expert and are then passed

through a single gate, which computes weights for each of

the experts. The output of each expert is then weighted ac-

cording to the gate’s weights. Finally, a convolutional layer

and a softmax layer follow. In their use case, they demon-

strate that the mixture of experts achieves higher perfor-

mance when compared to various other fusion approaches.

For multi-sensorial input, the MoE can thus provide addi-

tional robustness: in case of sensor fusion if one sensor fails,

then the gating network assigns higher weights to other sen-

sors. The MoE in this case, however, is not used to achieve

additional explainability and is not used as a real confidence

measure.

A further popular usage of MoE is for part-whole rela-

tionships. In this case, each expert is assigned a subset of

the problem space. [1] and [6] use mixture of expert archi-

tectures for fine-grained classification, where each expert is

learned on a sub-category of objects. Eigen et al. take the

concept of gated mixtures of experts another step further

and introduce stacked MoE models to what they call Deep

Mixture of Experts [4]. Further examples of MoE applica-

tion include multi-task and multi-domain recognition [14].

3. Concept

For now, we focus on the evaluation of mixture of ex-

pert architectures applied to semantic image segmentation

of traffic scenes. As a simplification and a first attempt, we

utilize two experts trained on disjoint splits of the available

input data according to some semantic concept, but other-

wise with identical architectures. The same concept could

also be extended to more expert networks, if required and if

a further data split is appropriate.



Figure 2. MoE Architecture for two experts with a simple gate. The rightmost convolutional layer is optional and we also evaluated MoE

architectures without.

3.1. Experts

The experts used in this work build upon a ResNet-

like architecture from [16], namely Full-Resolution Resid-

ual Network (FRRN). From the two proposed network de-

signs (FRRN A and FRRN B), which differ in input image

resolution and the size of intermediate feature volumes, we

decided to use FRRN A as a basis, which is a shallower ar-

chitecture. FRRN A (see Figure 3) consists of two streams:

the pooling stream and the residual stream, whereas both of

them are tightly connected to keep the information on the

full image resolution via residuals. The pooling stream fol-

lows the encoder/decoder formulation and contains a num-

ber of full-resolution residual units (FRRUs). In the encoder

part of the stream multiple max pooling operations are ap-

plied to shrink the feature maps, which are then gradually

scaled up using unpooling architectures in the decoder part.

For feature extraction, we consider FRRUs in the contract-

ing part of the network: FRRU 31 and FRRU 42. Since we

extract features from the pooling layers of the correspond-

ing FRRUs, we refer to the layers as pool 31 and pool 42.

Each expert is capable of processing the whole input im-

age and returning a label, as it outputs class values for each

pixel individually. These outputs of both experts are then

weighted by the weights as predicted by the gate, as is de-

scribed in the following subsection.

3.2. Mixture of Experts Architecture

Our MoE architecture is inspired by the works of Valada

et al. In [18], a single gating network is used, the combined

feature maps are passed through an additional convolutional

layer. In a further work [20] a class-wise gate is introduced,

s.t. a separate gate is defined for each class. This way ex-

pert weights are predicted not for the whole image, but for

each of the classes. Figure 2 shows the proposed MoE ar-

chitecture. We have experimented with different gate archi-

tectures and it turned out that adding an additional convo-

lutional layer after the combination of the weighted expert

outputs, as done in the works by Valada et al., led to better

performance only in case of a simple (i.e. not class-wise)

gate. Our evaluation further shows that a single gate works

better than a set of class-wise gates.

Furthermore, we have tried extracting feature maps from

different layers of the experts as an input for the gate. The

best results were achieved for the two layers from the con-

tracting part of the network: pool 31 with feature volume

of size 60 × 80 × 16 and pool 42 with feature volume of

size 30 × 40 × 16. These layers have led to comparatively

Figure 3. FRRN A architecture used as base for the expert networks. FRRN layers 31 and 42 are further evaluated as input feature layers

for the gate networks.



Gate Architecture Feature Layer Highway Ambiguous Urban Highway+Urban Mixed

Simple gate pool 31 0.769 0.633 0.710 0.763 0.753

pool 42 0.768 0.633 0.712 0.764 0.754

Simple gate + conv pool 31 0.687 0.583 0.632 0.675 0.665

pool 42 0.763 0.640 0.714 0.765 0.756

Class-wise gate pool 31 0.719 0.649 0.712 0.751 0.746

pool 42 0.732 0.65 0. 712 0.758 0.732

Class-wise gate + conv pool 31 0.742 0.645 0.707 0.754 0.747

pool 42 0.762 0.641 0.658 0.710 0.703

Table 1. Mean IoU for different gate architectures and feature extraction layers (results for the manual data split by road type).

similar mean IoU values (see Table 1). Using raw images

or feature maps from earlier layers (e.g. from FRRU 11)

led to significantly worse results. Also, with the growing

size of the feature volume, the gate training becomes more

computationally expensive. In the following we report the

results for the best architecture: features extracted from the

pool 42 layer, simple gate and an additional convolutional

layer after the weighted expert outputs are combined.

3.3. Disagreements

In order to gain insights into decision process of the

MoE, we defined the following classes of disagreements by

comparing pixel-wise decisions of the experts and of the

whole MoE:

• Perfect case: MoE agrees with all experts

• Normal case: MoE agrees with one expert

– Normal case 1: expert 1 and MoE agree

– Normal case 2: expert 2 and MoE agree

• Critical case: MoE does not agree with any expert,

i.e. the class chosen was not proposed by any expert

4. Experiments

Experiments are performed on the semantic segmenta-

tion part of the A2D2 dataset [7]. These data splits (by

road type and by sky-to-drivable ratio) are rather artificial,

to create disjoint subsets of the available data, and the pri-

mary purpose was to evaluate the general concept of mix-

tures of experts. Real world applications of potential use

cases for the described MoE architecture would instead be,

for example, splits according to different countries with dif-

ferent road signs and differences in road layout, as well as

in weather or lighting conditions.

4.1. Data Subsets

From a total of 31448 images from the front central cam-

era, we have excluded 164 images with label “Blurred area”

and 1 image with label “Rain dirt”. Thus, a total of 31283

images were available for further evaluation.

First experiments used the original label set as specified.

However, learning 38 labels turned out to be challenging

and error prone for the MoE evaluation, so a mapping to 11

new labels was defined (see Table 2). Further experiments

in this work rely on this new set of 11 labels.

Split by Road Type

To be able to learn experts on data subsets, we have man-

ually labeled the records as belonging to one of the three

classes: (1) urban with 15651 images, (2) highway with

8461 images and (3) ambiguous with 7171 images.

Based on this data split we train two experts: an urban

and a highway expert. To ensure that each expert is trained

and evaluated on the same number of images, each expert

is trained on 6132 and validated on 876 images. Also, a

separate set of 1421 images for each of the three road types

is kept for testing purposes.

Split by Sky-to-Drivable Ratio

The second data split aims to distribute images into urban

and highway subsets not manually, but automatically by cal-

culating the ratio of the number of pixels labeled as sky to

those labeled as drivable. To be able to get results compa-

rable to the data split for road type, we decided to use the

same number of training and test samples as in the previous

case. We thus split the data according to the sky-to-drivable

ratio as follows: (1) 8461 images with low sky-to-drivable

ratio values (i.e. values from the interval [0.0, 0.811]), (2)

8481 images with high sky-to-drivable ratio values (i.e.

from the interval [1.487, 31.098]) (3) 14341 images with ra-

tio values ranging between these intervals (i.e. with ratio in

(0.811, 1.487)). Figure 4 shows the distribution of the sky-

to-drivable ratio values as well the boundaries of the data

splits.

For this data split, we also train two experts: a high ratio

and a low ratio expert. We also define three test sets for low,

medium and high sky-to-drivable ratio.



Our Label A2D2 Labels

person animals, bicycle, pedestrian

car ego car, car, small vehicles

truck tractor, truck, utility vehicle

drivable drivable cobblestone, parking area,

RD normal street

nondrivable curbstone, non-drivable street,

sidewalk, slow drive area

blocker irrelevant signs, grid structure,

obstacles / trash, poles, RD restricted area,

road blocks, signal corpus

info traffic signal, painted driving instructions,

sidebars, speed bumper, traffic guide object,

electronic traffic, traffic sign, zebra crossing

sky sky

buildings buildings

nature nature object

lanes dashed line, solid line

- blurred area, rain dirt

Table 2. Mapping from our label set with 11 classes to the 38

classes in the A2D2 dataset.

Figure 4. Distribution of the sky-to-drivable ratio values. Red lines

show the boundaries of the data splits (high - medium - low ratio).

4.2. Baseline and Mixture of Experts

For the comparison, we defined a baseline model for

each data split, which is trained on the combined data from

both data subsets. This way, the baseline model sees twice

as much data as each expert and is exposed to both cases.

Similar to the experts, the baseline model also uses the

FRRN A architecture (c.f . Figure 3). All models are trained

for 100 epochs. Interestingly, we found that longer train-

ing intervals of the experts do not contribute significantly to

their individual accuracy, but helps to improve the accuracy

of the resulting MoE model.

Table 3 compares the mean IoU of the mixture of experts

to individual experts as well as to a baseline for the manual

data split by road type as well as for the split by the sky-

to-drivable ratio. The results confirm that the single experts

are only specialized on their own domain and can hardly

generalize to the other scenario. The MoE, however, almost

matches the accuracy of the baseline model.

4.3. Disagreements

To generate disagreement masks, we compare pixel-wise

decisions of the experts and the overall MoE architecture.

Table 4 shows the percentage of pixels belonging to each

disagreement case as defined in Section 3.3. For the over-

whelming majority of pixels, MoE and both experts agree.

Also, in case of ambiguous and urban data, the MoE re-

lies on the urban expert more often - this is also consistent

with the mean IoU results (see Table 3) showing that the

urban expert is more accurate. The same also holds for the

sky-to-drivable data split, where the MoE agrees with the

low-ratio-expert more often.

Additionally, these results show that in case of a better

gate the portion of the perfect cases remains the same, but

the MoE tends to agree with one of the experts rather than

disagree with both - i.e. the number of the normal cases

grows, whereas the number of the critical cases decreases.

In particular, critical cases for the manual split by road type

occur only in two images in the highway subset, 39 images

in the ambiguous subset and two images in the urban subset.

For the class-wise gate, however, only a single image in the

ambiguous test set has no pixels belonging to the critical

case.

For the qualitative results, we highlight the pixels be-

longing to each case thus obtaining a disagreement mask.

Since perfect case dominates, we leave the corresponding

pixels transparent. Figure 5 shows examples of the dis-

agreement masks for images from different test subsets for

the data split by road type. Figure 6 shows several ran-

domly chosen images that have a large number of pixels

belonging to the critical case when evaluated with a class-

wise gate. Interestingly, critical cases correspond to image

regions challenging for the semantic segmentation, such as

blurred or overexposed areas.

5. Conclusion

In this work we have examined a first approach to use

mixture of expert models for semantic segmentation with

the added benefit of gaining additional interpretability. The

current version focuses on experts that are trained on two

different data subsets, a semantic urban/highway split and



Model \Dataset Highway Ambiguous Urban Highway+Urban Mixed

Baseline 0.776 0.697 0.726 0.772 0.771

Highway Expert 0.769 0.6 0.367 0.456 0.476

Urban Expert 0.617 0.652 0.713 0.726 0.727

MoE 0.763 0.640 0.714 0.765 0.756

Model \Dataset High Ratio Medium Ratio Low Ratio High+Low Ratio Mixed

Baseline 0.851 0.799 0.804 0.83 0.822

High Ratio Expert 0.833 0.729 0.627 0.721 0.725

Low Ratio Expert 0.673 0.734 0.799 0.743 0.743

MoE 0.824 0.759 0.8 0.818 0.801

Table 3. Mean IoU for for both data splits: manual split by road type (top) and split by the sky-to-drivable ratio (bottom). For MoE, the

results are for the simple gate with convolutional layer and pool 42 as a feature extraction layer.

Gate Case Highway Ambiguous Urban

Simple Perfect Case 96.25% 95.29% 72.1%

Normal case 1 3.74% 2.004% 0.16%

Normal case 2 0.01% 2.704% 27.74%

Critical Case 0.00002% 0.00017% 0.000001%

Class-wise Perfect Case 96.2% 95.23% 71.97%

Normal case 1 3.33% 1.38% 0.41%

Normal case 2 0.27% 2.87% 27.13%

Critical Case 0.2% 0.52% 0.49%

Gate Case High Ratio Medium Ratio Low Ratio

Simple Perfect Case 93.25% 94.51% 91.44%

Normal case 1 0.27% 0.33% 0.76%

Normal case 2 6.17% 4.90% 7.55%

Critical Case 0.31% 0.26% 0.25%

Class-wise Perfect Case 92.31% 94.48% 91.05%

Normal case 1 6.37% 0.36% 0.40%

Normal case 2 1.0% 4.84% 8.30%

Critical Case 0.32% 0.33% 0.25%

Table 4. Percentage of pixels, belonging to each disagreement case for both data splits: manual split by road type (top) and split by the

sky-to-drivable ratio (bottom). Normal case 1 means MoE agrees with the first (highway resp. high ratio) expert. Normal case 2 means

MoE agrees with the second (urban resp. low ratio) expert.

a more artificially created split according to the ratio be-

tween sky and drivable area in each input image. For both

experts as well as a baseline trained on all available data,

we use the FRRN A architecture for semantic segmentation,

while the gate is a simpler network containing a single con-

volutional and two fully connected layers. Additionally, the

gate shares common feature extraction layers with the ex-

perts, fed from different layers of the encoder part of the ex-

pert networks. The gating network predicts weights for the

expert outputs which are in turn combined via a weighted

linear combination of the outputs followed by an optional

convolutional layer. We provided experimental evaluations

of two gate architectures (a simple and a class-wise imple-

mentation) and also assessed the necessity of an additional

convolutional layer as was proposed in the literature.

Our experiments using the semantic segmentation sub-

set of the A2D2 dataset demonstrate that the mixture of ex-

perts architecture described is indeed able to reach base-

line accuracy, while providing extra interpretability via the

comparison of pixel-wise decisions of the experts and of

the whole MoE architecture. Qualitative results via dis-

agreement masks can help to identify areas of an image,

for which the overall MoE architecture exhibits a higher

uncertainty, such as in ambiguous, blurred or overexposed



Figure 5. Disagreement masks and predictions for the manual data split by road type. Top to bottom: highway, urban, ambiguous. Left to

right: ground truth, disagreement mask and prediction for the class-wise gate, disagreement mask and prediction for the simple gate.

Figure 6. Examples of disagreement masks with critical case from the ambiguous test set for the manual data split by road type. Left to

right: ground truth, disagreement mask and prediction for the class-wise gate, disagreement mask and prediction for the simple gate.

regions. However, this potential connection has to be in-

vestigated more in depth in future work. Current limita-

tions include the necessity to identify relevant data splits

manually as well as the complex training setup, where each

expert and the overall MoE architecture have to be trained

separately. Furthermore, the decision provided by the gate

is only available at the end of the inference and requires

execution of both experts and the gate itself in this current

implementation of utilizing the expert’s feature extraction

within the gate.

Note that we did not perform an extensive architecture

search to find the best possible expert architecture, but con-

fine this work to utilizing FRRN as a basis, both for the ex-

perts as well as the baseline. In future work, an analysis of

the effect of different expert architectures on overall qual-

ity, as well as the effect the added gating network within the



whole MoE construct has on expert network architectures

should be thoroughly performed. This might yield further

interesting properties.

Further experiments are planned on using multiple ex-

perts trained using disjoint combinations of two labels each

(out of all available label classes), while all other classes

are combined into a unknown class. This could be a poten-

tial path to have experts that are very good at distinguish-

ing hard and ambiguous classes combined with a gate that

learns to chose among all experts. A possible advantage

would be that this could also yield multiple likely labels

and also backup guesses in ambiguous situations that can

be handled in subsequent modules in the data processing

chain.

The advantages of using MoE architectures include ex-

plicit decision modeling and thus potential explainability

via a gating network. It is still to be evaluated how this

explainability compares to Bayesian methods (e.g. Monte

Carlo dropout) or other attempts at estimating uncertainty.

An intriguing possibility of mixture of expert models is

the fact that experts and the gating network may, but do

not have to be implemented as neural networks. It is in-

deed also possible to replace both parts with different (e.g.

probabilistic or simpler machine learning) models, that also

utilize completely different or new inputs. Another interest-

ing property of the mixture of expert model is the possibil-

ity, depending on implementation details, to parallelize the

computation of all experts as well as the gating component

or network. Decisions or weights of the gate can even be

computed in advance to be able to skip execution of par-

ticular expert networks if their output is only marginal or

not necessary at all, resulting in further runtime optimiza-

tion possibilities. Furthermore, it might be possible to intro-

duce redundancy into the whole model via several separate

gates.
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