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Abstract

The large interest in autonomous vehicles is a significant

driver for computer vision research. Current deep learning

approaches are capable of impressive feats, like dense full

frame depth prediction from a single image. While impres-

sive results have been achieved, it is not yet clear if they

are sufficient for autonomous driving. The problem remains

that existing evaluation benchmarks and metrics are not yet

capable of fully addressing this issue. This work takes a

step towards answering this question. Current evaluation

methods are incapable of proving or refuting suitability for

potentially hazardous real world situations. This is due to

a) the large gaps in the currently used Lidar ground truth

data, which cannot test many difficult and relevant cases and

b) the global summary metrics used, which are intangible

with respect to rigorous performance guarantees. In this

work we provide a new benchmark based on commercially

available dense light-field depth data, which closes these

gaps in the evaluation. We implement domain-specific and

interpretable error metrics, which allow for strict assertions

over the performance of tested methods. The leaderboard for

dense depth prediction is publicly available. The approach

is also transferable to other depth estimation tasks. Such

stringent evaluations are indispensable when testing and

demonstrating performance for potentially hazardous appli-

cations like autonomous driving, and are a critical aspect for

the assessment of autonomous systems by regulatory bodies

as well as for public acceptance.

1. Introduction

In recent years, computer vision has made tremendous

progress in solving the challenging computer vision tasks

that will eventually make autonomous driving a reality. This

progress has been fueled by the ability to train large neural

networks as well as the availability of large data sets. In this

respect, the significance of publicly available benchmarks

should not be underrated. They foster objective and repro-

ducible research, benefiting the research community as well

as the industry seeking to implement the results. This work

Figure 1: Example from our new benchmark, from top to bot-

tom: Input image, light-field depth, prediction [24], critical

failures (compare Section 9). Closest failure location marked

with a cross, with method distance and height (GT in brack-

ets). These represent critical failure cases for autonomous

vehicles, which dangerously influence driving behavior due

to interference with the drivable corridor, up to 2m above

the street. These critical failures cannot be detected using

Lidar, because reflective areas (puddle) and large image

heights and/or distances (sky/truck) are missing from Lidar

data. Our metrics specifically detect the criticality of these

failures, while global metrics like MSE or BadPix fail to

determine the influence of errors on autonomous vehicles.

contributes such a benchmark, see Fig. 1 for an example

from our evaluation. While there is an abundance of both

training data and publicly available benchmarks for semantic

computer vision tasks [20] , the situation for depth based

computer vision tasks is less promising. To sensibly evalu-
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ate deep learning based methods in the autonomous driving

scenario, a wide and realistic variety of street level scenes is

required. Yet, apart from the well-known KITTI data set [11],

all benchmarks are either based on completely synthetic data

[8, 32], or limited to a small set of scenes [36, 34], from a

domain markedly different from the automotive scenario.

We believe that the main reason for this scarcity of data

is the high complexity in acquiring and processing the 3D

ground truth required for such data sets. Until recently only

Lidar (Light detection and ranging) based acquisition meth-

ods were capable of producing this depth information. How-

ever, Lidar acquisition has a completely different perfor-

mance envelope compared to image based depth estimation.

The best commercially available Lidar sensors are capable

of recording merely 128 points simultaneously (e.g. Ouster

OS1-128 [28], Velodyne Alpha Prime [39]), and hence have

to fall back to scanning a scene by moving or redirecting the

Lidar beam. This means that acquiring the 3D information

for the dynamic scenarios encountered during autonomous

driving is quite challenging as the scene changes during ac-

quisition and there will therefore be mismatches between

the image data and the recorded Lidar point clouds. These

technical obstacles explain why of the 37 automotive data

sets listed by Kang et al. [20], 10 provide Lidar data but

only two were processed to correctly account for dynamic

object motions, specifically KITTI [11] and the HCI data set

[21]. But even on the static parts of a scene, the Lidar mea-

surements have many gaps, including very reflective or dark

objects, where no valid depth measurements are available.

As most depth prediction methods have the potential to work

in these situations, the sparse Lidar data is neither sufficient

to assess the full potential of image based depth estimation,

nor to detect all possible limitations of the predictions. This

makes the task of testing and verifying autonomous systems

very difficult.

In this work we introduce a benchmark based on pas-

sive light-field based dense depth ground truth which has

recently become commercially available [30]. The depth

data is based on a commercial 17-camera light-field setup.

Setup and per-pixel depth data were supplied by rabbitAI1.

Using this dense depth data for benchmarking we are able to

implement a range of improvements over the current Lidar

based benchmarking approaches.

In the following we summarize our main contributions:

• A new benchmark with a public leaderboard (rab-

bitai.de/benchmark), which closes many gaps left by

previous approaches.

• Evaluation metrics specific to the domain of au-

tonomous driving which enable stricter assertions with

respect to the performance of tested methods.

1rabbitai.de

• A detailed comparison between the previously used

Lidar data and the new passive light-field depth.

This benchmark is a step towards strict and interpretable

benchmarking for autonomous driving scenarios, and the

introduced methodology represents a way of testing and

promoting this robustness, for example for regulatory bodies.

2. Related Work

In the following we will introduce previous benchmarks

and their data acquisition approaches. Note that we only re-

port benchmarks using real world captures. Image synthesis

is in principle able to generate sufficiently realistic imagery,

but the modeling of the world to a sufficiently high degree is

extremely expensive. Indeed, for realistic content generation

many feature films and games rely on 3D scanning methods

[27].

In the past, depth ground truth has been acquired with a

range of methods, including manual labeling of planes [33]

and structured light scanning [34]. Fluorescent UV paint has

successfully been utilized for optical flow data sets [5], a

method also applicable for depth ground truth. However, all

these methods are constrained to static close-range captures

and hence cannot provide the range and speed required for

dynamic automotive scenarios.

Hence, all current automotive data sets and benchmarks

make use of Lidar measurements to acquire depth informa-

tion. Lidar sensors (short for Light detection and ranging)

actively scan the scene to determine distances. Compare [20]

for an overview of many driving data sets, some of which

include depth data.

Two categories of Lidar data sets can be distinguished.

Static scene scanning, where a possibly quite slow survey

grade Lidar sensor scans a large area, which is then rigidly

registered. For this class, dynamic objects need to be handled

completely separately, for example by manual fitting of CAD

models [26] or using manual annotation of cardboard-style

motion [21]. The common problem with these approaches is

the extremely labor-intense processing and the limitation to

very few classes of dynamic objects, hence some data sets

only include the static background and completely ignore

dynamic objects for depth estimation, like the Apollo data

set [17].

Most automotive data sets that provide depth measure-

ments are based on fast automotive Lidar sensors that have a

relatively high scanning rate (10-20Hz) which reduces the

skew between camera images and the Lidar measurements.

However, the sequential nature of Lidar sensors still intro-

duces significant skew between camera images and Lidar

measurements, which must be accounted for. To the best

of our knowledge only two data sets are available which

perform this post-processing. One is the well-known KITTI

data set and benchmark [11], which also incorporates static



scene scanning. The second is a recent stereo data set by

Yang et al. [40], which implements an automatic filtering

procedure based on stereo matching – with all the biases that

might be introduced. All other data sets simply provide raw

Lidar scans with full motion artifacts [29, 6, 25, 37, 2, 31].

None of the data sets address the large gaps which are

inevitable due to the measurement principle of Lidar sensors,

compare Section 6.

3. Design Goals

In the following we will outline the design goals which

governed all decisions for our new benchmark.

Coverage Systematic gaps in the data limit the validity

of any conclusions derived from an evaluation, and should

therefore be avoided at all costs. Many gaps previously

encountered in Lidar based data sets are closed in our new

benchmark, see Section 6 for details.

Interpretability Evaluation metrics have limited utility

without a way to infer tangible conclusions from them.

Global metrics like MSE or SILog [10] do not allow as-

sertions about the suitability of methods for autonomous

driving. Metric such as percentage of obstacles missed at

distance x, as implemented in our benchmark, allow for

much stricter performance assessments.

Comparability When comparing methods across several

benchmarks it is oftentimes difficult to reach definitive con-

clusions about the relative performance, as many bench-

marks provide totally different imaging characteristics, with

their own sets of training data. This makes it difficult to at-

tribute performance differences across benchmarks. Hence,

instead of directly using the raw image data, we imitate an

established data set, specifically the KITTI imaging pipeline.

This has the added benefit of bootstrapping our benchmark

with the depth estimation approaches as trained by the re-

spective authors for the original KITTI benchmark.

Updates Over time, a benchmark becomes increasingly

outdated. An example for this is the rise of E-Scooters in re-

cent years, which represent a novel hazard that is not present

in data obtained before ca. 2018. To enable updates to our

benchmark we use the concept of container submissions,

where submissions are containerized implementations in-

stead of results. We still allow for regular submissions of

results, however those are discouraged.

Incentivize Good Submissions An ideal submission

matches the following requirements:

• Is a method notably distinct from other submissions.

• Is published in a peer-reviewed conference/journal.

• Has a published implementation.

• Has a containerized algorithm for testing.

The first two aspects are hard requirements, which will only

be lifted temporally, e.g. to enable a submission to a peer-

reviewed venue, and the remaining two aspects will be en-

couraged via our submission policy.

Data Variety Classically, one would choose a car to cap-

ture images from an automotive perspective. However, cars

need to follow the rules and flow of traffic, and it is diffi-

cult, both for safety and legal reasons, to actively direct a

car towards the scenes which are most interesting for an

autonomous driving benchmark. To increase the variability

in captured scenes and the density of difficult and potentially

hazardous scenes for autonomous vehicles we instead opted

for mounting the capture setup on a cargo bike, which gives

this benchmark a unique perspective for driving situations.

4. Setup

The setup used for this benchmark is a 17 camera light-

field setup using Sony IMX253 CMOS sensors and 8mm

lenses for a HVOF of around 90◦. The resolution of the

cameras is 12MP (4096x3000). The setup was mounted on

a modified cargo bike, together with additional sensors not

relevant for this benchmark, like GNSS receivers. Calibra-

tion, recording and depth processing for this benchmark was

supplied by rabbitAI [30].

5. Recordings

For the benchmark 9 hours of footage were captured over

a period of five weeks in the city of Heidelberg, Germany.

From this footage 100 scenes were selected for the actual

benchmark, and a further 100 scenes will be released for

testing and fine-tuning of submissions.

6. Ground Truth Depth

The ground truth depth data is provided and processed

by rabbitAI [30] using the multi-camera setup described in

Section 4. The processing includes manual quality control

and annotation to provide pixel accurate depth data. In the

following we will give a detailed analysis of the different per-

formance characteristics of Lidar depth in comparison with

light-field depth used in this benchmark. Note that we com-

pare single shot light-field data to automotive Lidar. Both

approaches can be used in a global setting where multiple

captures are registered with respect to each other. However,

this is even more problematic for dynamic scenes, due to the

reasons described earlier.

The measurement characteristics between Lidar and pas-

sive light-field depth are fundamentally different, see Table 1



light-field depth automotive Lidar

density high mixed

(0.022◦H/V) (0.08◦H x 0.42◦V)

accuracy depth dependent high

coverage full limited

range unlimited 40-120m [19]

(see Section 6.2)

camera sync by design skewed

viewpoint identical to img occlusion artifacts

Table 1: Overview of the characteristics of Lidar and light-

field capture for the evaluation of depth prediction.

for an overview. The most relevant aspects in the context of

this benchmark are range, accuracy and completeness of the

captured data. Lidar data has a very constant absolute accu-

racy, while light-field data is highly depth-dependent. On

the other hand Lidar, being an active measurement method,

has many issues regarding missing returns which leads to

gaps in the measurements. In the following, these three key

aspects are analyzed in detail.

6.1. Depth Accuracy versus Depth Range

The accuracy of the Lidar measurements is mostly inde-

pendent of the distance, although some bias with respect

to the surface normal might be present in current data sets

[23]. Exact figures on the absolute accuracy are difficult to

find, but the standard deviation for different reflectivities has

been measured as 0.13m [19] for the Velodyne Lidar used

by KITTI. Most parameters of the measured objects, like

reflectivity lead to a complete loss of data points, but seldom

to large errors. On the other hand, the light-field ground

truth used in this benchmark is for the most part a passive

triangulation based approach which leads to a constant accu-

racy in disparity space, which induces a strong dependency

on the measured distance. For Fig. 2 we assumed a root-

mean-square error of 1.5 pixel, which is surpassed by all

the state-of-the-art methods on the HCI 4D light-field bench-

mark [14, 18], including classic approaches not based on

deep learning [35]. Note that both Lidar and light-field ac-

curacy should be regarded with a grain of salt, as the Lidar

error does merely represent a consistency measure, not an

absolute depth error which could be significantly larger [23],

while the light-field RMSE is an absolute error measure over

a set of benchmarks scenes, but evaluated on synthetic data.

However, the exact value for the accuracies does not change

the relevant take home message, compare Fig. 2: Lidar does

overtake the accuracy of the light-field depth (37.8m for the

HDL64E used in KITTI), but also starts to drop data points

from as early as 50m [23, 12] (street) until it reaches the

maximum range (120m for cars and foliage in the Lidar

used in KITTI [12]). This means, the range where Lidar is

more accurate and does not yet drop relevant samples is only
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Figure 2: Plot comparing accuracy and completeness of

Lidar to the light-field depth, lower is better. While Lidar

provides better absolute accuracy from the intersection at

37.8m, the light-field depth is still usable at much greater

distances. For example at 300 meters the light-field depth

is accurate to 15 meters, meaning we can be quite certain

that objects are at least 285 meters away. At the same time

the maximum range of Lidar depends on the reflectivity, and

starts to drop some samples at 50m (street). Behind the max

range of 120m even cars and foliage are dropped [19, 12].

between 37.8m and 50m.

We argue that for most automotive applications a fixed

accuracy in the disparity space is acceptable because any

autonomous driving agent does operate from an egocentric

perspective, where any measurement does necessarily entail

an uncertainty which increases with the distance from the

observer. It is only important that any ground truth data used

for evaluations is significantly better2 than the method in

question. As it is highly unlikely monocular depth prediction

can achieve the accuracy available to state-of-the-art light-

field depth estimation, this requirement can be considered

fulfilled for the ground truth data available in our benchmark.

6.2. Depth Range

The range of Lidar measurements depends on the mate-

rial properties, specifically on the reflectivity of the surface

reflecting the emitted light back to the sensor. Manufacturers

often state max ranges from 100m to 200m [28, 39], how-

ever actual measurements give lower ranges, e.g. 50m to

120m for reflectivities between 10% and 80% for the Lidar

used in KITTI [12]. In comparison, triangulation based pas-

sive depth estimation has a fundamentally unlimited range,

in the sense that it can still give probable minimum distances

for points at infinity, however the accuracy deteriorates as

depth increases, compare Fig. 2. In contrast, Lidar drops

distant points completely, which means wrong estimates of

close objects (e.g. hallucinated obstacles) cannot be detected

from Lidar data, because there are just no valid measure-

ments for these areas. This is highly problematic because

without supervision methods actually lean towards halluci-

nating close objects in those missing areas. This effect is

clearly visible for the top scoring methods in the KITTI depth

2recommended: one order of magnitude [22]



prediction benchmark. In the context of autonomous driv-

ing, close objects are potential obstacles (e.g. tree branches,

signs), which means a car actually employing such methods

might falsely initiate an emergency braking or even start an

evasion maneuver which could be hazardous.

6.3. Completeness

A big advantage of the light-field depth used in this bench-

mark is the completeness of the measurements, while the

accuracy varies, depending on the appearance of the object.

However, in the context of monocular depth prediction, Lidar

often drops samples due to:

• “large” distances, e.g. 50m at 10% reflectivity, [12]

• strong motion, as most Lidar points are not captured at

the same time as the image due to Lidar scanning,

• occlusions due to the change in perspective between

Lidar and camera,

• low reflectance [19],

• very specular reflections (car paint, windows, puddles),

• the sparseness of the Lidar measurement and

• the limited vertical field of view.

Figure 5 shows several examples of these effects from our

benchmark and from the KITTI data set.

7. A Note on Depth Ambiguity

One open question for both Lidar and light-field depth

are areas which are actually ambiguous (compared to only

appearing ambiguous), like transparent or refractive areas.

In these cases the question is which of the multiple possible

depth values for a pixel (e.g. foreground or refracted object)

should define the depth of a pixel value. As this benchmark

is focused on autonomous driving, we always choose the

closest point. This means the first object which would in-

teract with a virtual camera ray bundle defines the correct

depth value as long as it is at all visible.

8. Data Processing Pipeline

As stated in Section 3, to make our benchmark easily com-

parable we do not use the raw image data for benchmarking

but instead imitate the KITTI imaging pipeline.

8.1. Image Processing

Figure 3 is an example from our image processing

pipeline, in comparison with a similar scene from KITTI.

Starting with the demosaiced rectified center view of the

light-field setup, the following steps are performed: Expo-

sure simulation, image distortion, downsampling, blur, re-

mosaicing, demosaicing with simulated KITTI demosaicing

filter, undistortion/rectification, crop to final resolution.

Figure 3: Example processing from our imaging pipeline.

From left to right: 1. Clean intermediate image already

scaled, exposed, and distorted, 2. output of the pipeline, 3.

example patch from KITTI. Note the characteristic color

artifacts.

8.2. Depth Data processing

The depth data is initially aligned with the rectified center

view of the light-field setup. To align the GT depth with the

simulated KITTI images we follow the mappings performed

for the image itself, but skip all color based operations, in-

cluding mosaicing. Also, instead of actually warping the

depth, only the image location is warped, resulting in a dense

mapping between GT and simulated image. Performing this

mapping from the 12MP GT depth to the benchmark depth

is then mostly a down-sampling operation. Classical interpo-

lation is problematic on depth maps, because interpolation

between distinct objects can lead to depth values which be-

long to neither foreground nor background. Instead, for

every output depth sample we collect all input depth samples

which are closer to the desired output point than any other

output sample. Then we take the 25% quantile of the depth

of these points, to bias towards foreground objects.

9. Evaluation Metrics

As stated in Section 3, the benchmark should be both

interpretable and comparable. For this reason we implement

well-known global performance metrics used in other bench-

marks, including: SILog, sqErrorRel, absErrorRel, iRMSE,

scaled by 100 as implemented by KITTI and described by

Eigen et al. [10]. However, such global metrics only allow

for the global rankings of methods, as they cannot be used

to deduce the readiness of the tested method for any specific

task. For this reason we implement metrics that examine

very specific autonomous driving related tasks, which allow

for tangible conclusions about the suitability of methods for

the tested task. Task specific and geometrically deduced met-

rics have been used in the past for several depth estimation

tasks, from stereo [16] over light-field [15, 18] to optical

flow [7].

9.1. Scale Correction

Monocular depth prediction is under-constrained, which

often leads to miss-prediction of the absolute scale [10]. We

explicitly calculate a scale correction, before performing



any evaluation, using a linear model dcorr = αdalgo + β

by estimating α, β from pixels on the street mask M via a

robust least squares estimate.

9.2. Motivation

All metrics defined below estimate certain failure cases

which are relevant to autonomous vehicles. While those

metrics are not comprehensive, they check for several very

severe failure cases which can lead to dangerous behavior

from any vehicle basing decisions on these erroneous depth

predictions. We start with the assumption that the two most

dangerous scenarios for decisions based on the depth predic-

tion include failure to detect relevant obstacles, which might

cause a vehicle to ram the obstacle in question, as well as

the hallucination of obstacles, which might cause a vehicle

to initiate dangerous collision avoidance maneuvers or per-

form unwarranted emergency stops. All of these actions are

critical hazards which should never occur in regular driving

situations.

9.3. Interpretable Metrics

Our error metrics all calculate point sets of erroneous

world points Ωs for every scene s ∈ S where S is the set

of all benchmark scenes. We then compare these points

sets with a query depth d and calculate the failure ratio E

by counting the scenes for which the erroneous point sets

contain a point closer to the specified distance:

E(δ) =
1

|S|
·
∑

s∈S

{

1 for |{r ∈ Ωs | d(r) < δ}| > 0

0 else,
(1)

which assesses how many failures are encountered at or

before a distance threshold δ, where d(r) is the distance of

an erroneous point r to the camera plane, compare Fig. 4.

9.4. Street Surface Metric

For the street surface (short bump) metric we first re-

project all points from DGT and DA, that lie on the scene

specific street mask M , into 3D-space.

We then compute the maximum difference in z-value

within sliding windows with size of 1.1m · 1.1m along the

street plane. The resulting error set for each scene is

Ωs = {r ∈ M(Ds
GT ) | ε > 0.07m} ,

with ε = |∆r(D
s
GT )−∆r(D

s
A)| ,

(2)

where M(·) is the set of re-projected 3D points on the street

mask and ∆r(·) computes the range between the 2nd and

98th percentile of street elevation for each sliding window at

point r. All windows where ranges ∆r(·) between GT and

the algorithm deviate by more than 0.07m are counted as

erroneous.
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Figure 4: Failure ratios from the miss and fake metric, lower

is better. The miss metric (upper) shows failure to detect

obstacles close to the visible street surface (like parked cars,

bollards). The fake metric (lower) detects hallucinated ob-

stacles and displays a clear inversion in the ranking. Safe

driving requires zero errors at close distances.

9.5. Obstacle Metrics

The obstacle metrics are designed to estimate missing and

hallucinated obstacles in the algorithm results. To robustly

estimate these, and to limit the metric to relevant obstacles

on or close to the street, we always compare two sets of ob-

stacles. A smaller relevant obstacle set R determined under

stricter thresholds, and a potentially larger target obstacle

set T , determined with wider thresholds. Failure sets are

then determined by removing the wider set from the relevant

set.

In the following, we will define the necessary primitives

to derive the obstacle metrics. All definitions are based

on a depth map D, a height interval H , as well as a street

mask M ⊂ D with an associated expanded street surface S,

which is derived using a thin plate spline extrapolation [9]

from the projected street surface MV . We define projections

from the depth map: (·)V : D → R
3, (·)S : D → R

2 and

(·)I : D → R
2, which project a point from a depth map into

the 3D space, 2D position on the street surface and pixel

coordinates respectively.

We define the bird-view distance b as

b(r) = min
d∈M

|rS − dS | − min
d/∈M

|rS − dS |, (3)

which evaluates to minus the distance from the street border

if r is within M , and to the positive distance from M other-

wise. Then V defines a limited volume above the plane of

the street, including off-street areas, as:

V :=
{

r ∈ R
3|∃s ∈ S : (rz − sz) ∈ H

}

, (4)
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SemiDepth[4] 0.26 0.37 0.45 0.2 0.08 0.18 0.96 2.58 38.72 26.53 26.68 38.7

DenseDepth[3] 0.32 0.55 0.41 0.27 0.04 0.35 1.2 3.88 38.37 13.60 24.98 35.48

MonoResMatch[38] 0.47 0.29 0.82 0.25 0.43 0.55 1.03 3.25 43.41 21.98 29.31 48.64

BTS[24] 0.51 0.27 1.00 0.24 0.92 0.14 0.94 2.42 50.96 15.91 27.37 50.28

Table 2: Initial leaderboard, sorted by the mean of our new metrics, evaluated at 30m (mean30). Note how BTS [24], which is

one of the top-performing methods on KITTI comes in last. This is likely due to over-fitting to the KITTI evaluation specifics,

while the other methods make use of e.g. transfer-learning (DenseDepth [3]) or self/stereo-supervision (SemiDepth [4] and

monoResMatch [38]). Global metrics are much higher compared to KITTI due to the completeness of the ground truth, which

contains more difficult (far) depth samples. Note that this is only a snapshot, visit rabbitai.de/benchmark for up-to-date results.

where H denotes the relevant height interval above the street.

This allows us to define the set of obstacles with a maximum

distance R to the street:

O := {o ∈ V ∩DV |b(o) ≤ R}. (5)

In addition, we use the closest obstacles operations which

selects a relevant set of obstacles as those obstacles which

are closest to any point in V:

C(O) := {o ∈ O|∃r ∈ V : o = argmin
c∈O

|r − c|} (6)

Finally we define an erroneous set as those points from a

set R which have no counterpart, within a limited radius of

25 px in image space, in a target set T :

Ω(R, T ) := R \
{

r ∈ R|∃t ∈ T : |rI − tI | ≤ 25
}

. (7)

Of course this definition only makes sense if R, T

are from different disparity sources and without the

street pixels (DGT \ M and DAlgo \ M ). Different

parametrization of these sets now yield the final metrics:

R (source) T (target)

metric src H R src H R

miss C(GT ) 0.3-2.0 5 A 0.2-2.5 6

fake C(A) 0.3-2.0 5 GT 0.2-2.5 6

missSt C(GT ) 0.3-2.0 -0.5 A 0.2-2.5 0.5

fakeSt C(A) 0.3-2.0 -0.5 GT 0.2-2.5 0.5

Specifically miss contains obstacles found in the GT that are

missing from the algorithm results, fake denotes obstacles

hallucinated by the algorithm, missSt are missing obstacles

above the surface of the street mask (e.g. boom gate), and

fakeSt are obstacle above the street surface hallucinated by

the algorithm. Note that we use different thresholds for

the target set to allow for some absolute movement by the

algorithm result. This avoids false errors where some object

just outside of the threshold (e.g. a car parked on the curb) is

just moved by a few centimeters into the threshold by the

algorithm.

10. Results

To bootstrap the leaderboard we have taken four monocu-

lar depth estimation methods which have publicly available

code and pre-trained models, and containerized them: Lee et

al. [24] (BTS), Alhashim and Wonka [3] (denseDepth), Tosi

et al. [38] (monoResMatch) and Amiri et al. [4] (SemiDepth)

a Lidar based extension to Godard et al. [13]. The methods

were all pre-trained on KITTI by the respective authors, and

we report their results using the metrics introduced in Sec-

tion 9. Table 2 shows the full leaderboard and Fig. 4 shows

plots for two of our interpretable metrics. In addition, Fig. 1

and Fig. 5 show a few example results. The full set of results

are available on the website (rabbitai.de/benchmark).

The most significant result are the high amount of critical

errors, see Fig. 4, which shows failure ratios of over 20%

at a distance of 30m, and still over 5% at 5m. For safe

autonomous navigation, these values need to approach zero.

However, there are also positive aspects. Figure 5 and Fig. 1

show visualizations of the algorithm results and the loca-

tion of critical failures in the image (4th row). We think the

failures can mostly be attributed to missing supervision due

to reliance on incomplete training data: The shown method

was trained with Lidar supervision, and delivers quite con-

vincing results in the lower half of the images, where a lot of

supervision was available at training. In the upper part the

estimates are very wrong, often hallucinating close objects

which would cause emergency braking or collision avoidance

maneuvers. The problem is less pronounced in the methods

which also use self-supervision (usually stereo) which can

provide at least weak supervision in areas where no Lidar

GT is available. The failures on the street itself, compare

Fig. 1, are also explained by limited supervision, because

the Lidar GT used for training cannot provide usable data

for highly reflective materials, like the puddle in Fig. 1 or

the car paint and shop windows (red rectangles in row Lidar

GT in Fig. 5). Note that these areas are not amenable to

self-supervision, as e.g. stereo self-supervision often hinges
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Figure 5: Example scenes from the benchmark and results of BTS [24] (upper half). For comparison also several scenes from

KITTI (lower half). The 4th row from the top shows critical failures detected by our metrics : fakeSt (red), fake (yellow),

miss (cyan), missSt (orange) and bump (magenta), and closest failures with wrong distance (d) and height (h) above street,

with GT in brackets. Note that all these failures are likely to cause hazardous driving decisions, like triggering unwarranted

collision avoidance maneuvers. Although much of the sky is wrong for BTS, which was trained on Lidar data, only the areas

highlighted in the 4th row represent dangerous failures which intersect the driving corridor. Note that global error metrics

like RMSE are unable to determine which areas are dangerously wrong for autonomous vehicles, while our metrics detect

specifically those errors which critically affect autonomous driving (e.g. by intersecting the driving corridor from street level

until 2m above the ground). Less critical are the fine details missing both in KITTI and BTS, which are available in the

light-field GT (red rectangles in the second column). The Lidar GT of KITTI cannot detect many errors, like large parts of the

image above the horizon or reflections and small details (red rectangles in the Lidar GT row).

on color constancy assumptions.

However, if light-field data is capable of providing reli-

able test data for these cases it may also be used for training,

hence we are eager to see future submissions to our bench-

mark and their performance improvements on our bench-

mark. We do not think the solution to the shown problems

does necessarily require new network architectures. Many

solutions to these challenges are conceivable, from better

training data (e.g. light-field) over improved training objec-

tives and supervision to explicit handling of the problematic

areas, like free space annotation, or manual or automatic

completion of existing data sets.

11. Conclusion and Outlook

In summary, this work describes the design of a novel

monocular depth prediction benchmark for the scenario of

autonomous driving. The benchmark makes use of newly

available dense light-field ground truth to implement a much

more comprehensive evaluation regime. Specifically, we

demonstrate several easily interpretable error metrics, which

are capable of detecting critical failures in current depth pre-

diction methods. In addition, we provide a detailed compari-

son between the classic Lidar based depth ground truth with

the novel depth data used in this benchmark. The benchmark

is publicly available3 and will be part of the Robust Vision

Challenge, a cross benchmark computer vision challenge

aiming to test and promote robust vision methods [1].

This work is a step towards more comprehensive bench-

marking, which will improve the robustness of computer

vision methods for autonomous driving scenarios. The pre-

sented methods may also be useful in demonstrating and pro-

moting this robustness for regulatory bodies and the public.

While this work was mostly concerned with depth prediction,

the approach can be applied to other vision tasks, like depth

completion or stereo image matching.

3rabbitai.de/benchmark
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