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Abstract

Commonly used metrics to evaluate semantic
segmentation such as mean intersection over union
(mloU) do not incorporate temporal consistency. A
straightforward extension of existing metrics towards
evaluating the consistency of segmentation of video
sequences does not exist, since labelled videos are rare and
very expensive to obtain. For safety-critical applications
such as highly automated driving, there is, however, a need
for a metric that measures such temporal consistency of
video segmentation networks to possibly support safety
requirements. In this paper, (a) we introduce a metric which
does not require segmentation labels for measuring the
stability of the predictions of segmentation networks over
a series of images, (b) we perform an in-depth analysis of
the proposed metric and observe strong correlations to the
supervised mloU metric; (c) we perform an evaluation of
five state-of-the-art networks for semantic segmentation of
varying complexities and architectures evaluated on two
public datasets, namely, Cityscapes and CamVid. Finally,
we perform timing evaluations and propose the use of the
metric as either an online observer for identification of
possibly unstable segmentation predictions, or as an offline
method to evaluate or to improve semantic segmentation
networks , e.g., by selecting additional training data with
critical temporal consistency.

1. Introduction

The success of deep neural networks (DNNs) in
computer vision and pattern recognition tasks makes them
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Figure 1: Examples of stable and unstable predictions of
semantic segmentation networks on videos. The yellow boxes
highlight the segmentation area of interest in the frames. Top: Left
to right are the frames at discrete time instances t—2, t— 1, and
t of a video sequence that are fed into a semantic segmentation
network. Middle: The predictions of the pedestrian are unstable,
i.e., they are not consistent across time (both t—2 — t—1, and
t—1 — t). Bottom: The predictions are more stable over time. Our
new metric helps in evaluating these instantaneous inconsistencies
in the predictions.

a promising technology for a wide variety of applications,
including highly-automated driving perception systems.



There have been a lot of improvements in vision-related
tasks such as image classification [18, 20, 25, 43, 44,

], object detection [16, s , ], and semantic
segmentation [2, 3, 5, 28, 33, 41]. We focus on semantic
segmentation networks that perform dense pixel-wise
classification of input images into a set of predefined
semantic classes. For both training and evaluation, ground
truth labels are necessary, which are usually considered
expensive to obtain. In order to assess the quality of
these semantic segmentation models, metrics such as mean
intersection over union (mloU) are commonly used. This
gives an estimate of how accurately the output pixels
are assigned to their respective semantic classes on a
pre-defined test set of images. The test set is designed such
that it consists of individual frames which are considered
representative of a diverse set of scenes and objects seen in
the real world [15]. However, in the real world, cameras
usually capture video sequences and not individual frames
over different time intervals. Since existing quality metrics
such as mloU operate on individual frames, they do not
capture any temporal notions and hence offer only limited
insights. We argue that in order to better assess models
working on videos, we need metrics that capture additional
temporal characteristics in addition to simple pixel-level
accuracy measures. One such example of a temporal
characteristic would be continuity of objects in consecutive
frames that we also demonstrate in Fig. 1. Assuming a
video sequence of sufficiently high frame rate, this means
that objects usually do not appear or disappear suddenly in
consecutive frames, except from behind occlusions. To the
best of our knowledge, there are no existing metrics that
capture such notions.

At present, evaluating video semantic segmentation
is considered challenging due to two reasons.  First,
there is a severe lack of publicly available video
semantic segmentation datasets offering a large number of
consecutive high-quality annotated images. Labelling long
video sequences is expensive and does not produce major
improvements for the semantic segmentation networks
as the diversity of the dataset is not large enough
for the network to generalise from during training.
Second, since existing quality metrics do not capture
any temporal characteristics, they offer only limited
insights. Additionally, certain methods [24, 42] exploit
the temporal consistency within videos to improve the
quality of semantic segmentation networks. However, these
approaches only perform evaluations on the improvement
of accuracy and do not measure the effects of the methods
on temporal consistency of their predictions.

In this paper, we address the abovementioned challenges
by proposing a new evaluation metric that is suitable
for assessing models on video sequences. This temporal
consistency metric captures the notion of temporal

consistency, which we define as the measurement of
the sudden appearance and disappearance of objects in
consecutive frames. In addition, this proposed metric is
fully unsupervised by nature, which means that it does not
require any expensive labelling procedures.

Our new metric could be used as an observer in the
automated vehicle, a system or evaluation that runs in
parallel to primary perception modules in the vehicle to
identify instances, where there might be a possibility of
failure [4, 6, 46]. In the case of detection of sudden
instability, this observer could possibly give an additional
input which could be combined with rule-based systems to
avoid a mishap.

As one of the major challenges of using DNNs for highly
automated driving is to ensure safety requirements of neural
networks, defining methods and metrics for measuring
their robustness-oriented traits has become an active and
important research field. The authors propose that stable
detection of objects over time could be one of the safety
criteria for automated driving, and a metric to evaluate this
might be helpful.

In this paper, our major contributions are as follows:
We introduce a novel metric to measure the consistency
of the predictions of semantic segmentation models, we
show that our unsupervised metric has a strong correlation
with the supervised intersection over union metric, and
finally we perform inference time evaluations and show
that our metric could be used as an observer in the
vehicle. To the best of our knowledge, this is the first time
detailed quantitative evaluation of the temporal consistency
of semantic segmentation has been made possible.

This paper is structured as follows: Section 2 reviews
the related work. In Section 3, we describe our intuition
and explain our metric to measure the temporal consistency
of semantic segmentation predictions. In Section 4, we
present our results and observations. Finally, we conclude
in Section 5.

2. Related Work

In this section, we discuss the related work in the field
of semantic segmentation evaluation including temporal
consistency measurement approaches and optical flow
methods.

Semantic segmentation evaluation methods can be
broadly classified in two ways, namely supervised and
unsupervised evaluation [21]. Supervised methods
depend on the existence of labelled ground truth, while
unsupervised methods do not need this. Everingham et
al. [12] introduced intersection over union (IoU) between
the predicted segmentation mask and the labelled ground
truth. Martin et al. [30] defined boundary precision
recall, which evaluates the semantic segmentation based
on the detection of the boundaries. For evaluating video
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Figure 2: Novel temporal consistency metric TC; (4) of the dense predictions from a semantic segmentation model.

sequences, Galasso et al. [13] introduce volume precision
recall (VPR), which creates spatio-temporal volumes of
the predictions of semantic segmentation. Unsupervised
methods do not depend on labelled ground truth for
evaluation. Maag et al.[29] propose a method to estimate
the reliability of semantic segmentation based on temporal
uncertainty measurements. To this end, the meta-classifier
is trained on segment-wise, or connected component-wise,
metrics which are tracked over time.

Perazzi et al. [35] introduce the DAVIS dataset for
video segmentation, define temporal stability, and measure
the error by defining acceptable and undesired changes
in two consecutive frames. To do so, polygons of shape
contours are extracted from the predicted segmentation and
fed into a shape context descriptor (SCD). Afterwards, the
transformation of masks from one frame to the other are
calculated using SCD distances, which are minimized using
dynamic time warping correlation calculation. Finally, if
a smooth transformation is observed in more than two
consecutive frames, the predictions are considered as stable.
However, this metric is discarded by the same authors in
[7, 8, 37], as it is found sensitive to occlusions.

Kundu ef al.[26] and Nilson et al.[32] use a consistency
metric to capture the concept of temporal consistency. For
this purpose, they use the large displacement optical flow
(LDOF) defined by Sundaram et al. [31]. With LDOF,
long-term tracks are computed in the video which are used
for the definition of consistency. A track is termed as
consistent if all the pixels are assigned the same label by the
semantic segmentation network. This consistency measure
can only be calculated over an entire video sequence
and does not provide instantaneous consistency of video
segmentation models at any time instant ¢, which, however,
is required for its use in observer applications. The
consistency method [26] will serve as baseline for us.

Optical flow algorithms estimate the displacement of
pixels from one video frame to another. Gunnar et
al. [14] proposed a multi-scale optical flow estimation,

where the two images are downsampled multiple times,
shaping a pyramid, while the displacement of the pixels is
calculated for each level of this pyramid. This way, small
displacements are detected in lower levels of the pyramid,
and the large displacements are estimated in the higher
levels, where the images are much smaller. Sundaram et
al. [31] propose a forward-backward method, where each
displacement vector is calculated twice; once from time
t—1 to t (forward) and once backward from ¢ to t—1. This
way, if a pixel gets a similar displacement vector in both
directions, it is considered to be a correct displacement
vector, otherwise the pixel might be occluded in the later
frame and can be eliminated. Ilg et al. [22] introduce
FlowNet2 as a newer version of FlowNet [1 1], which is a
neural network trained to estimate the optical flow. It has
been shown that this approach can generate comparative
and sometimes even better results than the conventional
optical flow methods. TVLI [36] is an extension of the
well-known Horn-Schunck method [19], where the linear
flow estimation is replaced by a non-linear term, which
allows to account for discontinuities. It has been shown that
the discontinuities of flows are covered by this method and
it is more robust to noise than the original approach.

For estimating flow vectors for our metric, we use the
optical flow approach from Gunnar et al.[14], which has a
good trade-off between accuracy and run-time. We also use
the state-of-the-art approaches mentioned above to perform
an ablation study to study the effect of various optical flow
algorithms.

3. Method

In this section, we introduce our metric for semantic
segmentation models. We term this as temporal consistency
TC, which measures the stability of semantic segmentation
predictions on video sequences. Driven by the motivation
given above, we introduce the intuition behind our metric
and explain in detail the steps to calculate TC.

Intuition: Before introducing our metric, we first briefly



introduce the idea of temporal consistency. A well-working
semantic segmentation network should produce similar
predictions between two frames in a video stream. Similar,
because in a video sequence there is little variation between
consecutive frames, depending on the frame rate of the
camera. The variation depends on two aspects: the
movement of the objects in the video, and the translational
and rotational movement of the camera. We expect the
predictions of video segmentations to be stable if we can
compensate for these variations. Taking a simple difference
between two predictions of consecutive frames does not
take into consideration these variations. However, optical
flow approaches can be used to model the movement of
pixels between two images. This maps both, the movement
of the objects in the video and also the movement of the
camera. By such accurate modelling using flow functions,
we can warp the frame at time ¢t —1 to the frame at time ¢,
which then helps in calculating the instantaneous stability
of the network’s predictions.

In order to introduce the temporal consistency for
semantic segmentation predictions, we follow Fig. 2, which
displays all the steps involved. In our more detailed
explanation on how the temporal consistency TC is
calculated, we refer to the blocks in Fig. 2. The procedure
of calculating the temporal consistency of a semantic
segmentation is as follows:

Semantic segmentation: The system under test
is a semantic segmentation model §F, whose temporal
consistency has to be measured. @ We first compute
the semantic segmentation predictions of two consecutive
sequential images. We define x € GH*"W*C o be an
image of height H, width W, number of color channels
C = 3, and pixel intensities G = {0, 1,2,...,255}. Let
xT = (xi,...,X7) be the unlabelled video sequence of
consecutive images of length 7', and x; be an image of this
sequence at discrete time instantt € T = {1,2,...,T}.

With y; = 3F(x¢) we denote the prediction of the
semantic segmentation network, where y;, € S#*W and
S = {1,2,...,S5} where S is the number of classes in

the dataset. Thus, y;—; and y; are the predictions of
consecutive images x;_; and x;, respectively.

Optical flow calculation: We use optical flow functions
to capture the apparent motion within the video sequence.
Optical flow estimates the displacement of each pixel
between the consecutive frames x;_; and x;. The
computed optical flow between x;_; and x; is defined
as a tensor u, € UT*XW following [31], where U is
the set of two-dimensional pixel-wise displacements (u, v),
representing the coordinate-wise shift of each pixel from
x¢—1 to x;. We use these pixel-wise displacements to apply
the same shift to the pixel coordinates of the segmentation
output y,—; as in [23]. This way, we generate an
expected segmentation output y; based on the calculated

flow, representing pixel-wise shifts from x;_; to x;.

Image warping: Using the derived optical flow tensor
u; calculated between x; and x;_1, the prediction of the
semantic segmentation network y;_; is warped from time
t—1 to time ¢. To do this, we first define pixel coordinates for
an image as tensor p € PT*W where P is the set of pixel
positions (or index pairs) (¢,5) with¢ € {1,...,H} and
j €{1,...,W}. Tensor p thus only contains the pixel-wise
coordinates of a pixel in an image and does not carry any
information about pixel intensity values. Now we can add
the pixel-wise displacement vectors u; to the original pixel
positions p to receive a tensor

Pt1-t = P+ uy, (D

which provides the new pixel coordinates. Subsequently,
we apply ps1-,¢+ to the segmentation output y;_;. As the
pixel coordinates pyj_,; are non-integer numbers, we use
nearest neighbour sampling nearest() as described by [23]
to obtain valid integer coordinates for mapping of y;_1 to
the flow-based estimate y; using p. ;. That is we warp

Yi—1to ¥ by
¥+ = nearest(yi1, Pri—t)- 2

Accordingly, ¥ is the expected prediction at time ¢ based on
the optical flow and conditioned on the change in the pair of
inputs x;_1 and x;, which compensates for the movement
of the camera and the objects in the consecutive frames.

Temporal consistency calculation: Ideally, for a good
semantic segmentation model, the distance between the
network output y; and the prediction based on the optical
flow y; should be small. We now define the instantaneous
temporal consistency of semantic segmentation predictions
as

TC; = mIoU(y;,¥+), 3)

calculating the mean intersection over union [ 2] between
y: and ¥, where mloU = 1 indicates that both completely
overlap. This calculation can be done on all pairs of
consecutive images in a video sequence. Subsequently,
if a single metric value is desired, the mean temporal
consistency is obtained by

mTC =

1 <
71 2. TCr, )
t=2

where T” is the number of frames in the test set. The
mean temporal consistency metric mTC therefore indicates
the stability of the predictions of a semantic segmentation
model by motion flow calculations, given a test video
sequence, without requiring labels.



Backbone FLOPs Model Size mloU Seq C26 [26] mTC (4) mloU (6)
. o D Model

Networks o chitecture (billion)  [MB]  [%] ataset y  Mode % @ %
ICNet! ICNet 87.26 7272  52.59*% 0.71
[48] PSPNet 5827 268 70.6 ERFNet 8590 6752 55.00% 0.86
ERFNet? S DeeplLabv3+ 86.82 72.67 64.50% 0.95
[40] own 21435 82 717 ResNet38A  89.58 7595  69.40% 0.77

DeepLab v3+3 . HRNetv2  89.56  79.15 100 -
0] Xception65 277824 16577  77.8 B TCNet 8946  72.07 55.13* 081
ResNet38-ASPP? __ | 2 ERFNet 87.31 66.17  56.35% 0.82
5] WideResNet 1105613 543.3 7738 S S DeepLabv3+ 8847 7254 67.87% 092
HRNetv25 = ResNet38A  90.71  75.79  70.80* 0.85
ICNet 86.12  70.53  50.74* 0.54
Table 1: Overview of semantic segmentation models used for ERFNet 8573 6725 56.20* 0.73
evaluation. The networks are taken from their respective github S DeepLabv3+ 86.51  73.09 63.18% 0.72
repositories, if available, where we use the models pretrained on ResNet38A  88.36  75.14  64.43* 0.63

Cityscapes. Numbers are provided in billion FLOPs computed for HRNetv2  88.42  78.33 100 -
1024 x 2048 input images, model size [MByte], and mloU [%] on ICNet 85.81 70.53 57.13 0.96
the validation set. Note that all the model parameters are saved as E ERFNet 69.96  87.96 80.06 0.74
32 bit float numbers. = &2 DeepLabv3+ 82.19 80.56 56.98 0.97
3 ~ ResNet38A 90.24  88.09 77.60 0.82

4. Experiments and Results

In this section, we describe the datasets and the semantic
segmentation networks we use for evaluation. We also
present the evaluation of the mean temporal consistency
metric mTC in comparison to existing works. Finally,
we study the correlation of the unsupervised consistency
metric with the intersection over union metric, which is
particularly relevant for the observer use case in the vehicle.

4.1. Semantic Segmentation Networks

Table 1 provides an overview of the networks that
we have used for evaluating their temporal consistency
on video segmentation.  The semantic segmentation
networks are chosen such that they have varying
backbones, architectures, and model sizes. Efficient
semantic segmentation networks such as ICNet [48]' and
ERFNet [40]> are used. We also use bigger models
such as DeepLab v3+ [ 1?, ResNet38-ASPP [27]%, and
HRNetv2 [47]°. ICNet is a fast real-time network which
is ideal for edge applications, whereas HRNetv2 is more
accurate but lacks real-time capability. For ERFNet,
"own" indicates that the backbone architecture is a novel
architecture that was introduced in [40]. The values of
FLOPs are calculated for the Cityscapes images with image
dimensions of 1024 x 2048. This selection of networks
helps also in studying the inter-dependence of temporal

Uhttps://github.com/hellochick/ICNet-tensorflow
Zhttps://github.com/Eromera/erfnet
3https://github.com/tensorflow/models/tree/master/research/deeplab
4We follow the training procedure as given in [27].
Shttps://github.com/HRNet/HRNet-Semantic-Segmentation

HRNetv2  90.85 75.67 6581 0.72

Table 2: Temporal coherence results (C26 [26], novel mTC (4)
with optical flow method adopted from [31]), mIoU (6) and
Pearson correlation  (7) between TC; (3) and mIoU; (5). The
numbers are reported for the semantic segmentation models in
Tab. 1 evaluated on the sequences of the Cityscapes dataset and
CamVid dataset (see Section 4.2). Stars (*) indicate that the mloU
value is calculated using pseudo-ground truth from HRNetv2. Best
temporal consistencies are shown in bold.

consistency with inference time and segmentation accuracy.

4.2. Datasets

In this section, we describe the semantic segmentation
datasets we have used to evaluate our metric.

Cityscapes dataset: The Cityscapes dataset contains
5,000 images from different cities, of which 2, 975 images
are used for training, 500 images for validation, and
1,525 for testing. We utilize the sequential unlabelled
demo videos provided within the dataset to evaluate our
metric. Similar to Cordts et al. [10], we also reduce the
33 classes to 19 relevant classes by excluding classes that
are too rare. We evaluate the mean temporal consistency
(mTC) on the three unlabelled sequences available. These
three sequences, stuttgart_00, stuttgart_01 and
stuttgart_02 are described as sequences 00, 01 and 02
in Table 2. We choose the Cityscapes dataset because of its
diversity of highly dynamic objects present in road scenes.
This dataset is also a widely used and accepted benchmark
for semantic segmentation in general.

CamVid dataset: The CamVid dataset contains 701
images from which we use 367 training images, 100



validation images, and 233 test images. This split is
similar to Sturgess et al. [34], which will ease comparison
with previous works on this dataset. A number of 11
semantic classes are used for evaluation. For the temporal
consistency measurement we use the sequence Seql6E5,
consisting of 101 frames captured at a frequency of 15Hz
(16ES in Table 2). We use this dataset, as this is the widely
used road scenes dataset that provides video sequences for
evaluation.

4.3. Experiments

In this section, we compare our metric mTC (4) with
consistency C26 as defined in [26, 32], where long-term
tracks are calculated over the entire sequence, based on the
approach from Sundaram et al. [31]. For C26, a consistent
track is defined as a track, where all the pixels along the
track have the same label assigned by the predictions of
the semantic segmentation network. Consistency C26 in
the end is the percentage of consistent tracks across the
video sequence. The comparative results are shown in
Table 2. For the Cityscapes dataset, we observe that mTC
is highest across all sequences for the powerful HRNetv2,
whereas for the CamVid dataset ResNet38-ASPP shows the
best mTC. Looking at the C26 metric [26], we observe
that it is more or less constant over all the networks
and all sequences. However, this cannot be confirmed
from the temporal instabilities that are seen in the video
segmentations. Fig. 4 shows example predictions of the
semantic segmentation networks, where it can be observed
that smaller networks tend to have a higher instability than
the bigger ones. Our metric mTC captures this instability
better as it is calculated for consecutive images (3) and
then averaged over the video sequence (4). With respect
to computation time, we observed our metric mTC to be
faster than C26 by a factor of about 10. This, along with
its instantaneous option TC; (3) enables the use of TC; in
real-time applications very much unlike [26].

4.4. Correlation With the mIoU Metric

In this section, we study the correlation of the
unsupervised TC; (3) with the supervised intersection over
union metric. The mean intersection over union mloU; at
time ¢ is defined as

1 TP,(s)
ToU; = — _
mlol: =g ;S TP,(s) + EP,(s) + EN,(s)

mIOU(th yt)a

®)
where TP;(s), FP;(s) and FN.(s) are the class-specific true
positives, false positives, and false negatives, respectively,
computed only for segmentation output y;. The mean
intersection over union (mloU) is defined as

T/
1
mloU = - > mloU;. (6)
t=1
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Figure 3: mloU:* and TC; for the ICNet (fop) and the

DeepLabv3+ (bottom) model trained on Cityscapes.  The
evaluation is performed on the stuttgart_00 sequence. This
plot highlights the strong correlation between our proposed
temporal consistency TC; metric and the mean intersection over
union metric with pseudo-ground truth mIoU*.

As the ground truth labels are not available for the
Cityscapes videos, we use the powerful HRNetv2 [47] to
generate pseudo-ground truth for these sequences. The
calculated mean intersection-over-union is termed mloU,*,
and its mean over the sequence mloU* is shown in
Table 2. Based on these pseudo-ground truth labels and
the predictions of the semantic segmentation networks,
the Pearson cross-correlation coefficient [1] is measured
between a; = mloU;* and by = TC;, t € T. Pearson
cross-correlation is defined as

Tab = et (ar — pa)(be — i)
TV er (0 1) e (b — )

where ., and pp are the respective means. Here, r =
—1 indicates perfect anti-correlation, » = 0 indicates
no (linear) correlation, and » = 1 indicates perfect
positive correlation between the time series of a and b.
Similarly for the CamVid dataset, we use the ground truth
to calculate the mean intersection over union at time ¢
and the Pearson cross-correlation is calculated between
mloU; (5) and TC; (3). From Table 2 we observe
strong positive correlations for all the networks over all
the sequences and datasets. In Fig. 3, we visualise this
correlation between mloU; and TC; for two models on
one unlabelled Cityscapes sequence. As the metric by
[26] is calculated as the percentage of long-term tracks
having the same labels assigned by the network, they
provide only one value per sequence. Performing a
similar correlation analysis on their metric is therefore not

)




Method ICNet [48]  ERFNet [40] Deeplab v3+[9] ResNet38A [5] HRNetv2 [47] MSE Time
cS Cv CS Cv CS Cv CS Ccv CS Ccv CS Ccv [s]

mTC +[14] | 0.72 0.62 0.71 0.72 0.76 0.66 0.79 0.74 0.81 0.64 | 0.0037 0.0083 | 1.08

mTC +[36] | 0.73 0.63 0.72 0.74 0.77 0.71 0.83 0.75 079  0.65 | 0.0050 0.0103 | 12.91

mTC +[31] | 0.72 0.71 0.67 0.88 0.73 0.81 0.76 0.88 078 0.76 | 0.0016 0.0031 | 3.70

mTC +[22] | 0.74 0.70 0.71 0.86 0.77 0.79 0.82 0.87 0.83  0.75 | 0.0031 0.0062 | 0.36

Table 3: Ablation study on the effect of different optical flow estimation methods on the mIoU temporal consistency metric mTC.
Evaluations are performed on sequences of the Cityscapes (CS) dataset and the CamVid (CV) dataset (see Section. 4.2). The mean squared
error (MSE) is calculated pixel-wise between x; and the warped image X based on the optical flow. A lower MSE value indicates a higher
accuracy of the optical flow. Additionally, the average time required to execute an optical flow calculation between two images within the

sequence is reported. The best numbers are printed in bold.

possible, without significantly modifying their approach to
computing stability of predictions.

Due to these strong correlations, our fully unsupervised
mTC metric can be used to identify and select additional
training data, where we observe the network to have
lower temporal consistencies. This helps in improving the
performance of semantic segmentation models without the
need of expensive labels.

4.5. Ablation Study

We perform a controlled study to isolate the effects of
various optical flow techniques on the evaluation of the
metric. The accuracy of estimating flow vectors and the
following warping may introduce errors in the calculation
of true temporal consistency (3). The accuracy of the
mapping of the optical flow is calculated by measuring
the MSE between the image x; and the warped image
%x;. For this purpose, varying dense optical flow methods
are used. We investigate the large displacement optical
flow (LDOF), that considers forward and backward flows,
as described by Sundaram et al. [31], the flow methods
introduced by Gunnar et al. [14], Perez et al. [36], and
the neural network-based approach as defined by Ilg et
al. [22]. For Ilg et al. [22], we do not perform any kind of
fine-tuning on our datasets. The results of these experiments
are shown in Table 3. We study how the mTC method
is affected by different estimators of optical flow between
consecutive images. An analysis of the computation time
taken for the flow estimations is also performed, giving
us insights into the real-time applicability of this metric.
For Cityscapes, we observe in Table 3 that all the methods
have very low differences in MSE and the changes in
the mTC values are also very small. The error in the
calculation of temporal consistency (3) due to flow vector
estimation and warping are therefore small. The optical
flow method from Sundaram et al. [31] is more accurate
in mapping flow vectors and this can be seen from the
MSE values, for both Cityscapes and CamVid datasets, in
Table 3. The neural network-based approach defined by
Ilg et al. [22] is the fastest but doubles the MSE values. In

this paper, we adopted the approach from [31], as this has
the most accurate flow vector mapping. We also performed
correlation experiments with the other optical flow methods,
showing similar positive strong correlations to mloU;. Our
metric is, therefore, fairly independent of the actual method
of optical flow estimation.

The neural network-based approach is the fastest in
terms of flow vector calculation and an improvement in
run-time and accuracy will further facilitate our metric for
real-time implementations.

5. Conclusions

In this paper, we have introduced a novel mean temporal
consistency (mTC) metric to measure temporal stability
of the predictions of semantic segmentation models.
Metrics to evaluate semantic segmentation such as mean
intersection over union (mloU) do not incorporate temporal
characteristics and thus cannot be easily extended towards
evaluating the consistency of the prediction of networks on
video sequences. We performed an in-depth analysis of the
proposed metric, study correlations to the supervised mloU
metric and find strong correlations between the two. Due to
these strong correlations, our new metric can serve to select
additional training data to be labelled to improve the quality
of semantic segmentation networks. We performed this
evaluation of temporal consistency for five state-of-the-art
semantic segmentation networks of varying complexities
and architectures, and on two datasets, Cityscapes and
CamVid. Due to the online capability and the strong
correlation to mIoU, our novel TC metric could also be used
as an observer, in parallel to primary perception modules
in the vehicle. Although we have performed these detailed
experiments on a semantic segmentation task, the intuitive
nature of our metric allows for extension to both 2D and 3D
object detection tasks.
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