The “Vertigo Effect” on Your Smartphone:
Dolly Zoom via Single Shot View Synthesis

Yangwen Liang Rohit Ranade Shuangquan Wang Dongwoon Bai
Jungwon Lee
Samsung Semiconductor Inc
{l.liang, rohit.r7, shuangquan.w, dongwoon.bai, jungwon2.lee}@samsung.com

Abstract

Dolly zoom is a technique where the camera is moved either forwards or backwards from the subject under focus while simultaneously adjusting the field of view in order to maintain the size of the subject in the frame. This results in perspective effect so that the subject in focus appears stationary while the background field of view changes. The effect is frequently used in films and requires skill, practice and equipment. This paper presents a novel technique to model the effect given a single shot capture from a single camera. The proposed synthesis pipeline based on camera geometry simulates the effect by producing a sequence of synthesized views. The technique is also extended to allow simultaneous captures from multiple cameras as inputs and can be easily extended to video sequence captures. Our pipeline consists of efficient image warping along with depth-aware image inpainting making it suitable for smartphone applications. The proposed method opens up new avenues for view synthesis applications in modern smartphones.

1. Introduction

The “dolly zoom” effect was first conceived in Alfred Hitchcock’s 1958 film “Vertigo” and since then, has been frequently used by film makers in numerous other films. The photographic effect is achieved by zooming in or out in order to adjust the field of view (FoV) while simultaneously moving the camera away or towards the subject. This leads to a continuous perspective effect with the most directly noticeable feature being that the background appears to change size relative to the subject [13]. Execution of the effect requires skill and equipment, due to the necessity of simultaneous zooming and camera movement. It is especially difficult to execute on mobile phone cameras, because of the requirement of fine control of zoom, object tracking and movement.

Figure 1: Single camera single shot dolly zoom View Synthesis example. Here (a) is generated from (b) through digital zoom.
multiple input images [28, 9] or for producing new video frames in existing videos [15].

In this paper, we model the effect using camera geometry and propose a novel synthesis pipeline to simulate the effect given a single shot of single or multi-camera captures, where single shot is defined as an image and depth capture collected from each camera at a particular time instant and location. The depth map can be obtained from passive sensing methods, cf. e.g. [2, 11], active sensing methods, cf. e.g. [22, 24] and may also be inferred from a single image through convolutional neural networks, cf. e.g. [5]. The synthesis pipeline handles occlusion areas through depth aware image inpainting. Traditional methods for image inpainting include [3, 4, 7, 26] while others like [16] adopt the method in [7] for depth based inpainting. Recent methods like [21, 14] involve applying convolutional networks for smartphone applications. Our pipeline also includes the application of the shallow depth of field (SDoF) [27] effect for phone applications. Our pipeline also includes the application of the shallow depth of field (SDoF) effect for phone applications. Our pipeline also includes the application of the shallow depth of field (SDoF) [27] effect for image enhancement. An example result of our method with this task. However, since these methods have high complexity, we implement a simpler algorithm suitable for smartphone applications.

2. View Synthesis based on Camera Geometry

Consider two pin-hole cameras A and B with camera centers at locations C_A and C_B, respectively. From [12], based on the coordinate system of camera A, the projections of any point $P \in \mathbb{R}^3$ onto the camera image planes are $(u_A^T, 1)^T = \frac{1}{D_A} K_A \begin{bmatrix} J_3 & 0_3 \end{bmatrix} (P^T, 1)^T$ and $(u_B^T, 1)^T = \frac{1}{D_B} K_B \begin{bmatrix} R & T \end{bmatrix} (P^T, 1)^T$ for cameras A and B, respectively. Here, the 2×1 vector u_X, the 3×3 matrix K_X, and the scalar D_X are the pixel coordinates on the image plane, the intrinsic parameters, and the depths of P for camera X, $X \in \{A, B\}$, respectively. The 3×3 matrix R and the 3×1 vector T are the relative rotation and translation of camera B with respect to camera A. In general, the relationship between u_B and u_A can be obtained in closed-form as

$$\begin{pmatrix} u_B^T \\ 1 \end{pmatrix} = \frac{D_A}{D_B} K_B R (K_A)^{-1} \begin{pmatrix} u_A^T \\ 1 \end{pmatrix} + \frac{K_B T}{D_B} \tag{1}$$

where T can also be written as $T = R (C_A - C_B)$.

2.1. Single Camera System

Consider the system setup for a single camera under dolly zoom as shown in Figure 2. Here, camera 1 is at an initial position C_A^1 with a FoV of θ_A^1 and focal length f_A^1 (the relationship between the camera FoV θ and its focal length f (in pixel units) may be given as $f = (W/2)/\tan(\theta/2)$ where W is the image width). In order to achieve the dolly zoom effect, we assume that it undergoes translation by a distance t to position C_A^1 along with a change in its focal length to f_A^1 and correspondingly, a change of FoV to θ_A^1 ($\theta_B^1 \geq \theta_A^1$). D_0^B is the depth of a 3D point P and D_0 is the depth to the focus plane from the camera 1 at the initial position C_A^1. Our goal is to create a synthetic view at location C_A^1 from a capture at location C_A^1 such that any object in the focus plane is projected at the same pixel location in 2D image plane regardless of camera location. For the same 3D point P, u_A^1 is its projection onto the image plane of camera 1 at its initial position C_A^1 while u_B^1 is its projection onto the image plane of camera 1 after it has moved to position C_A^1. We make the following assumptions:

1. The translation of the camera center is along the principal axis Z. Accordingly, $C_A^1 - C_A^1 = \begin{pmatrix} 0, 0, -t \end{pmatrix}^T$ while the depth of P to the camera 1 at position C_A^1 is $D_A^1 = D_A^1 - t$.
2. There is no relative rotation during camera translation. Therefore, R is an identity matrix J_3.

![Figure 2: Single camera system setup under dolly zoom](image-url)
3. Assuming there is no shear factor, the camera intrinsic matrix K_1^A of the camera at location C_1^A can be modeled as [12]

$$K_1^A = \begin{bmatrix} f_1^A & 0 & u_0 \\ 0 & f_1^A & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (2)$$

where $u_0 = (u_0, v_0)^T$ is the principal point in terms of pixel dimensions. Assuming the resulting image resolution did not change, the intrinsic matrix K_1^B at position C_1^B is related to that at C_1^A through a zooming factor k and can be obtained as $K_1^B = K_1^A \text{diag}\{k, k, 1\}$, where $k = f_1^B / f_1^A = (D_0 - t) / D_0$.

4. The depth of P is $D_1^A > t$. Otherwise, P will be excluded on the image plane of camera at position C_1^B.

From Eq. 1, we can obtain the closed-form solution for u_1^B in terms of u_1^A as

$$u_1^B = \frac{D_1^A(D_0 - t)}{D_0(D_1^A - t)} u_1^A + \frac{t(D_1^A - D_0)}{D_0(D_1^A - t)} u_0. \quad (3)$$

A generalized equation for camera movements along the horizontal and vertical directions along with the translation along the principal axis and change of FoV/focal length is derived in the supplementary.

Let I_1 be the input image from camera 1 and D_1 be the corresponding depth map, so that each pixel $u = (x, y)$, the corresponding depth $D_1(u)$ may be obtained. I_1 can now be warped using Eq. 3 using D_1 for a camera translation t to obtain the synthesized image I_1^{DZ}. Similarly, we can warp D_1 with the known t and obtain the corresponding depth D_1^{DZ}. This step is implemented through z-buffering [25] and forward warping. An example is shown in Figure 3.

Epipolar Geometry Analysis In epipolar geometry, pixel movement is along the epipolar lines, which is related by the fundamental matrix between the two camera views. The fundamental matrix F_1 relates corresponding pixels in the images for the two views without knowledge of pixel depth information [12]. This is a necessary condition for corresponding points and can be given as $(x_1^A)^T F_1 x_1^B = 0$, where $x_1^A = ((u_1^A)^T, 1)^T$ and $x_1^B = ((u_1^B)^T, 1)^T$. From [12], it is easy to show that the fundamental matrix can be obtained as $F_1 = \begin{bmatrix} 0 & -1 \\ v_0; 1 & 0 -v_0; v_0 & 0 \end{bmatrix}$ and the corresponding epipoles and epipolar lines can be obtained accordingly [12], as shown in Figure 3. The epipoles are $e_1^A = e_1^B = (u_0, v_0, 1)^T$ for both locations C_1^A and C_1^B as camera moving along the principal axis [12].

Digital Zoom It is worthy to note that θ_1^A may be a partial FoV of the actual camera FoV θ_1^A at initial position C_1^A. Straightforward digital zoom can be employed to get the partial FoV image. Assuming the actual intrinsic matrix K_1^A, the intrinsic matrix K_1^B for partial FoV can be obtained as $K_1^B = K_1^A \text{diag}\{k, k, 1\}$, where $k = D_1^A / D_0$.

Figure 3: Single camera image synthesis under dolly zoom. Epipoles (green dots), sample point correspondences (red, blue, yellow, magenta dots) along with their epipolar lines are shown.

Let K_1, the intrinsic matrix K_1^A for partial FoV can be obtained as $K_1^A = K_1 \text{diag}\{k_0, k_0, 1\}$, where $k_0 = f_1^A / f_1 = \tan(\theta_1^A / 2) / \tan(\theta_1^A / 2)$. Subsequently, a closed-form equation may be obtained for the zoom pixel coordinates u_1^A in terms of u_1 of actual image pixel location (with the camera rotation R as an identity matrix I_3):

$$u_1^A = (f_1^A / f_1^A) u_1 + (1 - (f_1^A / f_1)) u_0. \quad (4)$$

Eq. 4 may be used to digitally zoom I_1 and D_1 to the required FoV θ_1^A.

2.2. Introducing a Second Camera to the System

Applying the synthesis formula from Eq. 3 for a single camera results in many missing and occluded areas as the FoV increases. Some of these areas can be filled using projections from other available cameras with different FoVs. We now introduce a second camera to the system for this purpose. Consider the system shown in Figure 4 where a second camera with focal length f_2 is placed at position C_2. As an example, we assume that both cameras are well calibrated [29], i.e., these two cameras are on the same plane and their principal axes are perpendicular to that plane. Let b be the baseline between the two cameras. The projection of point P on the image plane of camera 2 is at pixel location u_2.

We once again assume that there is no relative rotation between the two cameras (or that it has been corrected during camera calibration [29]). The translation of the second camera from position C_2 to position C_1^B can be given as $C_2 - C_1^B = (b, 0, -t)^T$. Here, we assume the baseline is on the X-axis, but it is simple to extend to any directions. For the same point P, the corresponding depth relationship can be given as $D_1^B = D_2 - t$, where D_2 denotes the depth of P seen by camera 2 at position C_2. Assuming image resolutions are the same, the intrinsic matrix K_2 of camera 2 can be related to the intrinsic matrix of camera 1 at position C_1^A as $K_2 = K_1^A \text{diag}\{k', k', 1\}$, where the zooming factor k' can be given as $k' = f_2 / f_1 = \tan(\theta_1^A / 2) / \tan(\theta_2^A / 2)$.

![Figure 3: Single camera image synthesis under dolly zoom.](image-url)
A closed–form solution for \(u_1^B \) can be obtained as:

\[
 u_1^B = \frac{D_2 k}{(D_2 - t)k'} (u_2 - u_0) + u_0 + \left(\frac{bf_1^A k}{D_2 - t} \right).
\]

(5)

Let \(I_2 \) be the input image from camera 2 and \(D_2 \) be the corresponding depth map. \(I_2 \) can now be warped using Eq. 5 with \(D_2 \) for a camera translation \(t \) to obtain the synthesized image \(I_2^{DZ} \). We once again use forward warping with \(z \)-buffering for this step. An example is shown in Figure 5. This derivation can be easily extended to include any number of additional cameras to the system.

A generalized equation for camera movements along the horizontal and vertical directions along with the translation along the principal axis and change of FoV/focal length is derived in the supplementary for this case as well.

Epipolar Geometry Analysis Similar to single camera case, we can derive the fundamental matrix \(F_2 \) in close–form

\[
 F_2 = \begin{bmatrix}
 0 & -t & tv_0 \\
 t & 0 & bf_1^A k' - tu_0 \\
 -tv_0 & tu_0 - bf_1^A k' & bf_1^A v_0 (k - k')
 \end{bmatrix}
\]

such that pixel location relationship \((x_1^B)^T F_2 x_2 = 0 \) is satisfied. Here, \(x_2 = (u_2^T, 1)^T \) is the homogeneous representation of pixels of camera at location 2. Therefore, the corresponding epipoles are \(e_1^B = (u_0 - bf_1^A k/t, v_0, 1)^T \) and \(e_2 = (u_0 - bf_2^A k'/t, v_0, 1)^T \) for cameras at locations \(C_1^B \) and \(C_2 \), respectively. Also, epipolar lines can be obtained accordingly [12] as shown in Figure 5.

2.3. Image Fusion

We now intend to use the synthesized image \(I_2^{DZ} \) from the second camera to fill in missing/occluded areas in the synthesized image \(I_1^{DZ} \) from the first camera. This is achieved through image fusion with the following steps:

1. The first step is to identify missing areas in the synthesized view \(I_1^{DZ} \). Here, we implement a simple scheme given below to create a binary mask \(B \) by checking the validity of \(I_1^{DZ} \) at each pixel location \((x, y) \):

\[
 B(x, y) = \begin{cases}
 1, & I_1^{DZ} (x, y) \in O_1^{m,c} \\
 0, & I_1^{DZ} (x, y) \notin O_1^{m,c}
 \end{cases}
\]

 where \(O_1^{m,c} \) denotes a set of missing/occluded pixels for \(I_1^{DZ} \) due to warping.

2. With the binary mask \(B \), the synthesized images \(I_1^{DZ} \) and \(I_2^{DZ} \) are fused to generate \(I_F \):

\[
 I_F = B \cdot I_2^{DZ} + (1 - B) \cdot I_1^{DZ}
\]

where \(\cdot \) is element-wise matrix product. The depths for the synthesized view \(D_1^{DZ} \) and \(D_2^{DZ} \) are also fused in a similar manner to obtain \(D_F \). An example is shown in Figure 6. In this example, the FoV of the second camera is greater than that of the first camera (i.e. \(\theta_2 > \theta_1^A \)) in order to fill larger missing area. For image fusion, we can also apply more advanced methods which are capable of handling photometric differences between input images, e.g. Poisson fusion [18].
2.4. Depth Aware Image Occlusion Handling

In order to handle occlusions, for each synthesized dolly zoom view, we identify occlusion areas and fill them in using neighboring information for satisfactory subjective viewing. Occlusions occur due to the nature of the camera movement and depth discontinuity along the epipolar line [12]. Therefore, one constraint in filling occlusion areas is that whenever possible, they should be filled only with the background and not the foreground.

Occlusion Area Identification The first step is to identify occlusion areas. Let I_F be the generated view after image fusion. Let M be a binary mask depicting occlusion areas. Similar to section 2.3, M is simply generated by checking the validity of I_F at each pixel location (x, y).

$$M(x, y) = \begin{cases} 1, & I_F(x, y) \in O_F^c \\ 0, & I_F(x, y) \notin O_F^c \end{cases} \quad (9)$$

where O_F^c denotes a set of occluded pixels for I_F after image fusion in Section 2.3.

Depth Hole–Filling A critical piece of information is the fused depth D_F for the synthesized view which allows us to distinguish between foreground and background. D_F will also have holes due to occlusion. If we intend to use the depth for image hole–filling, we need to first fill the holes in the depth itself. We implement a simple nearest neighbor hole filling scheme described in Algorithm 1.

Algorithm 1: Depth map hole filling

<table>
<thead>
<tr>
<th>Input</th>
<th>Fused depth D_F, dimensions (width W and height H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>The hole filled depth $\overline{D_F}$</td>
</tr>
<tr>
<td>1. Initialize</td>
<td>$\overline{D_F} = D_F$</td>
</tr>
<tr>
<td>for $x = 1$ to H do</td>
<td></td>
</tr>
<tr>
<td>for $y = 1$ to W do</td>
<td></td>
</tr>
<tr>
<td>if $M(x, y) = 1$ then</td>
<td></td>
</tr>
<tr>
<td>2.1) Find four nearest neighbors (left, right, bottom, top).</td>
<td></td>
</tr>
<tr>
<td>2.2) Find the neighbor with the maximum value (d_{max}), since we intend to fill in the missing values with background values.</td>
<td></td>
</tr>
<tr>
<td>2.3) Set $\overline{D_F}(x, y) = d_{max}$</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

Depth–Aware Image Inpainting Hole filling for the synthesized view needs to propagate from the background towards the foreground. The hole filling strategy is described in Algorithm 2.

Algorithm 2: Image hole filling

<table>
<thead>
<tr>
<th>Input</th>
<th>Synthesized view I_F, Synthesized depth $\overline{D_F}$, Occlusion mask M, depth segment mask M_{prev} initialized to zeros and dimensions (width W and height H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>The hole filled synthesized view $\overline{I_F}$</td>
</tr>
<tr>
<td>1. Initialize</td>
<td>$\overline{I_F} = I_F$</td>
</tr>
<tr>
<td>2. Determine all unique values in $\overline{D_F}$. Let d^u be the array of unique values in the ascending order and S be the number of unique values.</td>
<td></td>
</tr>
<tr>
<td>for $s = S$ to 2 do</td>
<td></td>
</tr>
<tr>
<td>3.1) Depth mask D_s corresponding to the depth step: $D_s = (\overline{D_F} > d^u(s - 1))&(\overline{D_F} \leq d^u(s))$ where $>$, \leq and $&$ are the element-wise matrix greater than, less than or equal to and AND operations.</td>
<td></td>
</tr>
<tr>
<td>3.2) Image segment I_s corresponding to the depth mask: $I_s = I_F \cdot D_s$ where \cdot is element-wise matrix product.</td>
<td></td>
</tr>
<tr>
<td>3.3) Current Occlusion mask for the depth step: $M_{curr} = M \cdot D_s$</td>
<td></td>
</tr>
<tr>
<td>3.4) Update M_{curr} with previous mask M_{prev} $M_{curr} = M_{curr} | M_{prev}$ where $|$ is element-wise matrix OR condition.</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

3.6) Propagate the current occlusion mask to the next step: $M_{prev} = M_{curr}$

4. Apply simple low pass filtering on the filled in occluded areas in $\overline{I_F}$.

<details>
<summary>Source Code</summary>

```java
// Algorithm 1: Depth map hole filling
Input : Fused depth $D_F$, dimensions (width $W$ and height $H$)
Output: The hole filled depth $\overline{D_F}$
1. Initialize $\overline{D_F} = D_F$
   for $x = 1$ to $H$
   for $y = 1$ to $W$
     if $M(x, y) = 1$
       2.1) Find four nearest neighbors (left, right, bottom, top).
       2.2) Find the neighbor with the maximum value ($d_{max}$), since we intend to fill in the missing values with background values.
       2.3) Set $\overline{D_F}(x, y) = d_{max}$
     end
   end
 end

// Algorithm 2: Image hole filling
Input : Synthesized view $I_F$, Synthesized depth $\overline{D_F}$, Occlusion mask $M$, depth segment mask $M_{prev}$ initialized to zeros and dimensions (width $W$ and height $H$)
Output: The hole filled synthesized view $\overline{I_F}$
1. Initialize: $\overline{I_F} = I_F$
2. Determine all unique values in $\overline{D_F}$. Let $d^u$ be the array of unique values in the ascending order and $S$ be the number of unique values.
for $s = S$ to 2 do
  3.1) Depth mask $D_s$ corresponding to the depth step: $D_s = (\overline{D_F} > d^u(s - 1))\&(\overline{D_F} \leq d^u(s))$
where $>$, $\leq$ and $\&$ are the element-wise matrix greater than, less than or equal to and AND operations.
  3.2) Image segment $I_s$ corresponding to the depth mask: $I_s = I_F \cdot D_s$
  3.3) Current Occlusion mask for the depth step: $M_{curr} = M \cdot D_s$
  3.4) Update $M_{curr}$ with previous mask $M_{prev}$ $M_{curr} = M_{curr} \| M_{prev}$ where $\|$ is element-wise matrix OR condition.
end
3.6) Propagate the current occlusion mask to the next step: $M_{prev} = M_{curr}$
4. Apply simple low pass filtering on the filled in occluded areas in $\overline{I_F}$.
```
</details>
2.5. Shallow Depth of Field (SDoF)

After view synthesis and occlusion handling, we can apply the shallow depth of field (SDoF) effect to I_F. This effect involves the application of depth-aware blurring. The diameter c of the blur kernel on the image plane is called the circle of confusion (CoC). Assuming a thin lens camera model [12], the relation between c, lens aperture A, magnification factor m, and distance to an object under focus D_0 and another object at distance D can be given as [25]

$$c = \frac{A m (|D - D_0|)/D}{2}.$$

Under the dolly zoom condition, the magnification factor m and the relative distance $|D - D_0|$ remains constant. However, after a camera translation of t, the diameter of the CoC changes to:

$$c(t) = A m (|D - D_0|)/(D - t) = c(0) \frac{D}{(D - t)},$$

where $c(t)$ is the CoC for an object at depth D and the camera translation t. The detailed derivation can be found in the supplementary. The usage of SDoF effect is two-fold: 1) enhanced viewer attention to the objects in focus, and 2) hide imperfections due to image warping, image fusion and hole filling steps.

2.6. Dolly Zoom View Synthesis Pipeline

Single Camera Single Shot View Synthesis The single shot single camera dolly zoom synthesis pipeline is shown in Figure 8 and described below:

1. The input is the image I with FoV θ, its depth map D and the known intrinsic matrix K.

2. We apply digital zoom to both I and D according to Eq. 4 (described in Section 2.1) through inverse warping to a certain angle θ_1 (in the example experiments, θ_1 is set to 30') to obtain the zoomed-in image I_1 and the corresponding depth map D_1.

3. The original input image I, depth map D and intrinsic matrix K are re-used as I_2, D_2 and K_2 respectively.

4. A synthesized image I_1^{DZ} and its depth D_1^{DZ} is produced from I_1 and D_1 with Eq. 3 through forward warping and z-buffering for a given t.

5. A synthesized image I_2^{DZ} and its depth D_2^{DZ} is produced from I_2 and D_2 with Eq. 5 through forward warping and z-buffering for the given t. The baseline b is set to 0 for this case.

6. The synthesized images I_1^{DZ} and I_2^{DZ} are fused together (as described in Section 2.3) to form the fused image F_1 while the synthesized depth maps D_1^{DZ} and D_2^{DZ} are similarly fused together to form the fused depth map D_F.

7. Occlusion areas in I_F (and D_F) are handled (according to Section 2.4) to obtain I_F (and D_F).

8. The shallow depth of field effect is applied to I_F to obtain the final dolly zoom synthesized image I_F^{DZ}.

A restriction of this setup is that the maximum FoV for the synthesized view is limited to θ_1.

Extending the pipeline for multiple camera inputs The single camera single shot dolly zoom synthesis pipeline may be extended to input images captured from multiple cameras at the same time instant with minor modifications. Consider a dual camera setup, where the inputs are the image I_1 with FoV θ_1, its depth map D_1 and the known intrinsic matrix K_1 from the first camera and correspondingly, the image I_2 with FoV θ_2, its depth map D_2 and the known intrinsic matrix K_2 from the second camera. In this case, the application of digital zoom in Step 2 of the single camera pipeline is no longer required. Instead, we only apply Steps 4 - 8 with the baseline b set to the representative value, to obtain the synthesized view I_F^{DZ} for the dual camera case. A restriction of such a setup is that the maximum FoV for the synthesized view is now limited to θ_2 (and in general, to the FoV of the camera with the largest FoV in the multi-camera system).
3. Experiment Results

3.1. Datasets

Synthetic Dataset We generated a synthetic image dataset using the commercially available graphics software Unity 3D. For the experiment, we assume a dual-camera collinear system with the following parameters: Camera 1 with FoV $\theta_1 = 45^\circ$ and Camera 2 with FoV $\theta_2 = 77^\circ$. This setup is simulated in the Unity3D software. In this synthetic dataset, each image set includes: I_1 from Camera 1 and I_2 from Camera 2, the depth maps D_1 for Camera 1, D_2 for Camera 2, and the intrinsic matrices K_1 and K_2 for Camera’s 1 and 2 respectively. In addition, each image set also includes the ground truth dolly zoom views which are also generated with Unity3D for objective comparisons.

Smartphone Dataset We also created a second dataset with dual camera images from a representative smartphone device. For this dataset, the depth was estimated using a stereo module so that each image set includes I from Camera 1 with a FoV $\theta = 45^\circ$, its depth map D and the intrinsic matrix K.

3.2. Experiment Setup

From the input images, we generate a sequence of images using the synthesis pipeline described in Section 2. For each image set, the depth to the object under focus (D_0) is set manually. The relationship between the dolly zoom camera translation distance t, the required dolly zoom camera FoV θ_{DZ} and the initial FoV θ_1 of I_1 can be obtained from Section 2.1 as:

$$t = D_0 \frac{\tan (\theta_{DZ}/2) - \tan (\theta_1/2)}{\tan (\theta_{DZ}/2)}. \quad (11)$$

Initializing the dolly zoom angle θ_{DZ} to θ_1, we increment it by a set amount δ up to a maximum angle set to θ_2. For each increment, we obtain the corresponding distance t with Eq. 11. We then apply the synthesis pipeline described in Section 2.6 to obtain the synthesized image I_{F}^{DZ} for that increment. The synthesized images for all the increments are then compiled to form a single sequence.

3.3. Quantitative Evaluation

The synthesis pipeline modified for a dual camera input as described in Section 2.6 is applied to each image set in the synthetic dataset. In order to produce a sequence of images, we initialize the dolly zoom angle $\theta_{DZ} = 45^\circ$ and increment it with a $\delta = 1^\circ$ up to a maximum angle of $\theta_2 = 77^\circ$. The dolly zoom camera translation distance t at each increment is calculated according to Eq. 11. We then objectively measure the quality of our view synthesis by computing the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) for each synthesized view against the corresponding ground truth image at each increment, before and after the application of the SDoF effect. The mean metric values for each increment are then computed across all the image sets in the synthetic dataset and are shown in Figure 9. As the dolly zoom angle θ_{DZ} increases, the area of the image that need to be inpainted due to occlusion increases, which corresponds to the drop in PSNR and SSIM.

3.4. Qualitative Evaluation

Figure 10 shows the results for the dual camera input synthesis pipeline applied to the image sets in the synthetic dataset. The input images I_1 and I_2 are used to produce the dolly zoom image I_F while the right most column shows the corresponding ground truth dolly zoom image.
the ground truth are shown here before application of the SDoF effect. Figure 11 shows the results for the single camera single shot synthesis pipeline described in Section 2.6 applied to image sets in the smartphone dataset. Here, the input images I_1 and I_2 (formed from image I of each image set as described in Section 2.6, Steps 2 – 3) are used to synthesize the dolly zoom image I^{DZ}_F (shown after the application of the SDoF effect). For comparison, we also show I_1 with the SDoF effect applied. Under dolly zoom, objects in the background appear to undergo depth-dependent movement, the objects under focus stay the same size while the background FoV increases. This effect is apparent in our view synthesis results. In both Figures 10 and 11, the foreground objects (balloon, person, dog and toy) remain in focus and of the same size, the background objects are warped according to their depths while the synthesized images (I^F_F and I^{DZ}_F) have a larger background FoV than I_1.

4. Conclusion and Future Work

We have presented a novel modelling pipeline based on camera geometry to synthesize the dolly zoom effect. The synthesis pipeline presented in this paper can be applied to single camera or multi-camera image captures (where the cameras may or may not be on the same plane) and to video sequences. Generalized equations for camera movement not just along the principal axis and change of focal length/FoV but also, along the horizontal or vertical directions have been derived in the supplementary as well. The focus of future work will be on advanced occlusion handling schemes to provided synthesized images with subjectively greater image quality.

References

