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Abstract

Dolly zoom is a technique where the camera is moved

either forwards or backwards from the subject under focus

while simultaneously adjusting the field of view in order to

maintain the size of the subject in the frame. This results in

perspective effect so that the subject in focus appears sta-

tionary while the background field of view changes. The

effect is frequently used in films and requires skill, practice

and equipment. This paper presents a novel technique to

model the effect given a single shot capture from a single

camera. The proposed synthesis pipeline based on cam-

era geometry simulates the effect by producing a sequence

of synthesized views. The technique is also extended to

allow simultaneous captures from multiple cameras as in-

puts and can be easily extended to video sequence captures.

Our pipeline consists of efficient image warping along with

depth–aware image inpainting making it suitable for smart-

phone applications. The proposed method opens up new

avenues for view synthesis applications in modern smart-

phones.

1. Introduction

The “dolly zoom” effect was first conceived in Alfred

Hitchcock’s 1958 film “Vertigo” and since then, has been

frequently used by film makers in numerous other films.

The photographic effect is achieved by zooming in or out

in order to adjust the field of view (FoV) while simultane-

ously moving the camera away or towards the subject. This

leads to a continuous perspective effect with the most di-

rectly noticeable feature being that the background appears

to change size relative to the subject [13]. Execution of the

effect requires skill and equipment, due to the necessity of

simultaneous zooming and camera movement. It is espe-

cially difficult to execute on mobile phone cameras, because

of the requirement of fine control of zoom, object tracking

and movement.

(a) Input image I1 (b) Input image I2

(c) Dolly zoom synthesized image with SDoF by our method

Figure 1: Single camera single shot dolly zoom View Syn-

thesis example. Here (a) is generated from (b) through dig-

ital zoom

Previous attempts at automatically simulating this effect

required the use of a specialized light field camera [19]

while the process in [20, 1] involved capturing images while

moving the camera, tracking interest points and then apply-

ing a calculated scaling factor to the images. Generation

of views from different camera positions given a sequence

of images through view interpolation is mentioned in [8]

while [10] mentions methods to generate images given a 3D

scene. Some the earliest methods for synthesizing images

through view interpolation include [6, 23, 31]. More re-

cent methods have applied deep convolutional networks for

producing novel views from a single image [30, 17], from



multiple input images [28, 9] or for producing new video

frames in existing videos [15].

In this paper, we model the effect using camera geometry

and propose a novel synthesis pipeline to simulate the ef-

fect given a single shot of single or multi–camera captures,

where single shot is defined as an image and depth capture

collected from each camera at a particular time instant and

location. The depth map can be obtained from passive sens-

ing methods, cf. e.g. [2, 11], active sensing methods, cf.

e.g. [22, 24] and may also be inferred from a single image

through convolutional neural networks, cf. e.g. [5]. The

synthesis pipeline handles occlusion areas through depth

aware image inpainting. Traditional methods for image in-

painting include [3, 4, 7, 26] while others like [16] adopt the

method in [7] for depth based inpainting. Recent methods

like [21, 14] involve applying convolutional networks for

this task. However, since these methods have high complex-

ity, we implement a simpler algorithm suitable for smart-

phone applications. Our pipeline also includes the appli-

cation of the shallow depth of field (SDoF) [27] effect for

image enhancement. An example result of our method with

the camera simulated to move towards the object under fo-

cus while changing focal length simultaneously is shown

in Figure 1. In this example, Figures 1a, 1b are the input

images and Figure 1c is the dolly zoom synthesized image

with the SDoF effect applied. Notice that the dog remains in

focus and the same size while the background shrinks with

an increase in FoV.

The rest of the paper is organized as follows: System

model and view synthesis with camera geometry are de-

scribed in Section 2 while experiment results are given in

Section 3. Conclusions are drawn in Section 4.

Notation Scheme In this paper, matrix is denoted as H,

and (·)T denotes transpose. The projection of point P , de-

fined as P = (X,Y, Z)T in R
3, is denoted as point u,

defined as u = (x, y)T in R
2. Scalars are denoted as X

or x. Correspondingly, I is used to represent an image.

I(x, y), or alternately I(u), is the intensity of the image

at location (x, y). Similarly, for a matrix H, H(x, y) de-

notes the element at pixel (x, y) in that matrix. Jn and 0n

denote the n × n identity matrix and n × 1 zero vectors.

diag{x1, x2, · · · , xn} denotes a diagonal matrix with ele-

ments x1, x2, · · · , xn on the main diagonal.

2. View Synthesis based on Camera Geometry

Consider two pin-hole cameras A and B with camera

centers at locations CA and CB , respectively. From [12],

based on the coordinate system of camera A, the projec-

tions of any point P ∈R
3 onto the camera image planes are

(

u
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for cameras A and B, respec-

tively. Here, the 2× 1 vector uX , the 3× 3 matrix KX , and
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Figure 2: Single camera system setup under dolly zoom

the scalar DX are the pixel coordinates on the image plane,

the intrinsic parameters, and the depths of P for camera X ,

X ∈ {A,B}, respectively. The 3 × 3 matrix R and the

3 × 1 vector T are the relative rotation and translation of

camera B with respect to camera A. In general, the relation-

ship between uB and uA can be obtained in closed–form as
(

uB

1

)

=
DA

DB

KBR(KA)
−1

(

uA

1

)

+
KBT

DB

(1)

where T can also be written as T = R (CA −CB).

2.1. Single Camera System

Consider the system setup for a single camera under

dolly zoom as shown in Figure 2. Here, camera 1 is

at an initial position C
A
1 with a FoV of θA1 and focal

length fA
1

(the relationship between the camera FoV θ and

its focal length f (in pixel units) may be given as f =
(W/2)/tan(θ/2) where W is the image width). In order

to achieve the dolly zoom effect, we assume that it under-

goes translation by a distance t to position C
B
1 along with

a change in its focal length to fB
1 and correspondingly, a

change of FoV to θB
1

(θB
1
≥ θA

1
). DA

1
is the depth of a 3D

point P and D0 is the depth to the focus plane from the

camera 1 at the initial position C
A
1

. Our goal is to create

a synthetic view at location C
B
1

from a capture at location

C
A
1 such that any object in the focus plane is projected at the

same pixel location in 2D image plane regardless of camera

location. For the same 3D point P , uA
1

is its projection onto

the image plane of camera 1 at its initial position C
A
1 while

u
B
1

is its projection onto the image plane of camera 1 af-

ter it has moved to position C
B
1 . We make the following

assumptions:

1. The translation of the camera center is along the prin-

cipal axis Z . Accordingly, CA

1
− C

B

1
=
(

0, 0,−t
)T

.

while the depth of P to the camera 1 at position C
B
1 is

DB
1
= DA

1
− t.

2. There is no relative rotation during camera translation.

Therefore, R is an identity matrix J3.



3. Assuming there is no shear factor, the camera intrin-

sic matrix K
A
1 of the camera at location C

A
1 can be

modeled as [12]

K
A
1 =





fA
1

0 u0

0 fA
1

v0
0 0 1



 , (2)

where u0 = (u0, v0)
T is the principal point in terms

of pixel dimensions. Assuming the resulting image

resolution did not change, the intrinsic matrix K
B
1

at position C
B
1

is related to that at C
A
1

through a

zooming factor k and can be obtained as K
B
1

=
K

A
1 diag{k, k, 1}, where k = fB

1 /fA
1 = (D0− t)/D0.

4. The depth of P is DA
1

> t. Otherwise, P will be

excluded on the image plane of camera at positionCB
1 .

From Eq. 1, we can obtain the closed–form solution for uB
1

in terms of uA
1 as

u
B
1
=

DA
1
(D0 − t)

D0(DA
1
− t)

u
A
1
+

t(DA
1
−D0)

D0(DA
1
− t)

u0 . (3)

A generalized equation for camera movements along the

horizontal and vertical directions along with the translation

along the principal axis and change of FoV/focal length is

derived in the supplementary.

Let I1 be the input image from camera 1 and D1 be the

corresponding depth map, so that each pixel u = (x, y), the

corresponding depth D1(u) may be obtained. I1 can now

be warped using Eq. 3 using D1 for a camera translation t to

obtain the synthesized image I
DZ
1

. Similarly, we can warp

D1 with the known t and obtain the corresponding depth

D
DZ
1 . This step is implemented through z-buffering [25]

and forward warping. An example is shown in Figure 3.

Epipolar Geometry Analysis In epipolar geometry, pixel

movement is along the epipolar lines, which is related by

the fundamental matrix between the two camera views. The

fundamental matrix F 1 relates corresponding pixels in the

images for the two views without knowledge of pixel depth

information [12]. This is a necessary condition for corre-

sponding points and can be given as
(

x
B
1

)T
F1x

A
1

= 0 ,

where x
A
1

=
(

(uA
1
)T, 1

)T
and x

B
1

=
(

(uB
1
)T, 1

)T
. From

[12], it is easy to show that the fundamental matrix can be

obtained as F1 =
[

0 −1 v0; 1 0 −u0;−v0 u0 0
]

and the corresponding epipoles and epipolar lines can be ob-

tained accordingly [12], as shown in Figure 3. The epipoles

are eA1 = e
B
1 = (u0, v0, 1)

T
for both locations CA

1 and C
B
1

as camera moving along the principal axis [12].

Digital Zoom It is worthy to note that θA
1

may be a par-

tial FoV of the actual camera FoV θ1 at initial position C
A
1 .

Straightforward digital zoom can be employed to get the

partial FoV image. Assuming the actual intrinsic matrix

(a) Input image I1 with FoV

θ
A
1 = 45

o

(b) Synthesized image I
DZ
1 with

FoV θ
B
1 = 50

o

Figure 3: Single camera image synthesis under dolly zoom.

Epipoles (green dots), sample point correspondences (red,

blue, yellow, magenta dots) along with their epipolar lines

are shown.

K1, the intrinsic matrix K
A
1 for partial FoV can be ob-

tained as KA
1
= K1diag{k0, k0, 1}. where k0 = fA

1
/f1 =

tan (θ1/2)/tan (θ
A
1 /2). Subsequently, a closed–form equa-

tion may be obtained for the zoom pixel coordinates uA
1

in

terms of u1 of actual image pixel location (with the camera

rotation R as an identity matrix J3):

u
A
1
= (fA

1
/f1)u1 +

(

1− (fA
1
/f1)

)

u0 (4)

Eq. 4 may be used to digitally zoom I1 and D1 to the re-

quired FoV θA1 .

2.2. Introducing a Second Camera to the System

Applying the synthesis formula from Eq. 3 for a single

camera results in many missing and occluded areas as the

FoV increases. Some of these areas can be filled using pro-

jections from other available cameras with different FoVs.

We now introduce a second camera to the system for this

purpose. Consider the system shown in Figure 4 where a

second camera with focal length f2 is placed at positionC2.

As an example, we assume that both cameras are well cal-

ibrated [29], i.e. these two cameras are on the same plane

and their principal axes are perpendicular to that plane. Let

b be the baseline between the two cameras. The projection

of point P on the image plane of camera 2 is at pixel loca-

tion u2.

We once again assume that there is no relative rotation

between the two cameras (or that it has been corrected dur-

ing camera calibration [29]). The translation of the second

camera from position C2 to position C
B
1

can be given as

C2 − C
B
1

=
(

b, 0,−t
)T

. Here, we assume the baseline is

on the X-axis, but it is simple to extend to any directions.

For the same point P , the corresponding depth relationship

can be given as DB
1 = D2 − t, where D2 denotes the depth

of P seen by camera 2 at position C2. Assuming image res-

olutions are the same, the intrinsic matrix K2 of camera 2

can be related to the intrinsic matrix of camera 1 at position

C
A
1

as K2 = K
A
1

diag{k′, k′, 1}, where the zooming factor

k′ can be given as k′ = f2/f
A
1

= tan(θA
1
/2)/ tan(θ2/2).
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Figure 4: Two cameras system setup under dolly zoom.

(a) Input image I2 with FoV

θ2 = 77
o

(b) Synthesized image I
DZ
2 with

FoV θ
B
1 = 50

o

Figure 5: Image synthesis for the second camera under

dolly zoom. Epipoles (green dots), sample point correspon-

dences (red, blue, yellow, magenta dots) along with their

epipolar lines are shown.

A closed–form solution for uB
1

can be obtained as:

u
B
1
=

D2k

(D2 − t)k′
(u2 − u0) + u0 +

(

bfA

1
k

D2−t

0

)

. (5)

Let I2 be the input image from camera 2 and D2 be

the corresponding depth map. I2 can now be warped us-

ing Eq. 5 with D2 for a camera translation t to obtain the

synthesized image I
DZ
2

. We once again use forward warp-

ing with z–buffering for this step. An example is shown in

Figure 5. This derivation can be easily extended to include

any number of additional cameras to the system.

A generalized equation for camera movements along the

horizontal and vertical directions along with the translation

along the principal axis and change of FoV/focal length is

derived in the supplementary for this case as well.

Epipolar Geometry Analysis Similar to single camera

case, we can derive the fundamental matrix F2 in close–

form

F2 =





0 −t tv0
t 0 bfA

1 k′ − tu0

−tv0 tu0 − bfA
1
k bfA

1
v0 (k − k′)



 (6)

such that pixel location relationship
(

x
B
1

)T
F2x2 = 0 is

satisfied. Here, x2 =
(

u
T

2
, 1
)T

is the homogeneous repre-

sentation of pixels of camera at location 2. Therefore, the

(a) Synthesized image I
DZ
1 with

FoV θ
B
1 = 50

o

(b) Synthesized image I
DZ
2 with

FoV θ
B
2 = 50

o

(c) Binary mask B (d) Synthesized fused image IF

Figure 6: Image fusion

corresponding epipoles are e
B
1

=
(

u0 − bfA
1
k/t, v0, 1

)T

and e2 =
(

u0 − bfA
1 k′/t, v0, 1

)T
for cameras at locations

C
B
1

and C2, respectively. Also, epipolar lines can be ob-

tained accordingly [12] as shown in Figure 5.

2.3. Image Fusion

We now intend to use the synthesized image I
DZ
2

from

the second camera to fill in missing/occlusion areas in the

synthesized image I
DZ
1 from the first camera. This is

achieved through image fusion with the following steps:

1. The first step is to identify missing areas in the synthe-

sized view I
DZ
1 . Here, we implement a simple scheme

given below to create a binary mask B by checking the

validity of IDZ
1

at each pixel location (x, y):

B(x, y) =

{

1, IDZ
1

(x, y) ∈ O
m,c
1

0, IDZ
1

(x, y) /∈ O
m,c
1

(7)

where O
m,c
1

denotes a set of missing/occluded pixels

for IDZ
1

due to warping.

2. With the binary mask B, the synthesized images IDZ
1

and I
DZ
2

are fused to generate IF :

IF = B · IDZ
2 + (1−B) · IDZ

1
(8)

where · is element-wise matrix product. The depths for the

synthesized view D
DZ
1

and D
DZ
2

are also fused in a similar

manner to obtain DF . An example is shown in Figure 6. In

this example, the FoV of the second camera is greater than

that of the first camera (i.e. θ2 > θA
1

) in order to fill larger

missing area. For image fusion, we can also apply more ad-

vanced methods which are capable of handling photometric

differences between input images, e.g. Poisson fusion [18].



2.4. Depth Aware Image Occlusion Handling

In order to handle occlusions, for each synthesized dolly

zoom view, we identify occlusion areas and fill them in

using neighboring information for satisfactory subjective

viewing. Occlusions occur due to the nature of the cam-

era movement and depth discontinuity along the epipolar

line [12]. Therefore, one constraint in filling occlusion ar-

eas is that whenever possible, they should be filled only with

the background and not the foreground.

Occlusion Area Identification The first step is to identify

occlusion areas. Let IF be the generated view after image

fusion. Let M be a binary mask depicting occlusion areas.

Similar to section 2.3, M is simply generated by checking

the validity of IF at each pixel location (x, y).

M(x, y) =

{

1, IF (x, y) ∈ O
c
F

0, IF (x, y) /∈ O
c
F

(9)

where Oc
F denotes a set of occluded pixels for IF after im-

age fusion in Section 2.3.

Depth Hole–Filling A critical piece of information is the

fused depth DF for the synthesized view which allows us to

distinguish between foreground and background. DF will

also have holes due to occlusion. If we intend to use the

depth for image hole–filling, we need to first fill the holes

in the depth itself. We implement a simple nearest neighbor

hole filling scheme described in Algorithm 1.

Algorithm 1: Depth map hole filling

Input : Fused depth DF , dimensions (width W
and height H)

Output: The hole filled depth DF

1. Initialize DF = DF .

for x = 1 to H do

for y = 1 to W do

if M(x, y) = 1 then
2.1) Find four nearest neighbors (left,

right, bottom, top).

2.2) Find the neighbor with the

maximum value (dmax), since we

intend to fill in the missing values with

background values.

2.3) Set DF (x, y) = dmax

end

end

end

Depth–Aware Image Inpainting Hole filling for the syn-

thesized view needs to propagate from the background to-

wards the foreground. The hole filling strategy is described

in Algorithm 2.

Algorithm 2: Image hole filling

Input : Synthesized view IF , Synthesized depth

DF , Occlusion mask M, depth segment

mask Mprev initialized to zeros and

dimensions (width W and height H)

Output: The hole filled synthesized view IF

1. Initialize: IF = IF

2. Determine all unique values in DF . Let du be the

array of unique values in the ascending order and

S be the number of unique values.

for s = S to 2 do
3.1) Depth mask Ds corresponding to the depth

step:

Ds = (DF > du(s− 1))&(DF ≤ du(s))

where >, ≤ and & are the element-wise matrix

greater than, less than or equal to and AND

operations.

3.2) Image segment Is corresponding to the

depth mask:

Is = IF ·Ds

where · is element-wise matrix product.

3.3) Current Occlusion mask for the depth step:

Mcurr = M ·Ds

3.4) Update Mcurr with previous mask

Mcurr = Mcurr ‖ Mprev

where ‖ is element-wise matrix OR condition.

for x = 1 to H do

for y = 1 to W do

if Mcurr(x, y) = 1 then
3.5.1) Find nearest valid pixels on

the same row Is(x
′, y′), where

(x′, y′) is the location of the valid

pixel.

3.5.2) Update value of

IF (x, y) = Is(x
′, y′)

3.5.3) Update Mcurr(x, y) = 0
3.5.4) Update M(x, y) = 0

end

end

end

3.6) Propagate the current occlusion mask to the

next step:

Mprev = Mcurr

end

4. Apply simple low pass filtering on the filled in

occluded areas in IF .



(a) Depth map DF for the fused

image IF

(b) Depth map after hole filling

DF

(c) Synthesized fused image IF (d) Synthesized fused image af-

ter hole filling IF

Figure 7: Occlusion handling

This strategy is implemented in a back–to–front order

with the intuition being that holes in the image should be

filled in from parts of the image at the same depth or the

next closest depth. In this simple hole filling algorithm, we

search for valid image pixels along the same row but this

could also be extended to finding more than one valid pix-

els in both the horizontal and vertical directions or using

epipolar analysis described in Sections 2.1 and 2.2 to define

search directions. The results of the hole filling process are

shown in Figure 7.

2.5. Shallow Depth of Field (SDoF)

After view synthesis and occlusion handling, we can ap-

ply the shallow depth of field (SDoF) effect to IF . This ef-

fect involves the application of depth–aware blurring. The

diameter c of the blur kernel on the image plane is called

the circle of confusion (CoC). Assuming a thin lens cam-

era model [12], the relation betwen c, lens aperture A,

magnification factor m, distance to an object under focus

D0 and another object at distance D can be given as [25]

c = Am(|D − D0|)/D. Under the dolly zoom condi-

tion, the magnification factor m and the relative distance

|D −D0| remains constant. However, after a camera trans-

lation of t, the diameter of the CoC changes to:

c(t) = Am
|D −D0|

(D − t)
= c(0)

D

(D − t)
, (10)

where c(t) is the CoC for an object at depth D and the cam-

era translation t. The detailed derivation can be found in

the supplementary. The usage of SDoF effect is two–fold:

1) enhanced viewer attention to the objects in focus, and 2)

hide imperfections due to image warping, image fusion and

hole filling steps.

2.6. Dolly Zoom View Synthesis Pipeline

Single Camera Single Shot View Synthesis The single

shot single camera dolly zoom synthesis pipeline is shown

in Figure 8 and described below:

1. The input is the image I with FoV θ, its depth map D

and the known intrinsic matrix K.

2. We apply digital zoom to both I and D according to

Eq. 4 (described in Section 2.1) through inverse warp-

ing to a certain angle θ1 (in the example experiments,

θ1 is set to 30o) to obtain the zoomed-in image I1 and

the corresponding depth map D1.

3. The original input image I, depth map D and intrinsic

matrix K are re-used as I2, D2 and K2 respectively.

4. A synthesized image I
DZ
1

and its depth D
DZ
1

is pro-

duced from I1 and D1 with Eq. 3 through forward

warping and z-buffering for a given t.

5. A synthesized image I
DZ
2 and its depth D

DZ
2 is pro-

duced from I2 and D2 with Eq. 5 through forward

warping and z-buffering for the given t. The baseline

b is set to 0 for this case.

6. The synthesized images I
DZ
1

and I
DZ
2

are fused to-

gether (as described in Section 2.3) to form the fused

image IF while the synthesized depth maps DDZ
1 and

D
DZ
2

are similarly fused together to form the fused

depth map DF .

7. Occlusion areas in IF (and DF ) are handled (accord-

ing to Section 2.4) to obtain IF (and DF ).

8. The shallow depth of field effect is applied to IF to

obtain the final dolly zoom synthesized image IDZ
F .

A restriction of this setup is that the maximum FoV for the

synthesized view is limited to θ1.

Extending the pipeline for multiple camera inputs The

single camera single shot dolly zoom synthesis pipeline

may be extended to input images captured from multiple

cameras at the same time instant with minor modifications.

Consider a dual camera setup, where the inputs are the im-

age I1 with FoV θ1, its depth map D1 and the known intrin-

sic matrix K1 from the first camera and correspondingly,the

image I2 with FoV θ2, its depth map D2 and the known in-

trinsic matrix K2 from the second camera. In this case,

the application of digital zoom in Step 2 of the single cam-

era pipeline is no longer required. Instead, we only apply

Steps 4 – 8 with the baseline b set to the representative

value, to obtain the synthesized view IDZ
F for the dual cam-

era case. A restriction of such a setup is that the maximum

FoV for the synthesized view is now limited to θ2 (and in

general, to the FoV of the camera with the largest FoV in

the multi-camera system).
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Figure 8: Single camera single shot synthesis pipeline

3. Experiment Results

3.1. Datasets

Synthetic Dataset We generated a synthetic image

dataset using the commercially available graphics software

Unity 3D. For the experiment, we assume a dual-camera

collinear system with the following parameters: Camera 1

with FoV θ1 = 45o and Camera 2 with FoV θ2 = 77o This

setup is simulated in the Unity3D software. In this synthetic

dataset, each image set includes: I1 from Camera 1 and I2

from Camera 2 , the depth maps D1 for Camera 1, D2 for

Camera 2, and the intrinsic matrices K1 and K2 for Cam-

era’s 1 and 2 respectively. In addition, each image set also

includes the ground truth dolly zoom views which are also

generated with Unity3D for objective comparisons.

Smartphone Dataset We also created a second dataset

with dual camera images from a representative smartphone

device. For this dataset, the depth was estimated using a

stereo module so that each image set includes I from Cam-

era 1 with a FoV θ = 45o, its depth map D and the intrinsic

matrix K.

3.2. Experiment Setup

From the input images, we generate a sequence of im-

ages using the synthesis pipeline described in Section 2. For

each image set, the depth to the object under focus (D0)

is set manually. The relationship between the dolly zoom

camera translation distance t, the required dolly zoom cam-

era FoV θDZ and the initial FoV θ1 of I1 can be obtained

from Section 2.1 as:

t = D0

tan (θDZ/2)− tan (θ1/2)

tan (θDZ/2)
. (11)

Initializing the dolly zoom angle θDZ to θ1, we increment it

by a set amount δ up to a certain maximum angle set to θ2.

For each increment, we obtain the corresponding distance t
with Eq. 11. We then apply the synthesis pipeline described

in Section 2.6 to obtain the synthesized image IDZ
F for that

increment. The synthesized images for all the increments

are then compiled to form a single sequence.
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Figure 9: Quantitative evaluation

3.3. Quantitative Evaluation

The synthesis pipeline modified for a dual camera input

as described in Section 2.6 is applied to each image set in

the synthetic dataset. In order to produce a sequence of im-

ages, we initialize the dolly zoom angle θDZ = 45o and

increment it with a δ = 1o up to a maximum angle of

θ2 = 77o. The dolly zoom camera translation distance t
at each increment is calculated according to Eq. 11. We

then objectively measure the quality of our view synthe-

sis by computing the peak signal-to-noise ratio (PSNR) and

the structural similarity index (SSIM) for each synthesized

view against the corresponding ground truth image at each

increment, before and after the application of the SDoF ef-

fect. The mean metric values for each increment are then

computed across all the image sets in the synthetic dataset

and are shown in Figure 9. As the dolly zoom angle θDZ

increases, the area of the image that need to be inpainted

due to occlusion increases, which corresponds to the drop

in PSNR and SSIM.

3.4. Qualitative Evaluation

Figure 10 shows the results for the dual camera input

synthesis pipeline applied to the image sets in the synthetic

dataset. The input images I1 and I2 are used to produce the

dolly zoom image IF while the right most column shows the

corresponding ground truth dolly zoom image. Both IF and
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Figure 10: Dual camera dolly zoom view synthesis with synthetic data set.
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Figure 11: Single camera single shot dolly zoom view synthesis with smartphone data set.

the ground truth are shown here before application of the

SDoF effect. Figure 11 shows the results for the single cam-

era single shot synthesis pipeline described in Section 2.6

applied to image sets in the smartphone dataset. Here, the

input images I1 and I2 (formed from image I of each image

set as described in Section 2.6, Steps 2 – 3) are used to syn-

thesize the dolly zoom image IDZ
F (shown after the applica-

tion of the SDoF effect). For comparison, we also show I1

with the SDoF effect applied. Under dolly zoom, objects in

the background appear to undergo depth-dependent move-

ment, the objects under focus stay the same size while the

background FoV increases. This effect is apparent in our

view synthesis results. In both Figures 10 and 11, the fore-

ground objects (balloon, person, dog and toy) remain in fo-

cus and of the same size, the background objects are warped

according to their depths while the synthesized images (IF

and IDZ
F ) have a larger background FoV than I1.

4. Conclusion and Future Work

We have presented a novel modelling pipeline based on

camera geometry to synthesize the dolly zoom effect. The

synthesis pipeline presented in this paper can be applied

to single camera or multi-camera image captures (where

the cameras may or may not be on the same plane) and to

video sequences. Generalized equations for camera move-

ment not just along the principal axis and change of focal

length/FoV but also, along the horizontal or vertical direc-

tions have been derived in the supplementary as well. The

focus of future work will be on advanced occlusion han-

dling schemes to provided synthesized images with subjec-

tively greater image quality.
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