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Abstract

Low rank approximation is a commonly occurring prob-

lem in many computer vision and machine learning applica-

tions. There are two common ways of optimizing the result-

ing models. Either the set of matrices with a given rank can

be explicitly parametrized using a bilinear factorization, or

low rank can be implicitly enforced using regularization

terms penalizing non-zero singular values. While the for-

mer approach results in differentiable problems that can be

efficiently optimized using local quadratic approximation,

the latter is typically not differentiable (sometimes even dis-

continuous) and requires first order subgradient or splitting

methods. It is well known that gradient based methods ex-

hibit slow convergence for ill-conditioned problems.

In this paper we show how many non-differentiable reg-

ularization methods can be reformulated into smooth ob-

jectives using bilinear parameterization. This allows us to

use standard second order methods, such as Levenberg–

Marquardt (LM) and Variable Projection (VarPro), to

achieve accurate solutions for ill-conditioned cases. We

show on several real and synthetic experiments that our sec-

ond order formulation converges to substantially more ac-

curate solutions than competing state-of-the-art methods.1

1. Introduction

Low rank models have been applied to numerous vision

applications ranging from high level shape and deformation

to pixel appearance models [48, 6, 52, 22, 2, 21, 50, 11].

When the sought rank is known, a commonly occurring for-

mulation is the least squares minimization

min
rank(X)≤r

‖AX − b‖2, (1)

where A : Rm×n → R
p is a linear operator, and ‖ · ‖ is

the standard Euclidean vector norm. In general, this is a
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difficult non-convex problem and some versions are even

known to be NP-hard [26]. In structure from motion, a pop-

ular approach [7] is to optimize over a bilinear factorization

X = BCT , where B is m× r and C is n× r, and solve

min
B,C

‖ABCT − b‖2. (2)

Since the rank is bounded by the number of columns in B
and C this approach explicitly parametrizes the set of ma-

trices of rank r. While bilinear approaches often perform

well [29, 16] they can have local minima [7]. Recent works

[29, 30, 31, 33] have, however, shown that properly imple-

mented, LM and VarPro approaches are remarkably robust

to local minima, achieve quadratic convergence and give

impressive reconstruction results. Recently [24, 3, 23] was

able to give conditions which guarantee that there are no

”spurious” local minimizers (meaning that all local mini-

mizers are close to or identical to the global solution). They

use the notion of restricted isometry property (RIP) [45]

which assumes that the operator A fulfills

(1− δr)‖X‖2F ≤ ‖AX‖2 ≤ (1 + δr)‖X‖2F , (3)

with 0 ≤ δr < 1, if rank(X) ≤ r. If the isometry con-

stant δr is sufficiently small [24, 23, 3] prove that every lo-

cal minimizer is optimal (or near optimal). Similarly, for

the matrix completion problem [23] showed that there are

no spurious local minima under uniformly distributed miss-

ing data. While the above theoretical assumptions generally

do not hold for computer vision problems such as structure

from motion, these results still give some intuition as to why

bilinear parameterization often works well.

An alternative approach is to optimize directly over the

entries of X and penalize high rank using regularization

terms. Applying a robust function f to the singular val-

ues σi(X) = 1, . . . , N = min(m,n) results in a low-rank

inducing objective

min
X

R(X) + ‖AX − b‖2, (4)

where R(X) =
∑N

i=1 f(σi(X)). Besides controlling the

rank of the solution the generality of the function f offers



increased modeling capability compared to (1) and can for

example be used to add priors on the size of the non-zero

singular values.

The most popular regularization approach is undoubt-

edly the nuclear norm, f(σi(X)) = σi(X), due to its con-

vexity [18, 45, 44, 9, 10]. Under the RIP assumption ex-

act or approximate recovery with the nuclear norm can then

be guaranteed [45, 10]. On the other hand, since it penal-

izes large singular values, it suffers from a shrinking bias

[8, 11, 35]. Ideally f should penalize small singular values

(assumed to stem from measurement noise) harder than the

large ones. Therefore non-increasing derivatives on [0,∞),
or concavity, has been shown to give stronger relaxations

[43, 37, 32, 39, 12, 47, 27]. These non-convex formulations

usually only come with local convergence guarantees. Two

exceptions are [35, 40] which gave optimality guarantees

for (4) with f = fµ as in (8).

The regularization term is generally not differentiable

as a function of X . Thus, optimization methods based

on local quadratic approximation become infeasible. Fig-

ure 1 gives a simple illustration of a 1-dimensional example

of how non-differentiability occurs at the origin. In addi-

tion it is well known that the singular values become non-

differentiable functions of the matrix elements when they

are non distinct. To circumvent these issues subgradient and

splitting methods are often employed [12, 47, 27, 38, 35]. It

is well known from basic optimization theory (e.g. [5]) that

gradient based methods exhibit slow convergence for ill-

conditioned problems. It has also been observed (e.g. [4])

that splitting methods rapidly reduce the objective value the

first couple of iterations, while convergence to the exact so-

lution can be slow. In this paper we show that there are com-

puter vision problems where these approaches make very

little improvements at all, returning a solution that is far

from optimal. In contrast, bilinear formulations with either

LM or VarPro can be made to yield accurate results in few

iterations [29].

An alternative approach that unifies bilinear parameteri-

zation with regularization approaches is based on the obser-

vation [45] that the nuclear norm ‖X‖∗ of a matrix X can

be expressed as ‖X‖∗ = minBCT=X
‖B‖2

F+‖C‖2
F

2 . Thus

when f(σi(X)) = µσi(X), where µ is a scalar controlling

the strength of the regularization, optimization of (4) can be

formulated as

min
B,C

µ
‖B‖2F + ‖C‖2F

2
+ ‖ABCT − b‖2. (5)

Optimizing directly over the factors has the advantages that

the number of variables is much smaller and one may add

constraints if a particular factorization is sought. Surpris-

ingly, while (5) is non-convex, using the convexity of the

underlying regularization problem (4) it can be shown that

any local minimizer B,C with rank(BCT ) < k, where k

is the number of columns in B and C, is globally optimal

[1, 28]. Additionally, the objective function is two times

differentiable and second order methods can be employed.

In this paper we develop new regularizing terms that,

similar to (5), work on the bilinear factors. However,

in contrast to previous approaches we investigate formu-

lations that exhibit less shrinking bias and go beyond

convex penalties. Specifically, we prove that R(X) =
minX=BCT R̃(B,C), where

R̃(B,C) =

k
∑

i=1

f

(‖Bi‖2 + ‖Ci‖2
2

)

, (6)

k is the number of columns, and Bi and Ci are the i:th
columns of B and C, respectively. The result holds for a

general class of concave penalty functions f , a few of which

are illustrated in Figure 1. In view of the above result, we

propose to minimize

R̃(B,C) + ‖ABCT − b‖2. (7)

Rather than resorting to splitting or subgradient methods

we present an algorithm that uses a quadratic approxima-

tion of the objective. Under the assumption that f is dif-

ferentiable, we show that our quadratic approximation re-

duces to a weighted version of (5) to which we can apply

VarPro. We show on several computer vision problems that

our approach outperforms state-of-the-art methods such as

[46, 12, 47, 27, 4].

While our problem is non-convex (both in the X parame-

terization (4) and in the B, C parameterization (7)) we show

that in some cases it is still possible to give global optimality

guarantees. Building on the results of [40] we characterize

the local minima of the new formulation with the choice

f(x) = fµ(x) := µ−max(
√
µ− x, 0)2. (8)

Specifically, for this choice, we give conditions that ensure

that when a RIP constraint [45] holds a local minimizer of

(7) is a global solution of both

min
rank(X)≤r

R(X) + ‖AX − b‖2, (9)

where R(X) =
∑

i fµ(σi(X)), and

min
rank(X)≤r

µrank(X) + ‖AX − b‖2. (10)

In summary our main contributions are:

• A new stronger non-convex regularization term for bi-

linear parameterizations with less/no shrinking bias.

• A new iteratively reweighed VarPro algorithm optimiz-

ing accurate quadratic approximations.

• Theoretical conditions that guarantee optimal recovery

under the RIP constraint.

• An experimental evaluation that shows that our meth-

ods outperforms state-of-the-art methods on several

real computer vision problems.



SCAD [17]: Log [19]: MCP [53]: ETP [20]: Geman [25]:

Figure 1. A few commonly occurring robust penalties of the form f(σ), with σ ∈ [0,∞) and f differentiable everywhere (blue graph).

The green dashed graph shows how non-differentiability occurs at the origin when applying the penalty to a 1 × 1 matrix x ∈ R. In this

case σ(x) = |x| and therefore f(σ(x)) = f(|x|). Note also that (8) is a special case of MCP.

1.1. Related Work

Our work is very much inspired by a recent series of pa-

pers by Hong et al. [29, 30, 31, 33] which show that bi-

linear formulations can be made remarkably robust to local

minima, and achieve impressive reconstruction results for

uncalibrated structure from motion problems, using the so

called VarPro method. Our work represents an attempt to

unify this line of work with regularization based alterna-

tives, leveraging the benefits of them both.

An approach that is closely related to ours is that of [8]

which uses (5) to unify the use of a regularized objective and

factorization. They show that if the obtained solution has

lower rank than its number of columns it is globally optimal.

In practice [8] observes that the shrinking bias of the nuclear

norm makes it too weak to enforce a low rank when the data

is noisy. Therefore, a “continuation” approach where the

size of the factorization is gradually reduced is proposed.

While this yields solutions with lower rank, the optimality

guarantees no longer apply.

Bach et al. [1] showed that

‖X‖s,t := min
X=BCT

k
∑

i=1

‖Bi‖2s + ‖Ci‖2t
2

, (11)

is convex for any choice of vector norms ‖ · ‖s and ‖ · ‖t.
In [28] it was shown that a more general class of 2-

homogeneous factor penalties result in a convex regulariza-

tion similar to (11). The property that a local minimizer B,

C with rank(BCT ) < k is global, is also extended to this

case. Still, because of convexity, it is clear that these for-

mulations will suffer from a similar shrinking bias as the

nuclear norm. Shang et al. [46] showed that penalization

with the Schatten semi-norms ‖X‖q = q

√

∑N
i=1 σi(X)q ,

for q = 1/2 and 2/3, can be achieved using a convex

penalty on the factors B and C. A generalization to gen-

eral values of q is given in [51]. While this reduces shrink-

ing bias to some extent, it results in a non-differentiable and

non-convex formulation that is optimized with ADMM.

In [34] a bilinear framework on the class of semi-definite

matrices was proposed for a general class of low-rank in-

ducing penalties.

Valtonen Örnhag et al. [42] considered a framework sim-

ilar to the one we propose; however, the rank is assumed to

be known a priori. Furthermore, they do not show equiva-

lence between the proposed bilinear regularizer and the cor-

responding original fixed rank regularizer from [35].

It is important to note that many of the above methods

that are considered state-of-the-art have been developed for

low level vision tasks such as image denoising, inpaint-

ing, alignment and background subtraction. The ground

truth for these models are often of higher rank than mod-

els in e.g. structure from motion, making it possible to ob-

tain good results with weaker regularization. Additionally,

as we will see in the experiments, more difficult data terms

prevent rapid convergence of the splitting methods they of-

ten employ.

2. Non-Convex Penalties and Shrinking Bias

In this section we will show how to formulate regulariza-

tion terms of the type

R(X) =

N
∑

i=1

f(σi(X)), (12)

by penalizing the factors of the factorization X = BCT .

We assume that B and C have k columns, making σi(X) =
0 if i > k and rank(X) ≤ k. Note, however, that we

are aiming to achieve a lower rank using the regularization

term. In many applications, the sought rank is unknown and

should be determined by the regularization. We therefore

set k large enough not to exclude the optimal solution. As

we shall see in Section 3, this ability to over-parameterize

can be used to ensure optimality.

Theorem 1. If f is concave, non-decreasing on [0,∞) and

f(0) = 0 then

R(X) = min
BCT=X

k
∑

i=1

f(‖Bi‖‖Ci‖), (13)

where Bi and Ci, i = 1, ..., k are the columns of B and C
respectively.

Proof. The result is a consequence of the fact that R will

fulfill a triangle inequality R(X + Y ) ≤ R(X) + R(Y )



under the assumptions on f . This is clear from Theorem 4.4

in [49] which shows that

N
∑

i=1

f(σi(X + Y )) ≤
N
∑

i=1

(f(σi(X)) +

N
∑

i=1

f(σi(Y ))).

(14)
Applying this to X = BCT =

∑k
i=1 BiC

T
i we see that

R(X) = R(

k
∑

i=1

BiC
T
i ) ≤

k
∑

i=1

R(BiC
T
i ). (15)

Since rank(BiC
T
i ) = 1 we also have

R(BiC
T
i ) = f(σ1(BiC

T
i )) = f(‖BiC

T
i ‖F ). (16)

Lastly, since ‖BiC
T
i ‖F = ‖Bi‖‖Ci‖ we get

R(X) ≤
k

∑

i=1

f(‖Bi‖‖Ci‖). (17)

To see that equality can be achieved, let Bi =
√

σi(X)Ui

and Ci =
√

σi(X)Vi, where X =
∑k

i=1 σi(X)UiV
T
i is

the SVD of X . Then, BCT = X and f(‖Bi‖‖Ci‖) =
f(σi(X)).

While the above result allows optimization over the fac-

tors B and C we note that it yields an objective that is non-

differentiable at ‖Bi‖‖Ci‖ = 0. Next we reformulate the

objective to achieve a differentiable problem formulation.

Corollary 1. Under the assumptions of Theorem 1, it fol-

lows that R(X) = minX=BCT R̃(B,C), where

R̃(B,C) =

k
∑

i=1

f

(‖Bi‖2 + ‖Ci‖2
2

)

. (18)

If f is differentiable then R̃(B,C) is also differentiable.

Proof. By the rule of arithmetic and geometric means

‖Bi‖‖Ci‖ ≤ 1

2
(‖Bi‖2 + ‖Ci‖2), (19)

with equality if ‖Bi‖ = ‖Ci‖ which is achieved when

Bi =
√

σi(X)Ui and Ci =
√

σi(X)Vi. Since f is as-

sumed to be non-decreasing, it follows from (13), that

R(X) = minX=BCT R̃(B,C). The differentiability of

R̃(B,C) is now trivially checked using the chain rule.

We are particularly interested in the case (8) since, with

this choice, it is known that the global minimizer of (4) is

the same as that of µrank(X)+‖AX−b‖2 if ‖A‖ < 1, see

[13] for a proof. Note that fµ is a special case of the MCP

class [53]. With this choice R̃(B,C) is differentiable and

the second derivatives are also defined almost everywhere
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Figure 2. Singular values obtained when minimizing ‖X −X0‖
2

F

with the four regularizers R(X) with f = fµ, ‖X‖
1/2

1/2, ‖X‖
2/3

2/3

and ‖X‖∗. Large singular values are left unchanged by R.

except in the transition
‖Bi‖2+‖Ci‖2

2 =
√
µ where the func-

tion switches from quadratic to constant.

We conclude this section by comparing the shrinking

bias of our approach and three others that can also be op-

timized over the factorization. Theorem 1 makes it possi-

ble to compute the global optimizer of R̃(B,C)+‖BCT −
X0‖2F since the equivalent problem R(X)+‖X−X0‖2F has

closed form solution in the X-parameterization. It is shown

in [35] that with f = fµ the solution is obtained by thresh-

olding the singular values at
√
µ. Similarly, closed form

solutions are also available when regularizing ‖X −X0‖2F
with ‖ · ‖1/2, ‖ · ‖2/3 and ‖ · ‖∗ [46]. In Figure 2 we show

the singular values obtained when regularizing ‖X−X0‖2F
with these four options, and for comparison the singular val-

ues of X0. For all methods we have selected regularization

weights as small as possible so that the five smallest singu-

lar values are completely suppressed, which minimizes the

bias. While all choices, except R, subtract a part from the

singular values that should be retained, the Schatten norms

reduce the bias significantly compared to the nuclear norm.

For the Schatten norms the bias is larger for singular val-

ues that are close to the threshold since the derivative of

σq , 0 < q < 1, decreases with increasing σ. For problem

instances where there is a clear separation in size between

singular values that should be retained and those that should

be suppressed, it is likely that this can be done with negligi-

ble bias. Since f ′
µ(σ) = 0 when σ ≥ √

µ this method does

not affect the first five singular values.

3. Overparameterization and Optimality

The results of the previous section show that a global

optimizer (B,C) of (7) gives a solution BCT which is

globally optimal in (4). On the other hand, optimizing (7)

over B and C introduces additional stationary points, due to

the non-linear parameterization, that are not present in (4).

One such point is (B,C) = (0, 0) where the gradients of

‖ABCT − b‖2 with respect to B and C vanish (in contrast



Table 1. Distance to ground truth (normalized) mean valued over 20 problem instances for different percentages of missing data, missing

data patterns and noise levels σ. Best results are marked in bold.
Missing

data (%) PCP [9] WNNM [27] Unifying [8] LpSq [38] S12L12 [46] S23L23 [46] IRNN [12] APGL [47] ‖·‖
∗

[4] R [35] Our

0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.1727 0.0000 0.0000

10 0.0885 0.0028 0.0713 0.0213 0.0309 0.0071 0.0000 0.0000 0.1998 0.0000 0.0000

20 0.2720 0.2220 0.1491 0.0170 0.0412 0.0209 0.0000 0.0000 0.2223 0.0128 0.0000

30 0.7404 0.4787 0.7499 0.0003 0.0818 0.0895 0.0000 0.0014 0.2897 0.2346 0.0000

40 1.0000 0.6097 0.9553 0.1083 0.1666 0.1360 0.0000 0.0017 0.3374 0.2198 0.0000

U
n
if

o
rm

(σ
=

0
.0

)

50 1.0000 0.7170 1.0000 0.0315 0.1376 0.1001 0.0003 0.0301 0.4266 0.2930 0.0000

0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0000 0.1810 0.0000 0.0000

10 0.3160 0.2734 0.1534 0.0839 0.1296 0.1233 0.0772 0.0834 0.2193 0.0793 0.0658

20 0.4877 0.4499 0.3017 0.1650 0.2389 0.2456 0.1010 0.1786 0.3436 0.2494 0.1018

30 0.5821 0.5395 0.5486 0.2520 0.3289 0.3160 0.1189 0.2572 0.4299 0.3421 0.1189

40 0.7072 0.6317 0.7376 0.2853 0.4084 0.4110 0.1417 0.2913 0.4825 0.5004 0.1385

T
ra

ck
in

g
(σ

=
0
.0

)

50 0.8125 0.7257 0.9521 0.4178 0.4267 0.4335 0.2466 0.4047 0.5754 0.6503 0.2214

0 0.0409 0.0207 0.0407 0.0450 0.0437 0.0435 0.0448 0.0191 0.1581 0.0166 0.0166

10 0.3157 0.2734 0.1585 0.0848 0.0529 0.0518 0.0625 0.0696 0.2312 0.0488 0.0438

20 0.4771 0.4338 0.3480 0.1394 0.0995 0.0982 0.1090 0.1188 0.3109 0.2071 0.0983

30 0.5801 0.5225 0.4726 0.2026 0.2468 0.2592 0.1646 0.1993 0.3820 0.3465 0.1475

40 0.7122 0.6148 0.8638 0.2225 0.3292 0.3252 0.1357 0.2110 0.4800 0.4599 0.1273

T
ra

ck
in

g
(σ

=
0
.1

)

50 0.7591 0.6819 0.9216 0.4105 0.4883 0.4811 0.3342 0.3639 0.5652 0.5930 0.3329

to the gradient w.r.t. X). In this section we show that by

overparametrizing, in the sense that we use B and C with

more columns than the rank of the solution we seek, it is

still possible to use properties of (4) to show optimality in

(7). We will exclusively use fµ from (8), assume that B
and C have 2k columns and study locally optimal solutions

with rank(BCT ) < k. The size of B and C makes it pos-

sible to parametrize line segments between such points and

utilize convexity properties, see proof of Theorem 3. The

following result (which is proven in the supplementary ma-

terial) gives conditions that ensure that local minimality in

(7) implies that (4) grows in all “low rank” directions.

Theorem 2. Assume that (B̄, C̄) ∈ R
m×2k × R

n×2k,

where B̄ = U
√
Σ and C̄ = V

√
Σ, and X̄ = UΣV T ,

is a local minimizer of (7) with rank(X̄) < k and let

N (X) = R(X)+‖AX−b‖2. Then R(X̄) = R̃(B̄, C̄) and

the directional derivatives N ′
∆X(X̄), where ∆X = X̃ − X̄

and rank(X̃) ≤ k, are non-negative.

Note that there can be local minimizers for which

R̃(B̄, C̄) > R(B̄C̄T ) since R̃ is non-convex. From an

algorithmic point of view we can, however, escape such

points by taking the current iterate and recompute the fac-

torization of B̄C̄T using SVD. If the SVD of B̄C̄T =
∑r

i=1 σiUiV
T
i we update B̄ and C̄ to B̄i =

√
σiUi and

C̄i =
√
σiVi, which we know reduces the energy and gives

R̃(B̄, C̄) = R(B̄C̄T ).
Theorem 2 allows us to derive optimality conditions us-

ing the properties of (4). As a simple example, consider the

case where ‖AX‖2 ≥ ‖X‖2, which makes (4) convex [13],

and let B and C have 2k columns. Suppose that we find

a local minimizer (B̄, C̄) fulfilling the assumptions of The-

orem 2. Then the derivative along a line segment towards

any other low rank matrix is non-decreasing, and therefore

B̄C̄T is the global optimum of (4) over the set of matrices

with rank ≤ k by convexity.

Below we give a result that goes beyond convexity and

applies to the important class [45] of problems that obey the

RIP constraint (3). Let A∗ denote the adjoint operator of A,

then:

Theorem 3. Assume that (B̄, C̄) is a local minimizer of

(7), fulfilling the assumptions of Theorem 2. If the singular

values of Z = (I −A∗A)B̄C̄T +A∗b fulfill σi(Z) /∈ [(1−
δ2k)

√
µ,

√
µ

(1−δ2k)
] then B̄C̄T is the solution of (9) and (10).

The proof builds on the results of [40] and is given in

the supplementary material. The assumption that the sin-

gular values of Z are not too close to the threshold
√
µ is

a natural restriction which is valid when the noise level is

not too large. In case of exact data, i.e. b = AX0, where

rank(X0) = r it is trivially fulfilled for any choice of µ
such that

√
µ < (1 − δ2k)σr(X0) since we have Z = X0.

For additional details on Z’s dependence on noise see [14].

The above result is similar in spirit to those of [45, 28],

which show that, in the convex case, having 2k columns and

rank 2k − 1 is enough to ensure that a local minimizer is

global. For the proof in our non-convex case we need rank

at most k−1. Presently, it is not clear if our assumption can

be relaxed to match that of the convex case or not.

4. An Iterative Reweighted VarPro Algorithm

In this section we give a brief overview of our algorithm

for minimizing (7). A more detailed description is given in

the supplementary material.



Figure 3. Comparison of reprojection error obtained using the bilinear formulation and ADMM, for datasets Door and Vercingetorix [41].

The red circles mark the feature points and the green dots the projected image points obtained from the different methods. The best rank 4

solution for the respective method was used. The control parameter η = 0.5 in both experiments.

Given a current iterate, B(t) and C(t), the first step of our

algorithm is to replace the term R̃(B,C) with a quadratic

function. To do this we note that by the Taylor expansion

f(x) ≈ f(x0) + f ′(x0)(x − x0), minimizing f(x) and

f ′(x0)x around x0 is roughly the same (ignoring constants).

Inserting x0 =
‖B(t)

i
‖2+‖C(t)

i
‖2

2 and x = ‖Bi‖2+‖Ci‖2

2 now

gives our approximation

k
∑

i=1

w
(t)
i (‖Bi‖2 + ‖Ci‖2) + ‖ABCT − b‖2, (20)

where w
(t)
i = 1

2f
′
(

(‖B(t)
i ‖2 + ‖C(t)

i ‖2)/2
)

. Here B
(t)
i

and C
(t)
i are the i:th columns of B(t) and C(t), respec-

tively. Minimizing (20) over C is now a least squares prob-

lem with closed form solution. Inserting this solution into

the original problem gives a nonlinear problem in B alone,

which is what VarPro solves. We use the so called Ruhe

and Wedin (RW2) approximation with a dampening term

λ‖B − B(t)‖2F , see [31] for details. In each step of the

VarPro algorithm we update the weights w
(t)
i .

As previously mentioned, there can be stationary points

for which R̃(B,C) > R(BCT ). In each iteration we there-

fore take the current iterate and recompute the factoriza-

tion of B(t)C(t)T using SVD. If the SVD of B(t)C(t)T =
∑r

i=1 σiUiV
T
i we update B(t) and C(t) to B

(t)
i =

√
σiUi

and C
(t)
i =

√
σiVi which we know reduces the energy and

gives R̃(B(t), C(t)) = R(B(t)C(t)T ).

Our approach can be seen as iteratively reweighted nu-

clear norm minimization [12]; however, our bilinear formu-

lation allows us to use quadratic approximation, thus bene-

fiting from second order convergence in the neighborhood

of a local minimum.

5. Experiments

In this section we will show the versatility and strength

of the proposed method, focusing on computer vision prob-

lems. In Section 5.2 we show an example where state-of-

the-art methods fail to achieve a value close to global op-

timality. We include two more examples of real problems,

in the supplementary material: background extraction and

photometric stereo. In both cases our method shows su-

perior performance. In the main paper we focus on the

trade-off between datafit and rank, but show, in the exam-

ples in the supplementray material, the added benefits of

convergence speed using the proposed method. This is done

by minimizing the same energy with ADMM and the pro-

posed method, in which case the splitting schemes can be

tediously slow. In all experiments our proposed method is

initialized randomly, with zero mean and unit variance.



5.1. Synthetic Missing Data Problem

Let ⊙ denote the Hadamard product, and consider the

missing data formulation

min
X

µrank(X) + ‖W ⊙ (X −M)‖2F , (21)

where M is a measurement matrix and W a missing data

mask with entries wij = 1 if the entry is known, and zero

otherwise.

In low-level vision applications such as denoising and

image inpainting a uniformly random missing data pat-

tern is often a reasonable approximation of the distribution;

however, for structure from motion, the missing data pattern

is often highly structured. To this end, we investigate two

kinds of patterns: uniformly random and “tracking failure”.

In order to construct realistic patterns of tracking failure, we

use the method in [36]. This is done by randomly selecting

if a track should have missing data (with uniform probabil-

ity), then select (with uniform probability, starting after the

first few frames) in which image tracking failure occurs. If

a track is lost, it is not restarted.

Figure 4. Rank vs datafit for the synthetic experiment in Sec-

tion 5.1. No true low rank solution using LpSq [38] could be

found, regardless of the choice of parameters.

We generate random ground truth matri-

ces M0 ∈ ❘32×512 of rank 4, which can be expressed

as M0 = UV T , where U ∈ ❘32×4 and V ∈ ❘512×4. The

entries of U and V are normal distributed with zero mean

and unit variance. The measurement matrix M = M0 +N ,

where N simulates noise and has normal distributed entries

with zero mean and variance σ2.

Our proposed method is compared to a variety of dif-

ferent methods [8, 9, 27, 38, 46, 12, 47, 4, 35]. For the

methods that need an initial estimate of the rank as input,

the rank estimation heuristic by Shang et al. [46] is used.

The regularization parameter is set to λ =
√

max(m,n),
given a sought m × n matrix, as proposed by [9, 46]. In

case other parameters should be provided, the one recom-

mended from the respective authors have been used. The

number of columns, for our proposed method, is set to

k = 8, i.e. twice the rank of the original matrix M0. We

exclusively use the fµ regularization (8), and use
√
µ = λ.

Since fµ is a special case of MCP, it is used for IRNN as

well. Furthermore, we include the results for regularizing

with nuclear norm [4] and fµ (8) using ADMM, as proposed

in [35]. Note that ADMM comes without optimality guar-

antees, however, it has been shown to work well for several

computer vision problems in practice [35, 40]. Several of

the compared methods solve the robust PCA problem, thus

also include a sparse component, which is not taken into

account.

The results are shown in Table 1. Note that most algo-

rithms perform significantly better for the uniformly ran-

dom missing data pattern, than compared to the structured

missing data pattern. Our proposed method outperforms all

other methods in this comparison.

Since the final rank of the estimated matrix is not neces-

sarily the same as that of M0, we show the rank vs datafit

obtained when varying the regularization parameter λ in

Figure 4. It is evident from the results that the only candi-

dates that yield an acceptable result for low rank solutions

are ADMM with fµ, IRNN with MCP and our proposed

method.

5.2. pOSE: Pseudo Object Space Error

The Pseudo Object Space Error (pOSE) objective com-

bines affine and projective camera models

ℓOSE =
∑

(i,j)∈Ω

∥

∥(Pi,1:2x̃j − (pT
i,3x̃j)mi,j)

∥

∥

2
, (22)

ℓAffine =
∑

(i,j)∈Ω

‖Pi,1:2x̃j −mi,j‖2 , (23)

ℓpOSE = (1− η)ℓOSE + ηℓAffine, (24)

where ℓOSE is the object space error and ℓAffine is the affine

projection error. Here Pi,1:2 denotes the first two rows, pi,3

the third row of the i:th camera matrix, and x̃j is the j:th

3D point in homogeneous coordinates. The control param-

eter η ∈ [0, 1] determines the impact of the respective cam-

era model. This objective was introduced in [33] to be used

in a first stage of an initialization-free bundle adjustment

pipeline, optimized using VarPro.

The ℓpOSE objective is linear, and acts on low-

rank components P and X , which are constrained by

rank(PXT ) = 4. Instead of enforcing the rank constraint,

we replace it as before with a relaxation. By not enforc-

ing the rank constraint we demonstrate the ability of the

methods to make accurate trade-offs between minimizing

the rank and fitting the data. Since the objective now be-

comes more complex, and is no longer compatible with the

missing data formulations, only IRNN and APGL are di-

rectly applicable, as well as the ADMM approach using fµ



Drink Pickup Stretch Yoga

Figure 5. Top row: Example frames from the MOCAP dataset of the drink, pickup, stretch and yoga sequences. Last row: The bilinear

method finds the same or a better datafit compared to the other methods for all ranks.

and nuclear norm. We use two real-life datasets with vari-

ous amounts of camera locations and 3D points: Door with

12 images, resulting in seeking a matrix of size 36 × 8850
and Vercingetorix [41] with 69 images, resulting in seeking

a matrix of size 207× 1148, both of which have rank 4. 2

As in the synthetic experiment from Section 5.1, the reg-

ularization parameter is varied and the resulting rank and

datafit is stored and reported in Figure 3. To visualize the

results, we considered the best rank 4 approximations, and

show the reprojected points and the corresponding mea-

sured points obtained from the best method (ours in both

cases) and the second best (IRNN in both cases), see Fig-

ure 3. As is readily seen by ocular inspection, the rank 4

solution obtained by our proposed method significantly out-

performs those of other state-of-the-art methods.

5.3. NonRigid Structure From Motion

In this section we test our approach on non-rigid recon-

struction (NRSfM) with the CMU Motion Capture (MO-

CAP) dataset. In NRSfM, the complexity of the defor-

mations are controlled by some mild assumptions of the

object shapes. Bregler et al. [6] suggested that the set of

all possible configurations of the objects are spanned by a

low dimensional linear basis of dimension K. In this set-

ting, the non-rigid shapes Xi ∈ ❘3×n can be represented

as Xi =
∑K

k=1 cikBk, where Bk ∈ ❘
3×n are the ba-

sis shapes and cik ∈ ❘ the shape coefficients. This way,

the matrix Xi contains the world coordinates of point i,
hence the observed image points are given by xi = RiXi.

We will assume orthographic cameras, i.e. Ri ∈ ❘
2×3

where RiR
T
i = I2. As proposed by Dai et al. [15], the

problem can be turned into a low-rank factorization prob-

lem by reshaping and stacking the non-rigid shapes Xi.

Let X♯
i ∈ ❘

1×3n denote the concatenation of the rows

in Xi, and create X♯ ∈ ❘F×3n by stacking X♯
i . This al-

lows us to decompose the matrix X♯ in the low-rank factors

X♯ = CB♯, where C ∈ ❘
F×K contains the shape co-

2 The datasets are available here: http://www.maths.lth.se/

matematiklth/personal/calle/dataset/dataset.html.

efficients cik and B♯ ∈ ❘K×3n is constructed as X♯ and

contains the basis elements.

A suitable objective function is thus given by

µrank(X♯) + ‖RX −M‖2F , (25)

where R ∈ ❘2F×3F is a block-diagonal matrix with the

camera matrices Ri on the main diagonal, X ∈ ❘3F×n is

the concatenation of the 3D points Xi, and M ∈ ❘2F×n

is the concatenated observed image points xi. By replac-

ing the rank penalty with a relaxation and minimize it using

the proposed method and the methods used in the previous

section. The regularization parameter is varied for the re-

spective methods in order to obtain a rank 1–8 solution, and

the respective datafit is reported in Figure 5, for four differ-

ent sequences.

In all sequences, the best datafit for each rank level is

obtained by our proposed method. IRNN and ADMM us-

ing fµ is able to give the same, or very similar, datafit for

lower ranks, but for solutions with rank larger than four our

method consistently reports a lower value than the compet-

ing state-of-the-art methods.

6. Conclusions

In this paper we presented a unification of bilinear pa-

rameterization and rank regularization. Robust penalties for

rank regularization has often been used together with split-

ting schemes, but it has been shown that such methods yield

unsatisfactory results for ill-posed problems in several com-

puter vision applications. By using the bilinear formulation,

the objective functions become differentiable, and conver-

gence rates in the neighborhood of a local minimum are

faster. Furthermore, we showed that theoretical optimality

results known from the regularization formulations can be

lifted to the bilinear formulation.

Lastly, the generality of the proposed framework allows

for a wide range of problems, some of which, have not been

amenable by state-of-the-art methods, but have been proven

successful using our proposed method.
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