
 

 

 

Abstract 

 

To facilitate implementation of deep neural networks on 

embedded systems keeping memory and computation 

requirements low is critical, particularly for real-time 

mobile use. In this work, we propose a SqueezeNet inspired 

version of U-Net for image segmentation that achieves a 

12X reduction in model size to 32MB, and 3.2X reduction 

in Multiplication Accumulation operations (MACs) from 

287 billion ops to 88 billion ops for inference on the 

CamVid data set while preserving accuracy. Our proposed 

Squeeze U-Net is efficient in both low MACs and memory 

use. Our performance results using Tensorflow 1.14 with 

Python 3.6 and CUDA 10.1.243 on an NVIDIA K40 GPU 

shows that Squeeze U-Net is 17% faster for inference and 

52% faster for training than U-Net for the same accuracy.  

 

1. Introduction 
 

Until recently, most deep convolutional neural 

network (CNN) research focused on increasing accuracy on 

computer vision datasets. The resulting large and powerful 

neural networks consume considerable energy, memory 

bandwidth and computational resources. For embedded 

mobile applications, not only accuracy matters but also 

energy consumption and model size are of top concerns, 

and in many applications also inference time for real-time 

use. A small CNN architecture may enable on-chip storage 

of the model thereby significantly reducing the energy 

consumption for retrieving model parameters from DRAM 

during inference. It also reduces energy requirements for 

computation. References to off-chip memory may incur a 

latency of hundreds of compute cycles and dissipate more 

than hundred times as much energy as arithmetic operations 

[1]. Our goal is to reduce energy and memory consumption 

of neural networks so they can be deployed on devices with 

limited resources while preserving accuracy. To achieve 

this goal, we devised Squeeze U-Net for image 

segmentation. The design of this architecture is inspired by 

SqueezeNet [2] and U-Net [3] . We choose the U-Net 

architecture [3] as a starting point because it can be 

successfully trained on small data sets which is beneficial 

for hardware with limited memory and for applications for 

which large training data sets may not be available. We 

replace the down and up sampling layers in U-Net with 

modules similar to the fire modules in SqueezeNet [2]. Our 

fire modules use point-wise convolutions followed by an 

inception stage [4] in which pointwise and 3×3 

convolutions are performed independently then 

concatenated to form the output.  It results in a small model 

with only 2.6 million parameters. The total number of 

parameters in our   Squeeze U-Net is 1.68× , 2.59×, 11.58×,  

3.65×, , 16.84×, 27.4× smaller than Mobile Net [5], Deep 

Lab [6], U-Net [3] , SegNet [7], FCN [8], DeconvNet [9] 

architectures. To analyze the merit of the Squeeze U-Net 

architecture, we have implemented both it and U-Net using 

Tensorflow 1.14 and Python 3.6 with CUDA 10.1.243, and 

measured execution time of every layer on an NVIDIA K40 

GPU. We show that Squeeze U-Net for the contracting path 

requires 63% of the time for U-Net, for the expanding path 

75% of the U-Net time and for the two together 69% of the 

U-Net time on the CamVid data set. For inference, Squeeze 

U-Net is 17% faster than U-Net. Next, we describe related 

work followed by a detailed description of the Squeeze U-

Net architecture in Section 3.  Section 4 discusses training 

using the Squeeze U-Net architecture followed by an 

evaluation in Section 5 and our conclusions in Section 6. 

 

2. Related Work 
 

It has become evident that Deep Neural Networks 

typically are over parametrized in that a variety of 

compression techniques have been applied on large 

parameter spaces with no or only minor loss of accuracy. 

Redundancy in deep learning models results in waste of 

computation, memory and energy. Shrinking, factorization 

or compressing pretrained networks are approaches for 

removing redundancy and obtaining smaller models [11]–

[14]. One of the straightforward approaches in model 

compression is applying singular value decomposition 

(SVD) to a pretrained CNN model and finding low rank 

approximations of the parameters [15]. Other approaches 

are network pruning which takes a pretrained model and 

replaces parameters which are below a certain threshold 

with zeros to form sparse matrices. In sparse matrices 

relative encoding of indices can be used to compress indices 

to a few bits at the expense of indirection.  To reduce the 

number of parameters and computational effort for CNNs 

several techniques based on factorizing the convolution 

kernel has been used. Depthwise separable convolution 

[16] separates convolution across channels from  
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convolution within channels. Depthwise separable 

convolution is used in SqueezeNet and in the Squeeze U- 

Net and in e.g. [17][18]. Potential further reduction in 

model size by reducing the data type size from 32-bits to 

eight or 16 bits, commonly known as quantization, may be 

able to reduce the Squeeze U-Net model, but is not 

investigated here. Quantization in depthwise separable 

convolution networks using non-linear activation functions 

within layers may require special attention as shown in [19] 

for MobileNetV1.  Other approaches towards reducing the 

computation time have focused on specialized hardware for 

CNNs, such as e.g. [20]–[22].  [22] focus on data reuse for 

dense uncompressed models thereby making the hardware 

architecture energy efficient. 

Contributions: For image segmentation we show  that 

Squeeze U-Net  achieves the same accuracy as  U-Net on   

the CamVid dataset [23] with 2.6 million parameters, a 12ൈ 

reduction compared to U-Net [3]. In designing Squeeze U-

Net we employ the SqueezeNet fire module [2] design in 

both the U-Net contracting and expansive paths. The fire 

modules initial depthwise convolution reduce the number 

of channels and compensates this reduction by an inception 

stage with two parallel convolutions each having half the 

number of output channels of the fire module’s output 

channels. The two parallel convolutions help prevent 

feature loss and vanishing gradients which may be caused  

 

Table 1:  The number of parameters for a KൈK size 

convolution kernel, Ci input channels and Co output channels   

are a K ൈ K ൈ C୧ ൈ C.  and is given below for a few CNNs. 

The networks typically use 3ൈ3 kernels or a combination of 

3ൈ3 and 1ൈ1 kernels. 

Model 
Architecture 

#Params 
Model 
Size 

(MB) 
Kernel Size 

Squeeze 

U-Net 
2.59M 32 

3ൈ3 

2ൈ2 

1ൈ1 

U-Net 30M 386 

3ൈ3 

2ൈ2 

1ൈ1 

SegNet 30M 117 3ൈ3 

Deep Lab 20M 83 3ൈ3 – 1ൈ1 

FCN -8s 
132M 

 
539 

3ൈ3–1ൈ1– 

4ൈ4 

7ൈ7–16ൈ16 

DeconvNet 
 

143M 
 

877 
 

1ൈ1 – 3ൈ3 

7ൈ7 

Figure 1: (A) shows convolution in the contracting path in U-Net (B) shows our corresponding Squeeze U-Net implementation using fire 
modules [2] instead of full convolution to reduce the reduce the number of parameters. (C) shows transposed convolution in the expansive 
path in U-Net (D) shows  our Squeeze U-Net implementation corresponding to (C) . In (D) and (B), the fire modules first squeeze the 
number of output channels then apply two parallel convolutions with different kernel size to capture missing features from the previous 
layer and concatenate their outputs. 



by reducing the number of channels [24]. Furthermore, 

we show that, although the Squeeze U-Net has more 

layers than U-Net, the inference time for Squeeze U-

Net implemented in Tensorflow 1.14 using Python 3.6 

and CUDA 10.1.243  on an NVIDIA K40 GPU is 17 

% faster than U-Net for the CamVid data set and only 

requires 66% of the U-Net training time 

3. Architecture 

3.1 Contracting Path 

 
Inspired by SqueezeNet [2], we adopt fire 

modules for the down sampling (DS) units in the 

contracting path of Squeeze U-Net. Each fire module 

in the contracting path consists of one 1×1 convolution 

layer with Cᇱ  output channels, C୭ᇱ < C୧ and an 

inception layer with two parallel convolutions with 

3×3 and 1×1 kernel size and C୭/2 output channels 

each. Concatenation of the parallel convolution output 

channels form the fire module output. It   is  passed to 

the next contracting layer and also to the  

corresponding layer in the expansive path of Squeeze 

U-Net with long skip connections[25], [26]. For down 

sampling we use stride 2 convolutions instead of max 

or average pooling. Striding increase the 

expressiveness of our network [27]. 

 

3.2 Expansive path  
 

For the expansive path in the Squeeze U-Net we 

also use the SqueezeNet fire modules to reduce the 

total number of parameters.   

 

Table 2:  Quantitate comparison of Squeeze U-Net and U-Net 

regarding model size, number of convolution and multiplication 

operations. These numbers are obtained using the TensorFlow 

1.14 profiler on a saved model. The number of convolutions and 

multiplication are gathered during inference time. 

Model 
Size 

(MB) 

#CONV 

(CamVid) 
Billion 

#Mult 
(CamVid) 

Million 

Squeeze 

U-Net 
32 432.71 33.03 

U-Net 386.6 1315.60 61.44 

Factor of 
reduction 

12.08× 3.04× 1.86× 

Figure 2: The Squeeze U-Net architecture consists of down sampling units in the contracting U-Net path, and up sampling units in the 

expansive U-Net path. Every down sampling (DS) unit consists of two fire modules which extract features. The extracted features are 

passed down to the next down sampling unit and the corresponding up sampling unit (US). Every up-sampling unit consist of a transposed

fire module, a concatenation unit and two fire modules which in order up samples their input, extract features, and concatenate features 

to construct the output. 



The main component of the expansive path in Squeeze U-Net 

is up sampling units (US). In every up-sampling unit, the 

transposed fire module consists of a 1ൈ1 transposed 

convolution with Cᇱ  output channels, C୭ᇱ ൏ C୧ as in the DS fire 

modules. For the inception stage of the transposed fire module, 

the output from the 1ൈ1 transposed convolution is fed into two 

parallel transposed convolutions with 2ൈ2 and 1ൈ1 kernel size, 

each with C୭/2  output channels that are concatenated to form 

the transpose fire module output, as for the DS units.  Further, 

up sampling units also have a stage for concatenating the 

bypass connections from the corresponding down sampling 

unit with the output of the transposed fire module thereby 

merging higher-resolution features from fire modules in the 

contracting path with lower resolution features in the 

expansive path. The concatenating unit is followed by two 

successive fire modules. As shown in Figure 2 and Table 4, 

there are three up sampling units in the expansive path 

followed by one 2ൈ2 transposed convolution. The features 

from its corresponding layer, the 3ൈ3 convolution layer before 

the contracting path, is concatenated with features from the 

2ൈ2 transposed convolution and passed to two 3ൈ3 convolution 

layers and one 1ൈ1 convolution layer to generate a 

HൈWൈclasses tensor for pixel wise segmentation.  

 

4.Training 

 
To evaluate Squeeze U-Net, we use the CamVid road 

scenes dataset [23].  This dataset is small, consisting of 701  

Table 3: Comparison of the number of Squeeze U-Net and U-Net parameters and MACs in the contracting path. Squeeze U-Net achieves 

a 12.18ൈ reduction in the number of parameters and a 3.7ൈ reduction in MACs for the contracting path. 

Layer 

Name 

 

Squeeze U-Net 

 

U-Net Feature 

Size 

(× HW) 

Reduction

Factor 

(#Params)

Reduction

Factor 

(#MACs)
Layer #Params 

#MACs

(× HW)
Layer #Params

#MACs

(× HW)

Convolutio

n 
ൣ3 ൈ  3 ൈ  64൧ ൈ2 38592 77184 ൣ3 ൈ 3 ൈ 64൧ ൈ2 38592 77184 64 1ൈ 1ൈ 

DS1 ൦1 ൈ  1 ൈ  323 ൈ  3 ൈ  641 ൈ  1 ൈ  64൪ ൈ2 47104 23552 ൣ3 ൈ 3 ൈ 128൧ ൈ2 221184 110592 
1282 ൈ 2 4.69ൈ 4.69ൈ 

DS 2 ൦ 1 ൈ  1 ൈ  483 ൈ  3 ൈ  1281 ൈ  1 ൈ  128൪ ൈ 2 141312 17664 ൣ3 ൈ 3 ൈ 256൧ ൈ2 884736 110592 
2564 ൈ 4 6.2ൈ 6.2ൈ 

DS 3 ൦ 1 ൈ  1 ൈ  643 ൈ  3 ൈ  2561 ൈ  1 ൈ  256൪ ൈ2 376832 11776 ൣ3 ൈ 3 ൈ 512൧ ൈ2 3538944 110592 
5128 ൈ 8 9.39ൈ 9.39ൈ 

DS 4 ൦ 1 ൈ  1 ൈ  803 ൈ  3 ൈ  5121 ൈ  1 ൈ  512൪ ൈ2 942080 7360 ሾ3 ൈ 3 ൈ 1024ሿ ൈ2 14155776 110592 
102416 ൈ 16 15.2ൈ 15.2ൈ 

Total  
1545920 

 

137456 

 
 18,839,232 519552  12.18ൈ 3.7ൈ 

Figure 3: Training loss and accuracy per epoch for Squeeze U-Net

and U Net. (a) shows loss per epoch. (b) shows accuracy per epoch

We train Squeeze U-Net until it converges to the same accuracy as U-

Net.







parallel.  That would reduce the execution time for the 

contracting and expanding path of Squeeze U-Net to 

55% of U-Net. 

5.3 Inference Accuracy 
We assessed the quality of the Squeeze U-Net model 

relative to the U-Net model on a set of 120 CamVid 

images not part of the training set. For the assessment 

the 120 images were divided into 15 batches of eight 

images each and for each batch the average of true 

positive, false positive, false negative pixel 

classification was recorded as well as the average pixel 

count for each class in each batch. In the evaluation set 

of 120 images segmentation and classification was 

successful for Squeeze U-Net and U-Net for the five 

classes labeled building, tree sky, car and road. Squeeze 

U-Net in addition successfully segmented and classified 

the class sidewalk. The results for the five common 

classes are shown in Table 7.  

For true positive pixels the average accuracy for the 

building, tree, sky, car, and road classes, for U-Net was  

86.9% vs Squeeze U-Net’s 78%.  For the road and sky 

 classes Squeeze U-net is 2 – 3 % less accurate than U-Net.  

Sky represent on average about 14% of the pixels and the road 

about 25% of the pixels in the test set.  For the building class 

Squeeze U-Net is on average about 5% less accurate for the test 

set than U-Net (78.5% vs 83.3%).  The building class represent 

about 41% of the pixels in the test set.  For the tree class with 

on average 6% of the pixels in the test set Squeeze U-net is 

about 20% less accurate than U-Net (51.1 % vs 72.6%) and for 

the car class having about 1% of the pixels Squeeze U-Net is 

about 13% less accurate than U-Net (71.1% vs 84.5%).  

Squeeze U-net appears more sensitive to the number of pixels 

representing the class than U-Net, and to also have difficulties 

with less well-defined structures like trees.  The range of true 

positive pixel classification accuracy across images in the 

evaluation set is generally higher for Squeeze U-Net than U-

Net for each class.  The Min and Max values in Table 7 are 

based on averages for batches of eight images due to our 

implementation of the test cases, and hence do not cover 

extreme cases.  

For false positives Squeeze U-Net tend to have more false 

positive pixels relative to the true pixels.  For the sky class 

Squeeze U-net only has on average 1.5 % more false 

positives, but for the road class it has about 8% (31.3% vs 

23.4%) more false positives. For the building class Squeeze 

U-Net however has about 17% less false positives than U-Net 

(22.1% vs 39.3%) and for the tree class Squeeze U-Net also 

has less false positives though still high (106% vs 130%).  For 

the car class both Squeeze U-Net and U-Net had a very large 

number of false positives with Squeeze U-Net performing 

worse than U-Net.  As for true positives the variability in the 

number of false positives across images 

 

Table 7: Comparison of Squeeze U-Net (1) and U-Net (2) regarding intersection over union (IoU) and false positive to true positive 

for test set  

 Building Tree Sky Car Road Average 

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

Percent True positive pixels

Average 78.5% 83.3% 51.1% 72.6% 93.7% 96.9% 71.1% 84.5% 95.6% 97.4% 78.0% 86.9% 

Max 86.3% 90.1% 73.8% 92.4% 99.4% 99.4% 99.3% 97.8% 98.2% 99.2% 91.4% 95.8% 

Min 58.8% 73.3% 18.0% 51.7% 76.4% 91.1% 46.0% 49.0% 90.0% 93.0% 57.8% 71.6% 

Intersection over Union (IoU) 

Average 0.689 0.639 0.370 0.403 0.842 0.879 0.427 0.628 0.751 0.800 0.616 0.670 

Max 0.808 0.734 0.575 0.650 0.928 0.945 0.667 0.812 0.913 0.937 0.778 0.816 

Min 0.395 0.443 0.113 0.220 0.676 0.753 0.011 0.020 0.575 0.686 0.354 0.424 

False Positive pixels relative to true positive pixels

Average 22.1% 39.3% 106.3% 130.1% 12.5% 11.0% 688.2% 354.1% 31.3% 23.4% 172.1% 111.6% 

Max 83.1% 89.4% 331.0% 280.4% 24.8% 23.1% 8870.8% 4752.1% 62.8% 39.4% 1874.5% 1036.9% 

Min 6.0% 23.4% 18.6% 20.1% 6.3% 4.5% 26.2% 10.7% 7.7% 5.6% 13.0% 12.8% 

Figure 5. The execution times of fire modules in our

Tensorflow implementation.  By parallelizing the execution

of the 2nd and third convolution we estimate that Squeeze U-

Net should be able to achieve a reduction of about 20%.



tend to be higher for Squeeze U-Net than U-Net. For the  

Intersection over Union measure (IoU) (the ratio of true 
positive pixels to true pixels plus false positives) on average 

the Squeeze U-Net measure is less than about 3 - 5%, lower 
than the U-Net measure for the tree, sky and road classes.  

For the building class the Squeeze U-Net measure is about 
5% higher than that of U-Net.  For the car class the Squeeze 

U-Net measure is considerably lower than that for U-Net. 
The variability of the IoU measure across the test images is 

higher than that for U-Net. Figure 6 shows the classification 
generated by Squeeze U-Net and U-Net for four CamVid 

images. 

6. Conclusion 
In this work we presented Squeeze U-Net for image 
segmentation that has 12× fewer parameters, and 3× fewer 

MACs. Squeeze U-Net training time for the CamVid data 
set is 69% of that of U-Net and for inference the Squeeze 

U-Net architecture is 17% faster. We also estimate, that by 

using parallel convolutions, training and inference times of 
Squeeze U-Net may achieve 2× reduction in execution time 

compared to U-Net. Squeeze U-Net use fire modules [2] 

and transposed fire modules in the contracting and 
expansive paths of U-Net to reduce model size and generate 

a memory and power efficient segmentation model.  The 
12× reduction in memory requirements should result in a 

significant reduction in energy requirement compared to U-

Net and the 3× reduction in MACs similarly should reduce 
energy dissipation for computation. Energy measurements 

is part of our future work as is a concurrent implementation 

of the inception stage in the fire modules. A further 
understanding of the Squeeze U-Net accuracy and 

sensitivity to class characteristics and training needs are 
also part of future work. 
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 Figure 6:	Qualitative assessment of Squeeze U-Net and U-Net segmentation on the	CamVid road scenes dataset

 



References 

[1] A. Pedram, S. Richardson, M. Horowitz, S. 

Galal, and S. Kvatinsky, “Dark memory and 

accelerator-rich system optimization in the 

dark silicon era,” IEEE Des. Test, vol. 34, no. 

2, pp. 39–50, 2016. 

[2] F. N. Iandola, S. Han, M. W. Moskewicz, K. 

Ashraf, W. J. Dally, and K. Keutzer, 

“SqueezeNet: AlexNet-level accuracy with 

50x fewer parameters and< 0.5 MB model 

size,” arXiv Prepr. arXiv1602.07360, 2016. 

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-

Net: Convolutional Networks for Biomedical 

Image Segmentation BT  - Medical Image 

Computing and Computer-Assisted 

Intervention – MICCAI 2015,” 2015, pp. 

234–241. 

[4] C. Szegedy et al., “Going deeper with 

convolutions,” in Proceedings of the IEEE 

conference on computer vision and pattern 

recognition, 2015, pp. 1–9. 

[5] A. G. Howard et al., “Mobilenets: Efficient 

convolutional neural networks for mobile 

vision applications,” arXiv Prepr. 

arXiv1704.04861, 2017. 

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K.  

 

Murphy, and A. L. Yuille, “Deeplab: 

Semantic image segmentation with deep 

convolutional nets, atrous convolution, and 

fully connected crfs,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 40, no. 4, pp. 834–

848, 2017. 

[7] V. Badrinarayanan, A. Kendall, and R. 

Cipolla, “Segnet: A deep convolutional 

encoder-decoder architecture for image 

segmentation,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 39, no. 12, pp. 2481–2495, 

2017. 

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully 

Convolutional Networks for Semantic 

Segmentation,” in The IEEE Conference on 

Computer Vision and Pattern Recognition 

(CVPR), 2015. 

 

[9] H. Noh, S. Hong, and B. Han, “Learning 

deconvolution network for semantic 

segmentation,” in Proceedings of the IEEE 

international conference on computer vision, 

2015, pp. 1520–1528. 

[10] S. Chetlur et al., “cudnn: Efficient primitives 

for deep learning,” arXiv Prepr. 

arXiv1410.0759, 2014. 

[11] S. Han, H. Mao, and W. J. Dally, “Deep 

compression: Compressing deep neural 

networks with pruning, trained quantization 

and huffman coding,” arXiv Prepr. 

arXiv1510.00149, 2015. 

[12] S. Han, J. Pool, J. Tran, and W. J. Dally, 

“Learning both weights and connections for 

efficient neural networks,” Adv. Neural Inf. 

Process. Syst., vol. 2015-Janua, pp. 1135–

1143, 2015. 

[13] S. Han et al., “Dsd: Dense-sparse-dense 

training for deep neural networks,” arXiv 

Prepr. arXiv1607.04381, 2016. 

[14] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, 

“A survey of model compression and 

acceleration for deep neural networks,” arXiv 

Prepr. arXiv1710.09282, 2017. 

[15] E. L. Denton, W. Zaremba, J. Bruna, Y. 

LeCun, and R. Fergus, “Exploiting Linear 

Structure Within Convolutional Networks for 

Efficient Evaluation,” in Advances in Neural 

Information Processing Systems 27, Z. 

Ghahramani, M. Welling, C. Cortes, N. D. 

Lawrence, and K. Q. Weinberger, Eds. 

Curran Associates, Inc., 2014, pp. 1269–

1277. 

[16] L. Sifre and S. Mallat, “Rigid-motion 

scattering for image classification,” Ph. D. 

thesis, 2014. 

[17] F. Chollet, “Xception: Deep learning with 

depthwise separable convolutions,” in 

Proceedings of the IEEE conference on 

computer vision and pattern recognition, 

2017, pp. 1251–1258. 

[18] L.-C. Chen, Y. Zhu, G. Papandreou, F. 

Schroff, and H. Adam, “Encoder-decoder 

with atrous separable convolution for 

semantic image segmentation,” in 

Proceedings of the European conference on 

computer vision (ECCV), 2018, pp. 801–818. 

[19] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. 

Shen, and M. Aleksic, “A quantization-

friendly separable convolution for 

mobilenets,” in 2018 1st Workshop on 

Energy Efficient Machine Learning and 

Cognitive Computing for Embedded 

Applications (EMC2), 2018, pp. 14–18. 

[20] C. Farabet, B. Martini, B. Corda, P. 

Akselrod, E. Culurciello, and Y. LeCun, 

“Neuflow: A runtime reconfigurable dataflow 

processor for vision,” in Cvpr 2011 

Workshops, 2011, pp. 109–116. 

[21] J.-Y. Kim, M. Kim, S. Lee, J. Oh, K. Kim, 

and H.-J. Yoo, “A 201.4 GOPS 496 mW real-

time multi-object recognition processor with 

bio-inspired neural perception engine,” IEEE 

J. Solid-State Circuits, vol. 45, no. 1, pp. 32–

45, 2009. 



[22] T. Chen et al., “Diannao: A small-footprint 

high-throughput accelerator for ubiquitous 

machine-learning,” ACM SIGARCH Comput. 

Archit. News, vol. 42, no. 1, pp. 269–284, 

2014. 

[23] G. J. Brostow, J. Fauqueur, and R. Cipolla, 

“Semantic object classes in video: A high-

definition ground truth database,” Pattern 

Recognit. Lett., vol. 30, no. 2, pp. 88–97, 

2009. 

[24] L. Saadatifard, A. Mobiny, P. Govyadinov, 

H. Nguyen, and D. Mayerich, “DVNet: A 

Memory-Efficient Three-Dimensional CNN 

for Large-Scale Neurovascular 

Reconstruction,” arXiv Prepr. 

arXiv2002.01568, 2020. 

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep 

residual learning for image recognition,” in 

Proceedings of the IEEE conference on 

computer vision and pattern recognition, 

2016, pp. 770–778. 

[26] S. Sun, J. Pang, J. Shi, S. Yi, and W. Ouyang, 

“Fishnet: A versatile backbone for image, 

region, and pixel level prediction,” in 

Advances in neural information processing 

systems, 2018, pp. 754–764. 

[27] J. T. Springenberg, A. Dosovitskiy, T. Brox, 

and M. Riedmiller, “Striving for simplicity: 

The all convolutional net,” arXiv Prepr. 

arXiv1412.6806, 2014. 

[28] D. P. Kingma and J. Ba, “Adam: A method 

for stochastic optimization,” arXiv Prepr. 

arXiv1412.6980, 2014. 

[29] M. Abadi et al., “Tensorflow: A system for 

large-scale machine learning,” in 12th 

${$USENIX$}$ Symposium on Operating 

Systems Design and Implementation 

(${$OSDI$}$ 16), 2016, pp. 265–283. 

 


