

Abstract

To facilitate implementation of deep neural networks on

embedded systems keeping memory and computation

requirements low is critical, particularly for real-time

mobile use. In this work, we propose a SqueezeNet inspired

version of U-Net for image segmentation that achieves a

12X reduction in model size to 32MB, and 3.2X reduction

in Multiplication Accumulation operations (MACs) from

287 billion ops to 88 billion ops for inference on the

CamVid data set while preserving accuracy. Our proposed

Squeeze U-Net is efficient in both low MACs and memory

use. Our performance results using Tensorflow 1.14 with

Python 3.6 and CUDA 10.1.243 on an NVIDIA K40 GPU

shows that Squeeze U-Net is 17% faster for inference and

52% faster for training than U-Net for the same accuracy.

1. Introduction

Until recently, most deep convolutional neural

network (CNN) research focused on increasing accuracy on

computer vision datasets. The resulting large and powerful

neural networks consume considerable energy, memory

bandwidth and computational resources. For embedded

mobile applications, not only accuracy matters but also

energy consumption and model size are of top concerns,

and in many applications also inference time for real-time

use. A small CNN architecture may enable on-chip storage

of the model thereby significantly reducing the energy

consumption for retrieving model parameters from DRAM

during inference. It also reduces energy requirements for

computation. References to off-chip memory may incur a

latency of hundreds of compute cycles and dissipate more

than hundred times as much energy as arithmetic operations

[1]. Our goal is to reduce energy and memory consumption

of neural networks so they can be deployed on devices with

limited resources while preserving accuracy. To achieve

this goal, we devised Squeeze U-Net for image

segmentation. The design of this architecture is inspired by

SqueezeNet [2] and U-Net [3] . We choose the U-Net

architecture [3] as a starting point because it can be

successfully trained on small data sets which is beneficial

for hardware with limited memory and for applications for

which large training data sets may not be available. We

replace the down and up sampling layers in U-Net with

modules similar to the fire modules in SqueezeNet [2]. Our

fire modules use point-wise convolutions followed by an

inception stage [4] in which pointwise and 3×3

convolutions are performed independently then

concatenated to form the output. It results in a small model

with only 2.6 million parameters. The total number of

parameters in our Squeeze U-Net is 1.68× , 2.59×, 11.58×,

3.65×, , 16.84×, 27.4× smaller than Mobile Net [5], Deep

Lab [6], U-Net [3] , SegNet [7], FCN [8], DeconvNet [9]

architectures. To analyze the merit of the Squeeze U-Net

architecture, we have implemented both it and U-Net using

Tensorflow 1.14 and Python 3.6 with CUDA 10.1.243, and

measured execution time of every layer on an NVIDIA K40

GPU. We show that Squeeze U-Net for the contracting path

requires 63% of the time for U-Net, for the expanding path

75% of the U-Net time and for the two together 69% of the

U-Net time on the CamVid data set. For inference, Squeeze

U-Net is 17% faster than U-Net. Next, we describe related

work followed by a detailed description of the Squeeze U-

Net architecture in Section 3. Section 4 discusses training

using the Squeeze U-Net architecture followed by an

evaluation in Section 5 and our conclusions in Section 6.

2. Related Work

It has become evident that Deep Neural Networks

typically are over parametrized in that a variety of

compression techniques have been applied on large

parameter spaces with no or only minor loss of accuracy.

Redundancy in deep learning models results in waste of

computation, memory and energy. Shrinking, factorization

or compressing pretrained networks are approaches for

removing redundancy and obtaining smaller models [11]–

[14]. One of the straightforward approaches in model

compression is applying singular value decomposition

(SVD) to a pretrained CNN model and finding low rank

approximations of the parameters [15]. Other approaches

are network pruning which takes a pretrained model and

replaces parameters which are below a certain threshold

with zeros to form sparse matrices. In sparse matrices

relative encoding of indices can be used to compress indices

to a few bits at the expense of indirection. To reduce the

number of parameters and computational effort for CNNs

several techniques based on factorizing the convolution

kernel has been used. Depthwise separable convolution

[16] separates convolution across channels from

Squeeze U-Net: A Memory and Energy Efficient Image Segmentation Network

Nazanin Beheshti

Department of Computer Science

University of Houston
Nsbeheshti70@gmail.com

Lennart Johnsson

Department of Computer Science

University of Houston
johnsson@cs.uh.edu

convolution within channels. Depthwise separable

convolution is used in SqueezeNet and in the Squeeze U-

Net and in e.g. [17][18]. Potential further reduction in

model size by reducing the data type size from 32-bits to

eight or 16 bits, commonly known as quantization, may be

able to reduce the Squeeze U-Net model, but is not

investigated here. Quantization in depthwise separable

convolution networks using non-linear activation functions

within layers may require special attention as shown in [19]

for MobileNetV1. Other approaches towards reducing the

computation time have focused on specialized hardware for

CNNs, such as e.g. [20]–[22]. [22] focus on data reuse for

dense uncompressed models thereby making the hardware

architecture energy efficient.

Contributions: For image segmentation we show that

Squeeze U-Net achieves the same accuracy as U-Net on

the CamVid dataset [23] with 2.6 million parameters, a 12ൈ

reduction compared to U-Net [3]. In designing Squeeze U-

Net we employ the SqueezeNet fire module [2] design in

both the U-Net contracting and expansive paths. The fire

modules initial depthwise convolution reduce the number

of channels and compensates this reduction by an inception

stage with two parallel convolutions each having half the

number of output channels of the fire module’s output

channels. The two parallel convolutions help prevent

feature loss and vanishing gradients which may be caused

Table 1: The number of parameters for a KൈK size

convolution kernel, Ci input channels and Co output channels

are a K ൈ K ൈ C୧ ൈ C୓. and is given below for a few CNNs.

The networks typically use 3ൈ3 kernels or a combination of

3ൈ3 and 1ൈ1 kernels.

Model
Architecture

#Params
Model
Size

(MB)
Kernel Size

Squeeze

U-Net
2.59M 32

3ൈ3

2ൈ2

1ൈ1

U-Net 30M 386

3ൈ3

2ൈ2

1ൈ1

SegNet 30M 117 3ൈ3

Deep Lab 20M 83 3ൈ3 – 1ൈ1

FCN -8s
132M

539

3ൈ3–1ൈ1–

4ൈ4

7ൈ7–16ൈ16

DeconvNet

143M

877

1ൈ1 – 3ൈ3

7ൈ7

Figure 1: (A) shows convolution in the contracting path in U-Net (B) shows our corresponding Squeeze U-Net implementation using fire
modules [2] instead of full convolution to reduce the reduce the number of parameters. (C) shows transposed convolution in the expansive
path in U-Net (D) shows our Squeeze U-Net implementation corresponding to (C) . In (D) and (B), the fire modules first squeeze the
number of output channels then apply two parallel convolutions with different kernel size to capture missing features from the previous
layer and concatenate their outputs.

by reducing the number of channels [24]. Furthermore,

we show that, although the Squeeze U-Net has more

layers than U-Net, the inference time for Squeeze U-

Net implemented in Tensorflow 1.14 using Python 3.6

and CUDA 10.1.243 on an NVIDIA K40 GPU is 17

% faster than U-Net for the CamVid data set and only

requires 66% of the U-Net training time

3. Architecture

3.1 Contracting Path

Inspired by SqueezeNet [2], we adopt fire

modules for the down sampling (DS) units in the

contracting path of Squeeze U-Net. Each fire module

in the contracting path consists of one 1×1 convolution

layer with C୓ᇱ output channels, C୭ᇱ < C୧ and an

inception layer with two parallel convolutions with

3×3 and 1×1 kernel size and C୭/2 output channels

each. Concatenation of the parallel convolution output

channels form the fire module output. It is passed to

the next contracting layer and also to the

corresponding layer in the expansive path of Squeeze

U-Net with long skip connections[25], [26]. For down

sampling we use stride 2 convolutions instead of max

or average pooling. Striding increase the

expressiveness of our network [27].

3.2 Expansive path

For the expansive path in the Squeeze U-Net we

also use the SqueezeNet fire modules to reduce the

total number of parameters.

Table 2: Quantitate comparison of Squeeze U-Net and U-Net

regarding model size, number of convolution and multiplication

operations. These numbers are obtained using the TensorFlow

1.14 profiler on a saved model. The number of convolutions and

multiplication are gathered during inference time.

Model
Size

(MB)

#CONV

(CamVid)
Billion

#Mult
(CamVid)

Million

Squeeze

U-Net
32 432.71 33.03

U-Net 386.6 1315.60 61.44

Factor of
reduction

12.08× 3.04× 1.86×

Figure 2: The Squeeze U-Net architecture consists of down sampling units in the contracting U-Net path, and up sampling units in the

expansive U-Net path. Every down sampling (DS) unit consists of two fire modules which extract features. The extracted features are

passed down to the next down sampling unit and the corresponding up sampling unit (US). Every up-sampling unit consist of a transposed

fire module, a concatenation unit and two fire modules which in order up samples their input, extract features, and concatenate features

to construct the output.

The main component of the expansive path in Squeeze U-Net

is up sampling units (US). In every up-sampling unit, the

transposed fire module consists of a 1ൈ1 transposed

convolution with C୓ᇱ output channels, C୭ᇱ ൏ C୧ as in the DS fire

modules. For the inception stage of the transposed fire module,

the output from the 1ൈ1 transposed convolution is fed into two

parallel transposed convolutions with 2ൈ2 and 1ൈ1 kernel size,

each with C୭/2 output channels that are concatenated to form

the transpose fire module output, as for the DS units. Further,

up sampling units also have a stage for concatenating the

bypass connections from the corresponding down sampling

unit with the output of the transposed fire module thereby

merging higher-resolution features from fire modules in the

contracting path with lower resolution features in the

expansive path. The concatenating unit is followed by two

successive fire modules. As shown in Figure 2 and Table 4,

there are three up sampling units in the expansive path

followed by one 2ൈ2 transposed convolution. The features

from its corresponding layer, the 3ൈ3 convolution layer before

the contracting path, is concatenated with features from the

2ൈ2 transposed convolution and passed to two 3ൈ3 convolution

layers and one 1ൈ1 convolution layer to generate a

HൈWൈclasses tensor for pixel wise segmentation.

4.Training

To evaluate Squeeze U-Net, we use the CamVid road

scenes dataset [23]. This dataset is small, consisting of 701

Table 3: Comparison of the number of Squeeze U-Net and U-Net parameters and MACs in the contracting path. Squeeze U-Net achieves

a 12.18ൈ reduction in the number of parameters and a 3.7ൈ reduction in MACs for the contracting path.

Layer

Name

Squeeze U-Net

U-Net Feature

Size

(× HW)

Reduction

Factor

(#Params)

Reduction

Factor

(#MACs)
Layer #Params

#MACs

(× HW)
Layer #Params

#MACs

(× HW)

Convolutio

n
ൣ3 ൈ 3 ൈ 64൧ ൈ2 38592 77184 ൣ3 ൈ 3 ൈ 64൧ ൈ2 38592 77184 64 1ൈ 1ൈ

DS1 ൦1 ൈ 1 ൈ 323 ൈ 3 ൈ 641 ൈ 1 ൈ 64൪ ൈ2 47104 23552 ൣ3 ൈ 3 ൈ 128൧ ൈ2 221184 110592
1282 ൈ 2 4.69ൈ 4.69ൈ

DS 2 ൦ 1 ൈ 1 ൈ 483 ൈ 3 ൈ 1281 ൈ 1 ൈ 128൪ ൈ 2 141312 17664 ൣ3 ൈ 3 ൈ 256൧ ൈ2 884736 110592
2564 ൈ 4 6.2ൈ 6.2ൈ

DS 3 ൦ 1 ൈ 1 ൈ 643 ൈ 3 ൈ 2561 ൈ 1 ൈ 256൪ ൈ2 376832 11776 ൣ3 ൈ 3 ൈ 512൧ ൈ2 3538944 110592
5128 ൈ 8 9.39ൈ 9.39ൈ

DS 4 ൦ 1 ൈ 1 ൈ 803 ൈ 3 ൈ 5121 ൈ 1 ൈ 512൪ ൈ2 942080 7360 ሾ3 ൈ 3 ൈ 1024ሿ ൈ2 14155776 110592
102416 ൈ 16 15.2ൈ 15.2ൈ

Total
1545920

137456

 18,839,232 519552 12.18ൈ 3.7ൈ

Figure 3: Training loss and accuracy per epoch for Squeeze U-Net

and U Net. (a) shows loss per epoch. (b) shows accuracy per epoch

We train Squeeze U-Net until it converges to the same accuracy as U-

Net.

parallel. That would reduce the execution time for the

contracting and expanding path of Squeeze U-Net to

55% of U-Net.

5.3 Inference Accuracy
We assessed the quality of the Squeeze U-Net model

relative to the U-Net model on a set of 120 CamVid

images not part of the training set. For the assessment

the 120 images were divided into 15 batches of eight

images each and for each batch the average of true

positive, false positive, false negative pixel

classification was recorded as well as the average pixel

count for each class in each batch. In the evaluation set

of 120 images segmentation and classification was

successful for Squeeze U-Net and U-Net for the five

classes labeled building, tree sky, car and road. Squeeze

U-Net in addition successfully segmented and classified

the class sidewalk. The results for the five common

classes are shown in Table 7.

For true positive pixels the average accuracy for the

building, tree, sky, car, and road classes, for U-Net was

86.9% vs Squeeze U-Net’s 78%. For the road and sky

 classes Squeeze U-net is 2 – 3 % less accurate than U-Net.

Sky represent on average about 14% of the pixels and the road

about 25% of the pixels in the test set. For the building class

Squeeze U-Net is on average about 5% less accurate for the test

set than U-Net (78.5% vs 83.3%). The building class represent

about 41% of the pixels in the test set. For the tree class with

on average 6% of the pixels in the test set Squeeze U-net is

about 20% less accurate than U-Net (51.1 % vs 72.6%) and for

the car class having about 1% of the pixels Squeeze U-Net is

about 13% less accurate than U-Net (71.1% vs 84.5%).

Squeeze U-net appears more sensitive to the number of pixels

representing the class than U-Net, and to also have difficulties

with less well-defined structures like trees. The range of true

positive pixel classification accuracy across images in the

evaluation set is generally higher for Squeeze U-Net than U-

Net for each class. The Min and Max values in Table 7 are

based on averages for batches of eight images due to our

implementation of the test cases, and hence do not cover

extreme cases.

For false positives Squeeze U-Net tend to have more false

positive pixels relative to the true pixels. For the sky class

Squeeze U-net only has on average 1.5 % more false

positives, but for the road class it has about 8% (31.3% vs

23.4%) more false positives. For the building class Squeeze

U-Net however has about 17% less false positives than U-Net

(22.1% vs 39.3%) and for the tree class Squeeze U-Net also

has less false positives though still high (106% vs 130%). For

the car class both Squeeze U-Net and U-Net had a very large

number of false positives with Squeeze U-Net performing

worse than U-Net. As for true positives the variability in the

number of false positives across images

Table 7: Comparison of Squeeze U-Net (1) and U-Net (2) regarding intersection over union (IoU) and false positive to true positive

for test set

 Building Tree Sky Car Road Average

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Percent True positive pixels

Average 78.5% 83.3% 51.1% 72.6% 93.7% 96.9% 71.1% 84.5% 95.6% 97.4% 78.0% 86.9%

Max 86.3% 90.1% 73.8% 92.4% 99.4% 99.4% 99.3% 97.8% 98.2% 99.2% 91.4% 95.8%

Min 58.8% 73.3% 18.0% 51.7% 76.4% 91.1% 46.0% 49.0% 90.0% 93.0% 57.8% 71.6%

Intersection over Union (IoU)

Average 0.689 0.639 0.370 0.403 0.842 0.879 0.427 0.628 0.751 0.800 0.616 0.670

Max 0.808 0.734 0.575 0.650 0.928 0.945 0.667 0.812 0.913 0.937 0.778 0.816

Min 0.395 0.443 0.113 0.220 0.676 0.753 0.011 0.020 0.575 0.686 0.354 0.424

False Positive pixels relative to true positive pixels

Average 22.1% 39.3% 106.3% 130.1% 12.5% 11.0% 688.2% 354.1% 31.3% 23.4% 172.1% 111.6%

Max 83.1% 89.4% 331.0% 280.4% 24.8% 23.1% 8870.8% 4752.1% 62.8% 39.4% 1874.5% 1036.9%

Min 6.0% 23.4% 18.6% 20.1% 6.3% 4.5% 26.2% 10.7% 7.7% 5.6% 13.0% 12.8%

Figure 5. The execution times of fire modules in our

Tensorflow implementation. By parallelizing the execution

of the 2nd and third convolution we estimate that Squeeze U-

Net should be able to achieve a reduction of about 20%.

tend to be higher for Squeeze U-Net than U-Net. For the

Intersection over Union measure (IoU) (the ratio of true
positive pixels to true pixels plus false positives) on average

the Squeeze U-Net measure is less than about 3 - 5%, lower
than the U-Net measure for the tree, sky and road classes.

For the building class the Squeeze U-Net measure is about
5% higher than that of U-Net. For the car class the Squeeze

U-Net measure is considerably lower than that for U-Net.
The variability of the IoU measure across the test images is

higher than that for U-Net. Figure 6 shows the classification
generated by Squeeze U-Net and U-Net for four CamVid

images.

6. Conclusion
In this work we presented Squeeze U-Net for image
segmentation that has 12× fewer parameters, and 3× fewer

MACs. Squeeze U-Net training time for the CamVid data
set is 69% of that of U-Net and for inference the Squeeze

U-Net architecture is 17% faster. We also estimate, that by

using parallel convolutions, training and inference times of
Squeeze U-Net may achieve 2× reduction in execution time

compared to U-Net. Squeeze U-Net use fire modules [2]

and transposed fire modules in the contracting and
expansive paths of U-Net to reduce model size and generate

a memory and power efficient segmentation model. The
12× reduction in memory requirements should result in a

significant reduction in energy requirement compared to U-

Net and the 3× reduction in MACs similarly should reduce
energy dissipation for computation. Energy measurements

is part of our future work as is a concurrent implementation

of the inception stage in the fire modules. A further
understanding of the Squeeze U-Net accuracy and

sensitivity to class characteristics and training needs are
also part of future work.

Acknowledgement
The University of Houston Data Science Institute’s
Research Computing Center made available NVIDIA K40

GPU nodes free of charge which is gratefully
acknowledged. The many helpful discussions with

members of the Advanced Computing Research Lab were
also very helpful in achieving our results. Especially

Suyash Bakshi’s insights on GPU programming and tools
were very helpful.

T
es

t
Im

ag
e

G
ro

u
n

d
 t

ru
th

S
q

u
ee

ze
 U

-N
et

U
-N

et

 Figure 6:	Qualitative assessment of Squeeze U-Net and U-Net segmentation on the	CamVid road scenes dataset

References

[1] A. Pedram, S. Richardson, M. Horowitz, S.

Galal, and S. Kvatinsky, “Dark memory and

accelerator-rich system optimization in the

dark silicon era,” IEEE Des. Test, vol. 34, no.

2, pp. 39–50, 2016.

[2] F. N. Iandola, S. Han, M. W. Moskewicz, K.

Ashraf, W. J. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with

50x fewer parameters and< 0.5 MB model

size,” arXiv Prepr. arXiv1602.07360, 2016.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-

Net: Convolutional Networks for Biomedical

Image Segmentation BT - Medical Image

Computing and Computer-Assisted

Intervention – MICCAI 2015,” 2015, pp.

234–241.

[4] C. Szegedy et al., “Going deeper with

convolutions,” in Proceedings of the IEEE

conference on computer vision and pattern

recognition, 2015, pp. 1–9.

[5] A. G. Howard et al., “Mobilenets: Efficient

convolutional neural networks for mobile

vision applications,” arXiv Prepr.

arXiv1704.04861, 2017.

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K.

Murphy, and A. L. Yuille, “Deeplab:

Semantic image segmentation with deep

convolutional nets, atrous convolution, and

fully connected crfs,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 40, no. 4, pp. 834–

848, 2017.

[7] V. Badrinarayanan, A. Kendall, and R.

Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image

segmentation,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 39, no. 12, pp. 2481–2495,

2017.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully

Convolutional Networks for Semantic

Segmentation,” in The IEEE Conference on

Computer Vision and Pattern Recognition

(CVPR), 2015.

[9] H. Noh, S. Hong, and B. Han, “Learning

deconvolution network for semantic

segmentation,” in Proceedings of the IEEE

international conference on computer vision,

2015, pp. 1520–1528.

[10] S. Chetlur et al., “cudnn: Efficient primitives

for deep learning,” arXiv Prepr.

arXiv1410.0759, 2014.

[11] S. Han, H. Mao, and W. J. Dally, “Deep

compression: Compressing deep neural

networks with pruning, trained quantization

and huffman coding,” arXiv Prepr.

arXiv1510.00149, 2015.

[12] S. Han, J. Pool, J. Tran, and W. J. Dally,

“Learning both weights and connections for

efficient neural networks,” Adv. Neural Inf.

Process. Syst., vol. 2015-Janua, pp. 1135–

1143, 2015.

[13] S. Han et al., “Dsd: Dense-sparse-dense

training for deep neural networks,” arXiv

Prepr. arXiv1607.04381, 2016.

[14] Y. Cheng, D. Wang, P. Zhou, and T. Zhang,

“A survey of model compression and

acceleration for deep neural networks,” arXiv

Prepr. arXiv1710.09282, 2017.

[15] E. L. Denton, W. Zaremba, J. Bruna, Y.

LeCun, and R. Fergus, “Exploiting Linear

Structure Within Convolutional Networks for

Efficient Evaluation,” in Advances in Neural

Information Processing Systems 27, Z.

Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, Eds.

Curran Associates, Inc., 2014, pp. 1269–

1277.

[16] L. Sifre and S. Mallat, “Rigid-motion

scattering for image classification,” Ph. D.

thesis, 2014.

[17] F. Chollet, “Xception: Deep learning with

depthwise separable convolutions,” in

Proceedings of the IEEE conference on

computer vision and pattern recognition,

2017, pp. 1251–1258.

[18] L.-C. Chen, Y. Zhu, G. Papandreou, F.

Schroff, and H. Adam, “Encoder-decoder

with atrous separable convolution for

semantic image segmentation,” in

Proceedings of the European conference on

computer vision (ECCV), 2018, pp. 801–818.

[19] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L.

Shen, and M. Aleksic, “A quantization-

friendly separable convolution for

mobilenets,” in 2018 1st Workshop on

Energy Efficient Machine Learning and

Cognitive Computing for Embedded

Applications (EMC2), 2018, pp. 14–18.

[20] C. Farabet, B. Martini, B. Corda, P.

Akselrod, E. Culurciello, and Y. LeCun,

“Neuflow: A runtime reconfigurable dataflow

processor for vision,” in Cvpr 2011

Workshops, 2011, pp. 109–116.

[21] J.-Y. Kim, M. Kim, S. Lee, J. Oh, K. Kim,

and H.-J. Yoo, “A 201.4 GOPS 496 mW real-

time multi-object recognition processor with

bio-inspired neural perception engine,” IEEE

J. Solid-State Circuits, vol. 45, no. 1, pp. 32–

45, 2009.

[22] T. Chen et al., “Diannao: A small-footprint

high-throughput accelerator for ubiquitous

machine-learning,” ACM SIGARCH Comput.

Archit. News, vol. 42, no. 1, pp. 269–284,

2014.

[23] G. J. Brostow, J. Fauqueur, and R. Cipolla,

“Semantic object classes in video: A high-

definition ground truth database,” Pattern

Recognit. Lett., vol. 30, no. 2, pp. 88–97,

2009.

[24] L. Saadatifard, A. Mobiny, P. Govyadinov,

H. Nguyen, and D. Mayerich, “DVNet: A

Memory-Efficient Three-Dimensional CNN

for Large-Scale Neurovascular

Reconstruction,” arXiv Prepr.

arXiv2002.01568, 2020.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” in

Proceedings of the IEEE conference on

computer vision and pattern recognition,

2016, pp. 770–778.

[26] S. Sun, J. Pang, J. Shi, S. Yi, and W. Ouyang,

“Fishnet: A versatile backbone for image,

region, and pixel level prediction,” in

Advances in neural information processing

systems, 2018, pp. 754–764.

[27] J. T. Springenberg, A. Dosovitskiy, T. Brox,

and M. Riedmiller, “Striving for simplicity:

The all convolutional net,” arXiv Prepr.

arXiv1412.6806, 2014.

[28] D. P. Kingma and J. Ba, “Adam: A method

for stochastic optimization,” arXiv Prepr.

arXiv1412.6980, 2014.

[29] M. Abadi et al., “Tensorflow: A system for

large-scale machine learning,” in 12th

${$USENIX$}$ Symposium on Operating

Systems Design and Implementation

(${$OSDI$}$ 16), 2016, pp. 265–283.

