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Abstract

3D reconstruction from sparse point clouds is a chal-

lenging problem. Existing methods interpolate from point

clouds to produce meshes, but the performance decreases

with the number of points. To address this, we propose an

algorithm that looks at the global structure while recon-

structing the surface one vertex at a time. Experimental

results on ShapeNet and ModelNet10 show 81.5% Cham-

fer Distance and 14% Point Normal Similarity average im-

provement compared to Ball Pivoting Algorithm (BPA) and

Poisson Surface Reconstruction (PSR). Qualitatively, the

generated meshes have a closer similarity to the ground

truth. Results on ShapeNet Patched illustrate significant im-

provement in mesh quality compared to BPA and PSR. The

code is available at https://github.com/rangeldaroya/rein.

1. Introduction

Representations of 3D objects have seen a lot of appli-

cations in several computer vision tasks for allowing high-

fidelity modelling in construction planning, risk assessment

of infrastructures, and restoration projects [2, 4]. Works

have developed systems that can represent objects in 3D

[8, 40, 34, 26, 14] either in the form of point clouds [14, 1],

occupancy grids [8, 33], or meshes [34, 26, 15, 30, 36].

Point clouds are easily extracted from depth images or sen-

sors by projecting each pixel in 3D space according to the

corresponding depth values. However, point clouds can be

sparse and lack information to accurately model objects.

Sparsity of point clouds can be observed in some low cost

Light Detection And Ranging (LiDAR) sensors [35, 39, 12],

and in some Structure from Motion (SfM) [31, 33] outputs.

When few images are available to reconstruct a 3D object,

sparse point clouds result from SfM.

Despite existing works that try to overcome challenges in

point cloud and occupancy grid representations [8, 40, 33],

meshes can prove to be more efficient [34, 26]. Meshes are

represented in a continuous space by the vertex locations

and the interconnections or edges to create the 3D object.

Figure 1. Comparison of surface reconstruction outputs from dif-

ferent algorithms.

Additional information on the object structure is obtained

from the surfaces formed by the edges between the vertices

or points. When given only the eight vertices of a cube, it

is hard to see the underlying object. The cube is better de-

picted once the edges and the faces are in place to form a

solid object. Even with sparse points, an object can be fully

represented by forming the necessary faces. For this rea-

son we focus on reconstructing surfaces from sparse point

clouds to form meshes.

Although the current methods Ball Pivoting Algorithm

(BPA)[3] and Poisson Surface Reconstruction (PSR)[17,

16] demonstrate ability to create meshes from point clouds,

they struggle reconstructing sparse inputs. BPA is limited

by the proximity of points as basis for forming surfaces.

When the given points are sparse, BPA is unable to connect

distant points. PSR determines the surface by casting the

problem as a spatial Poisson problem. The formed surfaces

are closed and continuous, but the algorithm fails to capture

sharp edges and high curvatures.

The irregularity of meshes can make them challenging

to form and process. Unlike images or occupancy grids

that have regular grid-like structures, meshes have vertices

embedded in continuous space and have varying face sizes.

Most works simplify the mesh generation process by de-

forming an existing mesh with predefined interconnections

such as a sphere or ellipsoid [15, 34, 30]. However, mesh

flexibility is limited and the representation efficiency is

reduced when the surface regularity is enforced. While
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Scan2Mesh [10] developed a way to form meshes without

restricting the interconnections, their work is limited to a

predefined number of points and relies on fully connected

graphs to predict edges. Polygen [23] presented a different

method of generating meshes, but their mesh generation is

conditioned on other object representations such as images

and voxels.

Rather than fixing interconnections or relying on static

fully connected graphs, we use a dynamic processing

scheme. We propose to predict edges in a sequential man-

ner. Inspired by Graph RNN [29], we present REIN: Recur-

rent Edge Inference Network. REIN builds a mesh from a

point cloud using a bottom-up approach. The point cloud is

organized into a queue of points. Meshes are produced by

introducing one point at a time from the queue. Features ex-

tracted by GraphRNN aids REIN in modelling the distribu-

tion of mesh interconnections. The sequential nature takes

advantage of the accumulated learned information at every

time step, and provides feedback for future predictions. In-

clusion of the point cloud latent vector gives information

about the global structure throughout the process.

To summarize, our main contribution is a flexible mesh

generation method that sequentially predicts edges with an

encoded point cloud representation. We demonstrate that

our proposed network, REIN, achieves significant improve-

ment compared to other surface reconstruction algorithms:

Ball Pivoting Algorithm (BPA) and Poisson Surface Re-

construction (PSR). Experimental results show that REIN

achieved 77% average Chamfer Distance reduction com-

pared to BPA, and 86% average Chamfer Distance reduc-

tion compared to PSR on the ShapeNet and ModelNet10

datasets. Point normal similarity also improved by 14%

compared to BPA and PSR. Figure 1 illustrates some quali-

tative results.

2. Related Work

2.1. Surface Reconstruction

Point cloud processing has been done to apply up-

sampling, segmentation, and classification [21, 27, 28, 1].

These gained traction due to the abundance and availability

of point cloud data. The unstructured form of point clouds

make processing nontrivial. PointNet [27] addressed the

permutation-invariance problem by using a symmetric func-

tion that transforms a set of input points to a vector that is

invariant to order. They learn to extract global and local

properties of each point and its neighbors, enabling them

to also predict point normals. This ability to extract point

cloud features is used by our work to encode the informa-

tion from an input point cloud.

Most surface reconstruction algorithms initially estimate

the direction of the normal vector per point by taking into

account the k nearest neighbors. The estimated normal vec-

tors become the basis for interpolating the points. Two com-

monly used methods for surface reconstruction are Poisson

Surface Reconstruction (PSR) [18, 17] and Ball Pivoting

Algorithm (BPA) [3]. BPA and PSR are used to faithfully

reconstruct 3D objects from dense point clouds. BPA forms

meshes by using a size-varying ball to cluster vertices into

triangular faces. PSR extracts an isosurface based on ori-

ented point samples and the Poisson equation. Both PSR

and BPA have trouble reconstructing surfaces from sparse

point clouds.

Figure 1 illustrates some problems encountered when

few points are given to BPA and PSR. PSR forms surfaces

in areas where there should be gaps in the mesh, such as

the space between the legs of a table. This removes details

in the object from sharp contours. The lack of neighbor in-

formation to accurately estimate the normal vectors of each

point causes erroneous interpolation of the planes and sur-

faces. BPA produces meshes with gaps or holes when given

limited points to reconstruct. The ball-based clustering of

points can become ineffective when the vertices are too far

apart.

2.2. Learning-Based Mesh Generation

The irregular structure of meshes make them challenging

to process. Common CNN architectures are difficult to ap-

ply to meshes. Other tools such as Graph Neural Networks

(GNNs) [29] and Graph Convolutional Networks (GCNs)

[20] are used. Pixel2Mesh [34] uses a GCN-based network

to generate a 3D mesh given an RGB image. Their net-

work extracts features from the image to deform an initial

ellipsoid mesh. Computations for the mesh deformation are

based on the vertices and the adjacency matrices. The num-

ber of vertices are preset, focusing on deforming existing

primitives or surfaces similar to AtlastNet [15] and other

works [30, 36]. Polygen [23] tries to improve on AtlasNet

by generating faces instead of using existing surfaces, but

their work relies on other object representations such as im-

ages or occupancy grids. In contrast, our proposed model,

REIN, generates edges from a set of vertices without pre-

existing assumptions on the mesh. Edge inference also en-

ables the number of mesh vertices to be flexible.

A similar work is Scan2Mesh [10] which focuses on pre-

dicting full mesh structures from incomplete range scans.

Aiming to predict both the vertex locations and the inter-

connections, they use fully connected graphs. GNN is used

to simultaneously classify relevant edges. The initial pre-

diction of edges is refined with a dual graph to predict the

faces. Although their work can predict full meshes, their

process can quickly consume memory. The memory us-

age increases with increasing number of vertices up to 400

points. Their network also produces meshes with a prede-

termined number of vertices. Our work aims to incremen-

tally predict edges without having to rely on fully connected



graphs. Incremental processing allows our output to have

a more flexible and dynamic structure. Meshes during our

training and prediction can have varying number of vertices.

2.3. Generative RNN

GraphRNN [38] utilizes RNN to generate graph struc-

tures by reformulating the problem as sequential predictions

[6, 24]. Given a set of nodes, edges are generated one at a

time, resulting in graphs with the same distribution as the

input. As a node is introduced, the network predicts con-

nections with existing nodes in the graph. The network’s

recurrent nature allows for flexible interconnection genera-

tion. Similar works [24, 32] take advantage of the sequen-

tial nature of data to determine the current state, aiding the

network for future predictions.

Our work is most similar to Graph RNN, utilizing a re-

current network to generate edges. Instead of generating

graphs, however, we generate meshes. In addition to in-

ferring edges from points, our network also defines faces.

Given a point cloud, we predict interconnections between

points by introducing vertices one at a time. The latent vec-

tor of the input point cloud is also incorporated in our net-

work using an autoencoder. The latent vector aids the RNN

by introducing more information about the whole structure

at every time step.

3. Methodology

We define a mesh M as a set of vertices, edges, and

faces: M = {V, E ,F}. We propose to create meshes from

a set of points by utilizing their sequential dependence. The

latent vector representation of a point cloud is obtained from

a PointNet-based [27] autoencoder. Most of the information

about the input points should be accessible from the latent

vector, from which we can infer the general structure of the

target object.

Since we are aiming for a bottom-up approach, a small

section of the input point cloud is examined at a time, in-

stead of all at once. A per section examination is done by

introducing one point at a time from the input. Edges are

predicted as connections between a newly introduced vertex

and the vertices that have already been introduced in previ-

ous time steps. Predictions are based on the current status of

the partially predicted mesh and the latent vector obtained

from the point cloud. Sequential dependence is used to pre-

dict the interconnections and provides continuous feedback

for future predictions.

Sequential Prediction of Edges. We structure the prob-

lem as follows: given a point cloud with vertices V =
{v1, v2, ..., vn}, we need to predict a set of edges E =
{~e1, ~e2, ...~en} which defines n edge subsets (denoted by ~ei)

that gives the interconnection per vertex. That is, an edge

prediction for vertex v5 is defined as ~e5 = {e51, e53, e54}
which implies that vertex v5 is connected to vertices v1, v3,

and v4. The goal is to predict n edge subsets sequentially

to define the interconnections for all vertices. Once all edge

subsets are defined, faces can be obtained and the mesh is

formed. Equation 1 formalizes the sequential edge predic-

tion. Equation 1 states that future predictions on a vertex’s

interconnections are dependent on predictions of previously

introduced vertices:

P (E) =

n∏

i=2

P (~ei|v1, ..., vi, ~e1, ..., ~ei−1) (1)

All predicted edges are towards the lower indexed ver-

tices or points. Our formulation assumes that edges in a

mesh are undirected. An existing edge e12 connecting ver-

tex v1 to v2 implies the existence of edge e21 connecting

vertex v2 to v1. Defining edges as undirected simplifies the

setup to predict a single edge connecting two vertices, in-

stead of predicting two separate connections for the same

two vertices.

Aside from being conditioned on previous edge predic-

tions, we include the point cloud latent vector to give con-

text of the structure. The latent vector allows the relation-

ship between points to be incorporated. Equation 2 shows

that the next state of the mesh is determined from the pre-

vious state, the previously predicted edges, and the latent

vector of the point cloud (z):

hi = ftrans(hi−1, ~ei−1, z) (2)

The equation for next state supports the previously dis-

cussed sequential dependence of the predictions. The state

prediction determines the distribution from which the next

edges will be based. A mapping function is used to deter-

mine the parameter for the distribution. Equation 3 formal-

izes this:

θi = fout(hi) (3)

The distribution of the next edge predictions is deter-

mined by the parameter θi. Equation 4 shows that the next

edge prediction is sampled from the distribution Pθi :

~ei ∼ Pθi (4)

The process described above can be repeated for all

points to determine the edges of each vertex. The network

formulation enables flexible number of input points. For

each iteration the edge vector length increases by one. To

implement this model, an apt tool to use is a Recurrent

Neural Network (RNN). An RNN is capable of executing

sequential predictions conditioned on previous states. The

RNN’s ability of providing future predictions based on past

states make it a good candidate and was used in our work to

generate edges.



Figure 2. Network architecture used to predict the interconnections and meshes from a set of mesh vertices. Layers used in the architecture

are detailed in the Appendix.

3.1. Network Architecture

Our work uses concepts borrowed from graph genera-

tion to build a set of vertices and edges. A graph’s nodes

and edges are analogous to a mesh’s vertices and edges.

Aside from vertices and edges, meshes are defined by a set

of faces. There are thus two parts to this work: (1) edge pre-

diction from the given vertices and (2) face generation from

the given edges. Figure 2 shows the network overview.

The latent vector representation of the point cloud is used

to incorporate information about the global structure of the

object. To make sure the latent vector contains enough in-

formation about the input point cloud, Chamfer Distance

(CD) is used on the input and output of the autoencoder.

Equation 5 defines CD:

Lcd =
∑

a

min
b

||a− b||2
2
+
∑

b

min
a

||a− b||2
2

(5)

Points a of point cloud P and points b of point cloud P ′

are compared in the equation. Edges are predicted using a

two stage RNN. To predict edges, vertices are introduced

one at a time. Binary cross entropy loss (Lbce) is used to

compare the predicted edges and the ground truth. The faces

are deduced from the edge prediction by defining a face on

any three vertices connected by edges.

3.1.1 Edge Prediction

Two sets of RNNs are used to predict the interconnections.

We denote these two sets of RNNs as the State RNN and

Edge RNN. The State RNN is used to encode the state of

the current graph given the nodes and interconnections (see

Equation 2). The Edge RNN is used to predict the sequence

of connections given the current state encoded by the State

RNN (see Equations 3 and 4). The State RNN and Edge

RNN work together to predict the final structure of the mesh.

Figure 2 illustrates the pipeline.

Breadth-First search (BFS) is used to determine the se-

quence of node introduction to reduce the complexity of the

network. The possible interconnections a node can form

is reduced with BFS. Without BFS, at each iteration dur-

ing training, REIN would have to predict the connections

from a vertex to all other n − 1 vertices in the input point

cloud with n points. Since a queue for the node introduction

order is preset, REIN would only need to predict the inter-

connection between the current vertex and the previously

introduced vertices. The number of possible edge predic-

tions per time step is significantly reduced. The starting

node for BFS is determined randomly, and the sequence of

node introduction is determined from there.

The State RNN continuously encodes the graph given the

sequence of edge predictions and the latent representation

of the point cloud input. The latent vector gives the network

information about the global structure. The local structure

can be inferred from the node coordinates. As nodes are

added to the graph, the State RNN updates the encoded in-

formation and initializes the Edge RNN. The output of the

State RNN serves as the hidden state of the Edge RNN.

The final prediction is in the form of an adjacency ma-



trix. In the matrix, a value of 1 indicates the presence of a

connection, and 0 otherwise. The network works under the

assumption that the existence of edge e12 implies the exis-

tence of edge e21. Since edges are undirected, the network

only needs to predict edges eij where i > j.

Gated Recurrent Units (GRUs) [7] were used to both en-

code the mesh structure and to predict the sequence of edges

in State RNN and Edge RNN. Supervised training was done

with binary cross entropy (Lbce) as the loss function be-

tween the predicted adjacency matrix and the ground truth.

Figure 2 illustrates this.

A possible limitation on the proposed network archi-

tecture is the required memory for processing large point

clouds. Having sequential dependence requires the network

to keep track of all previously introduced points. As the

number of input points increase, the required memory will

also increase. Due to resource limitations, an upper bound

on the number of vertices that can be processed at a time is

set. However, the limitation in processing is overcome by

reconstructing by parts. Instead of processing a large num-

ber of points at a time, subsets of the input point cloud are

introduced one at a time. Section 5.3 discusses reconstruc-

tion by parts in more detail.

3.1.2 Face Generation

Facetizing is done by going through all the existing ver-

tices and edges predicted by the network. It is assumed that

all faces are triangular, consistent with the structure of the

ground truth meshes used for training. Aiming for a trian-

gular mesh, a face is formed whenever three vertices are

connected by three predicted edges. The orientation of the

surface normals of the faces are dependent on the order of

the vertices. The order is determined by sorting the indices

of the vertices.

4. Data Generation

All training data were obtained from ShapeNet [5]

and ModelNet10 [37]. Eight object classes were taken

from ShapeNet based on previous mesh generation works

[10, 11], following the same train/test split. All ten ob-

ject classes from ModelNet10 were used with the included

train/test split.

Meshes from the datasets were preprocessed with the V-

HACD library [22] to obtain the convex hulls of the ob-

jects that will serve as the ground truth. This is similar to

how ground truth meshes were generated from Scan2Mesh

[10]. Convex hulls remove ambiguities for internal planes

or structures, and result to watertight meshes. A watertight

mesh is also required to use BFS for node ordering.

V-HACD library was configured such that the number of

vertices is at most 500 vertices by specifying the resolution.

Given the convex hulls of the objects, three dataset configu-

rations were implemented to benchmark the performance of

the network under different conditions: (1) Original Convex

Hull Vertices (Hull), (2) Butterfly Subdivided Meshes (But-

terfly) [13], and (3) Midpoint Subdivided Meshes (Mid-

point) [25].

The Hull setting involved training and evaluating the net-

work on the original convex hull vertices of the meshes. The

Butterfly and Midpoint configurations were applied to add

more points to the set of meshes belonging to Hull. Adding

more points aims to approach a more uniform point distribu-

tion compared to Hull. The Meshlab [9] implementation of

the normal estimation for PSR requires at least 300 vertices,

making the Butterfly and Midpoint preprocessing configu-

rations necessary for more test samples. Subdivisions were

applied on the meshes until at least 300 vertices are reached.

Meshlab parameters used for subdivision are included in the

Appendix. Figure 3 illustrates the data processing of the

convex hulls.

Figure 3. Illustration of preprocessing methods applied on the

meshes to generate different datasets.

5. Experiments

The network was trained using GeForce GTX 1080 Ti.

The training set was filtered to include meshes with at most

500 vertices. There were at least 16,000 training meshes

from ShapeNet, and at least 5,000 training meshes from

ModelNet10. Data augmentation was applied to Model-

Net10 to compensate for the smaller mesh samples. Ran-

dom jitter, rotation, and translation were applied to the

meshes. Adam optimizer [19] was used with a learning rate

of 10−5 for the autoencoder, and a learning rate of 0.003
for the State RNN and Edge RNN. A batch size of 1 was

used for all the training setups. The facetize process is done

separately and is not part of the training.

5.1. Evaluation of REIN

The test set was restricted to meshes with 300 to 500

vertices. The lower bound in the number of vertices was

limited by the implementation of Meshlab’s normal esti-

mation for PSR. The parameters used can be found in the

Appendix. Scan2Mesh [10] was not considered due to the

current unavailability of their processed dataset.

The network was trained and tested exclusively for each

of the three ShapeNet datasets (Hull, Butterfly, Midpoint).



The models used for each of the ModelNet10 datasets were

pretrained on the ShapeNet dataset due to the lack of sample

meshes in ModelNet10. The network hyperparameters are

fixed for all dataset variants. The evaluation time for a mesh

is approximately 160 ms – 100 ms to predict edges and 60
ms to generate faces. For comparison, BPA, on average, can

generate a mesh in 190 ms, and PSR in 220 ms.

Chamfer Distance. The Chamfer Distances between

point clouds were used as the basis in evaluating the autoen-

coder network’s outputs. The autoencoder was constructed

such that it adequately reconstructs the input. Results of

the final mesh were also compared using CD which mea-

sures the average point to point distance between meshes.

The CD is measured between meshes by uniformly sam-

pling 2,048 points from the predicted mesh and 2,048 points

from the ground truth mesh similar to [10]. This is done to

compare the surfaces of the generated meshes.

Given two meshes MA and MB , the CD is computed

as the distance from MA to MB and MB to MA. The

distance from MA to MB is obtained using the distance of

each point a in MA to its corresponding closest point b in

MB , and taking the sum. The average of the two way CD

between the meshes serves as the loss of our autoencoder.

CD is also the metric we use for comparing the ground truth

and the predicted mesh. CD is formalized in Equation 5.

Point Normal Similarity. Vertex normals serve as the

basis in predicting the faces. The normals are implicity ob-

tained with the prediction of the interconnections and faces.

To measure the accuracy of the surface normals in the pre-

dicted mesh, point normals are compared between algo-

rithms. Cosine similarity is used between the predicted and

ground truth point normals. Similar to CD, 2,048 point nor-

mals were sampled from the mesh surfaces for comparison.

Comparison of Algorithms. Table 1 shows the com-

parison between our network and commonly used surface

reconstruction methods. Both CD and point normal sim-

ilarity (PNS) were used as the basis in evaluating REIN.

The results illustrate that REIN can predict mesh structures

more accurately from the same input points. The ShapeNet

results show REIN outperforming BPA and PSR in terms of

CD and PNS. The difference is more significant in the Hull

dataset. The number of points in meshes belonging to the

Hull dataset are lower, resulting in poor BPA and PSR per-

formance. The ModelNet10 results show REIN mostly out-

performing BPA and PSR on ModelNet10 dataset. PSR per-

formed slightly better for PNS in the Hull dataset of Model-

Net10, but the difference in PNS is outweighed by the large

difference in CD. REIN is also shown to have consistent

performance across the different datasets (CD and PNS are

within the same range).

BPA and PSR are expected to have better performance in

surface reconstruction with increasing number of vertices.

Table 1 shows general improvement for BPA and PSR on

Figure 4. Average CD performance comparison of BPA, PSR, and

REIN with increasing number of mesh vertices. The evaluation

was done on ModelNet10.

Butterfly and Midpoint compared to Hull. Test meshes from

ModelNet10 were grouped based on the number of vertices.

The average CD of the three algorithms were computed for

each group. Figure 4 shows the average CD computed with

the specified number of vertices. BPA and PSR significantly

improve with increasing number of vertices. Similarly, the

performance of REIN improves with increasing vertices.

5.2. Qualitative Results

Figure 5 shows sample mesh outputs from datasets Mod-

elNet10 Midpoint and ShapeNet Butterfly. The figure

shows that BPA is unable to form a complete surface. Most

BPA predictions barely capture the object, and have large

holes in the structures. In curved areas where more points

are present, PSR can closely reconstruct the surface. PSR

predictions fail to capture sharp object features and produce

closed and curved objects. This illustrates the challenges

BPA and PSR encounter when input point clouds are not

dense. Both algorithms are unable to properly interpolate

between points, resulting in lacking mesh predictions.

Predictions from REIN can capture sharp edges and sur-

face details better than BPA and PSR for objects in Model-

Net10 and ShapeNet. REIN’s method of sequential edge

prediction gives more freedom in the representation, al-

lowing for both sharp and curved contours to be present.

Our network can accept flexible number of points as input,

and can reconstruct meshes with varying point distributions.

Continuous feedback from previous predictions and incor-

porating the latent vector of the global structure improves

the generation process. The distribution of the mesh inter-

connections are better captured by REIN.

From our experiments, Meshlab’s normal estimation is

unable to process surfaces with less than 300 points. REIN

can work even with smaller number of vertices. Figure 5

shows some results for meshes with 8 to 300 vertices.

5.3. Additional Experiments

Aside from single hull datasets, ShapeNet meshes with

multiple hulls were also examined. Multiple hulls are used



Table 1. Results of REIN compared to BPA and PSR on the ShapeNet and ModelNet10 datasets. BPA and PSR meshes were generated

with Meshlab computed normals.

SHAPENET

CHAMFER DISTANCE (↓) POINT NORMAL SIMILARITY (↑)

ALGORITHM HULL BUTTERFLY MIDPOINT HULL BUTTERFLY MIDPOINT

BPA 0.0052 0.0075 0.0177 0.6224 0.8143 0.6995

PSR 0.0871 0.0227 0.0200 0.5795 0.7762 0.7367

OURS (REIN) 0.0003 0.0033 0.0028 0.8317 0.8181 0.8313

MODELNET10

CHAMFER DISTANCE (↓) POINT NORMAL SIMILARITY (↑)

ALGORITHM HULL BUTTERFLY MIDPOINT HULL BUTTERFLY MIDPOINT

BPA 0.0088 0.0106 0.0573 0.7210 0.8062 0.6032

PSR 0.0292 0.0224 0.0292 0.8273 0.7938 0.7583

OURS (REIN) 0.0050 0.0056 0.0073 0.8259 0.8285 0.8288

Figure 5. Sample results of our network on meshes from different datasets.

to preserve the shape of the original objects. Two vari-

ations were considered for multiple hulls: (1) Wrapped

Meshes (Wrapped), and (2) Patched Meshes (Patched). The

Wrapped dataset was generated by wrapping the closest sur-

face around the mesh. Blender remeshing was used to create

a single continuous surface around the meshes. REIN was

retrained on the Wrapped dataset and evaluated separately

(the same ShapeNet train/test split was used). No retrain-

ing was done for the Patched dataset. The network trained

on ShapeNet Wrapped was applied on the test split of the

Patched dataset.

Figure 6 shows the results from ShapeNet Wrapped with

one mesh for each ShapeNet class. Figure 7 shows re-

sults from ShapeNet Patched with one mesh from each class

except the car class. The car class was excluded due to

the large number of vertices per cluster. Results in Fig-

ures 6 and 7 show BPA forming surfaces where vertices are

present but is unable to cover the whole object. PSR forms

closed surfaces around the whole object but overestimates

the boundaries. These characteristics limit the application

of BPA and PSR. REIN performs better when applied on

small sections of the mesh at a time. Information about past

interconnections and vertices are better captured when few

vertices are processed at a time.

The evaluation of REIN on the Patched dataset illustrates

mesh generation for point clouds with more than 500 ver-

tices. The original point cloud was clustered into several

parts. Each part of the point cloud was processed by REIN.

Parts are then merged together after obtaining the mesh for

each cluster. This shows potential for the network to extend

to more vertices.

6. Limitations and Future Work

We demonstrated the ability of our network to gener-

ate meshes with 8 to 500 vertices. The upper bound on

the number of vertices is caused by limitations of the GPU

memory. However, this was overcome by reconstructing

by parts. Dense point clouds can be processed with more

efficient edge representation or with more GPU memory.

Memory use can be more efficient by exploring the sparse

matrix representation of the mesh edges instead of using

dense matrices. REIN also experiences challenges generat-

ing faces from edge predictions. REIN is prone to predict-

ing non-manifold surfaces when edge predictions are impre-

cise, since face generation assumes a flat continuous surface

for accurate results. Future work can explore incorporating

a learning-based face prediction network by taking as input

the edge probabilities.



Figure 6. Results of our network on ShapeNet Wrapped compared with BPA, PSR, and ground truth (GT).

Figure 7. Results of our network on ShapeNet Patched compared with BPA, PSR, and ground truth (GT).

7. Conclusion

We presented REIN, an RNN-based network that can

generate meshes with varying number of vertices by se-

quentially predicting the interconnections. We proposed an

architecture that combines extracting a latent vector repre-

sentation of a point cloud, and combined it with a localized

feature predictor using an RNN. REIN was shown to per-

form better when constructing by parts as shown from the

ShapeNet Patched dataset. Our network generates meshes

from point clouds better than BPA and PSR for surface re-

construction based on quantitative and qualitative results.
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Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE transactions on vi-

sualization and computer graphics, 5(4):349–359, 1999. 1,

2

[4] Fabio Bruno, Stefano Bruno, Giovanna De Sensi, Maria-

Laura Luchi, Stefania Mancuso, and Maurizio Muzzupappa.

From 3d reconstruction to virtual reality: A complete

methodology for digital archaeological exhibition. Journal

of Cultural Heritage, 11(1):42–49, 2010. 1

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 5

[6] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho,

David Sontag, and Yan Liu. Recurrent neural networks for

multivariate time series with missing values. Scientific re-

ports, 8(1):6085, 2018. 3

[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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Solà, Francesc Moreno-Noguer, Alberto Sanfeliu, and Juan

Andrade-Cetto. Low resolution lidar-based multi-object

tracking for driving applications. In Iberian Robotics con-

ference, pages 287–298. Springer, 2017. 1

[13] Nira Dyn, David Levine, and John A Gregory. A butter-

fly subdivision scheme for surface interpolation with tension

control. ACM transactions on Graphics (TOG), 9(2):160–

169, 1990. 5

[14] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In CVPR, volume 2, page 6, 2017. 1

[15] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
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