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Abstract

Pneumonia is the leading cause of death among young

children and one of the top mortality causes worldwide.

The pneumonia detection is usually performed through ex-

amine of chest X-Ray radiograph by highly-trained special-

ists. This process is tedious and often leads to a disagree-

ment between radiologists. Computer-aided diagnosis sys-

tems showed the potential for improving diagnostic accu-

racy. In this work, we develop the computational approach

for pneumonia regions detection based on single-shot detec-

tors, squeeze-and-extinction deep convolution neural net-

works, augmentations and multi-task learning. The pro-

posed approach was evaluated in the context of the Ra-

diological Society of North America Pneumonia Detection

Challenge, achieving one of the best results in the challenge.

1. Introduction

Pneumonia accounts for around 16% of all deaths of

children under five years worldwide [4], being the world’s

leading cause of death among young children [1]. In the

United States only, about 1 million adults seek care in a

hospital due to pneumonia every year, and 50, 000 die from

this disease [1]. The pneumonia complicating recent coro-

navirus disease 2019 (COVID-19) is a life-threatening con-

dition claiming thousands of lives in 2020 [10, 12, 6]. Pneu-

monia caused by COVID-19 is of huge global concern, with

confirmed cases in 185 countries across five continents at

the time of writing this paper [6].

The pneumonia detection is commonly performed

through examine of chest X-Ray radiograph (CXR) by

highly-trained specialists. It usually manifests as an area

or areas of increased opacity on CXR [11], the diagnosis

is further confirmed through clinical history, vital signs and

laboratory exams. The diagnosis of pneumonia on CXR is

complicated because of a number of other conditions in the

lungs, such as fluid overload, bleeding, volume loss, lung

cancer, post-radiation or surgical changes. When available,

comparison of CXRs of the patient taken at different time

points and correlation with clinical symptoms and history is

helpful in making the diagnosis. A number of factors such

as positioning of the patient and depth of inspiration can

alter the appearance of the CXR [17], complicating inter-

pretation even further.

There is a known variability between radiologists in the

interpretation of chest radiographs [19]. To improve the ef-

ficiency and accuracy of diagnostic services computer-aided

diagnosis systems for pneumonia detection has been widely

exploited in the last decade [21, 20, 26, 31, 23]. Deep learn-

ing approaches outperformed conventional machine learn-

ing methods in many computer vision and medical imaging

tasks, including detection [23], classification [24] and seg-

mentation [25]. Here, we present the solution of the Radio-

logical Society of North America (RSNA) Pneumonia De-

tection Challenge for pneumonia regions detection hosted

on Kaggle platform [3]. Our approach uses a single-shot de-

tector (SSD), squeeze-and-extinction deep convolution neu-

ral networks (CNNs) [16], augmentations and multi-task

learning. The algorithm automatically locates lung opaci-

ties on chest radiographs and demonstrated one of the best

performance in the challenges. The source code is available

at https://github.com/tatigabru/kaggle-rsna.



2. Dataset

The labelled dataset of the chest X-Ray images and pa-

tients metadata was publicly provided for the challenge by

the US National Institutes of Health Clinical Center [30].

The database comprises frontal-view X-ray images from

26684 unique patients. Each image is labelled with one of

three different classes from the associated radiological re-

ports: ”Normal”, ”No Lung Opacity / Not Normal”, ”Lung

Opacity”.

Usually, the lungs are full of air. When someone has

pneumonia, the air in the lungs is replaced by other material,

i.e. fluids, bacteria, immune system cells, etc. The lung

opacities refers to the areas that preferentially attenuate the

x-ray beam and therefore appear more opaque on CXR than

they should, indicating that the lung tissue in that area is

probably not healthy.

The ”Normal” class contains data of healthy patients

without any pathologies found (including, but not limited

to pneumonia, pneumothorax, atelectasis, etc.). The ”Lung

Opacity” class has images with the presence of fuzzy clouds

of white in the lungs, associated with pneumonia. The re-

gions of lung opacities are labelled with bounding boxes.

Any given patient can have multiple boxes if more than

one area with pneumonia was detected. There are differ-

ent kinds of lung opacities, some are related to pneumonia

and some are not. The class ”No Lung Opacity / Not Nor-

mal” illustrates data for patients with visible on CXR lung

opacity regions, but without diagnosed pneumonia. Fig. 1

shows examples of CXRs for all three classes labeled with

bounding boxes for unhealthy patients.

The dataset is well-balanced with the distribution of

classes as in Table 1.

Class Target Patients

Lung Opacity 1 9555

No Lung Opacity / Not Normal 0 11821

Normal 0 8851

Table 1. Classes distribution in the dataset. Target 1 or 0 indicates

weather pneumonia is diagnosed or not, respectively.

3. Evaluation

The models were evaluated using the mean average

precision (mAP) at different intersection-over-union (IoU)

thresholds [2]. The threshold values range from 0.4 to 0.75

with a step size of 0.05: (0.4, 0.45, 0.5, 0.55, 0.6, 0.65,

0.7, 0.75). A predicted object is considered a ”hit” if its in-

tersection over union with a ground truth object is greater

than 0.4. The average precision (AP ) of a single image is

calculated as the mean of the precision values at each IoU

threshold:

AP =
1

|thresholds|

∑

t

TP (t)

TP (t) + FP (t) + FN(t)
(1)

Lastly, the score returned by the competition metric, mAP ,

is the mean taken over the individual average precisions of

each image in the test dataset.

4. Model

Often, the solutions in machine learning competitions

are based on large and diverse ensembles, test-time aug-

mentation, and pseudo labelling, which is not always pos-

sible and feasible in real-life applications. At test-time, we

often want to minimize a memory footprint and inference

time. Here, we propose a solution based on a single model,

ensembled over several checkpoints and 4 folds. The model

utilises an SSD RetinaNet [29] with SE-ResNext101 en-

coder pre-trained on ImageNet [9].

4.1. Base model

The model is based on RetinaNet [29] implementation

on Pytorch [14] with the following modifications:

1. Images with empty boxes were added to the model

and contributed to the loss calculation/optimisation

(the original Pytorch RetinaNet implementation [14]

ignored images with no boxes).

2. An extra output for small anchors was added to the

CNN to handle smaller boxes.

3. Extra output for global image classification with one

of the classes (’No Lung Opacity / Not Normal’, ’Nor-

mal’, ’Lung Opacity’) was added to the model. This

output was not used directly to classify the images,

however, making the model predict the other related

function improved the result.

4. We added dropout to the global classification output to

reduce overfitting. In addition to extra regularisation,

it helped to achieve the optimal classification and re-

gression results around the same epoch.

4.2. Model training

The training dataset included data for 25684 patients and

the test set had data for 1000 patients. We used a range

of base models pre-trained on ImageNet dataset [9]. The

models without pre-train on the ImageNet performed well

on classification, but worse on regression task. The fol-

lowing hyper-parameters were used for all training exper-

iments (Table 2): As the training dataset was reasonably

balanced (see Table 1), there was no need for extra balanc-

ing techniques. For learning rate scheduler we used avail-

able in Pytorch ReduceLROnPlateau with the patience of 4



(a) Normal (b) No Lung Opacity / Not Normal (c) Lung Opacity

Figure 1. Examples of the chest X-Ray images for (a) ”Normal”, (b) ”No Lung Opacity / Not Normal”, and (c) ”Lung Opacity” cases. The

lung opacities regions are shown on (c) with red bounding boxes.

Parameter Description

Optimizer Adam

Initial learning rate 1e-5

Learning rate scheduler ReduceLROnPlateau

Patience 4

Image size 512 x 512

Table 2. Common models hyper-parameters.

and learning rate decrease factor of 0.2. The losses of whole

image classification, individual boxes classification and an-

chors regression were combined with weights and used as a

total loss.

4.3. Model encoders

A number of different encoder architectures has been

tested: Xception [8], NASNet-A-Mobile [32], ResNet-34, -

50, -101 [13], SE-ResNext-50, -101 [16], and DualPathNet-

92 [7], Inception-ResNet-v2 [28], PNASNet-5-Large [18].

To enable reasonably fast experiments and model itera-

tions, we considered architectures with good trade-offs be-

tweens accuracy and complexity/parameters number and

hence training time [5]. In this regard, VGG nets [27] and

MobileNets [15] do not provide optimal accuracy on Im-

ageNet dataset [9], while SeNet-154 [16] and NasNet-A-

Large [32] have the largest number of parameters and re-

quire the most floating-point operations. Fig. 2 shows val-

idation loss during training for various encoders used in

the RetinaNet SSD. The SE-ResNext architectures demon-

strated optimal performance on this dataset with a good

trade-off between accuracy and complexity [5].

4.4. Multi-task learning

Extra output for global image classification with one of

the classes (’No Lung Opacity / Not Normal’, ’Normal’,

Figure 2. Evolution of the validation loss during training for the

RetinaNet model with various encoders.

’Lung Opacity’) was added to the model. The total loss was

combined of this global classification output with regression

loss and individual boxes classification loss.

For ablation study, we trained the RetinaNet model with

SE-ResNext-101 encoder and fixed augmentations with and

without global classification output. The training dynamics

is shown in Fig. 3. The output of global classification was

not used directly to classify the images, however, making

the model predict the other related function improved the

result compared to training the regression-only output of the

model.

As the classification output overfits faster than the

detected anchors’ positions/size regression, we added a

dropout for the global image classification output. Besides

regularization, it helped to achieve the optimal classifica-

tion and regression results around the same epoch. Various

dropout probabilities have been tested. Fig. 4 shows ex-

amples of training curves for SE-ResNext-101 with differ-



Figure 3. Evolution of the validation loss during training of

RetinaNet with SE-ResNext-101 encoder with (red) and without

(black) multi-task learning.

ent dropouts and pre-train. Without a pre-train, the models

took a much longer time to converge. RetinaNet SSD with

SE-ResNext-101 encoder pre-trained in Imagenet and with

dropouts of 0.5 and 0.75 for the global classification output

showed the best test metrics on this dataset.

Figure 4. Evolution of the validation loss during training for dif-

ferent versions of RetinaNet with SE-ResNext-101 encoders.

5. Images preprocessing and augmentations

The original images were scaled to 512 x 512 px resolu-

tion. The 256 resolution yield degradation of the results,

while the full original resolution (typically, over 2000 x

2000 px) was not practical with heavier base models. Since

the original challenge dataset is not very large the following

images augmentations were used to reduce overfitting:

• mild rotations (up to 6 degrees)

• shift, scale, shear

• horizontal flip

• for some images random level of blur, noise and

gamma changes

• a limited the amount of brightness / gamma augmenta-

tions

An example of a patient X-ray scan with heavy augmenta-

tions is shown in Fig. 5.

5.1. Ablation study

To examine experimentally the effect of image augmen-

tations, we conducted an ablation study with different aug-

mentation sets. In the ablation study, we ran training ses-

sions on the same model with fixed hyper-parameters and

changed only the sets of image augmentations. We used the

following augmentation sets:

1. No augmentations: after resizing and normalisation,

no changes were applied to the images

2. Light augmentations: affine and perspective changes

(scale=0.1, shear=2.5), and rotations (angle=5.0)

3. Heavy augmentations: random horizontal flips, affine

and perspective changes (scale=0.15, shear=4.0), ro-

tations (angle=6.0), occasional Gaussian noise, Gaus-

sian blur, and additive noise

4. Heavy augmentations without rotation: heavy aug-

mentations described above without rotations

5. Heavy augmentations with custom rotation: heavy

augmentations described above with mild rotations of

6 deg, customised as shown in Fig. 6

The dynamics of the training with different sets of aug-

mentations is shown in Fig. 7.

The results for all experiments are presented in Table 3.

Augmentations Best validation mAP

no augmentations 0.246127

light augmentations 0.254429

heavy augmentations 0.250230

heavy augmentations

custom rotation 0.255617

heavy augmentations,

no rotation 0.260971

Table 3. Pneumonia detection mean average precision results

achieved with various augmentations sets on validation.

Without enough image augmentations the model showed

signs of overfitting when the validation loss stopped im-

proving (see Fig. 7). With light and heavy augmentations,

the same model showed better validation loss and mAP



Figure 5. The example of a patient chest X-ray scan with heavy augmentations and rotations.

Figure 6. The diagram illustrating custom rotation of bounding

boxes.

scores. The image rotations had a measurable effect on the

results, as the rotation of the bounding boxes around cor-

ners modifies the original annotated regions significantly.

To reduce the impact of the rotation on bounding box sizes,

instead of rotating the corners we rotated two points at each

edge, at 1/3 and 2/3 edge length from the corner (8 points

in total), and calculated the new bounding box as min/max

of the rotated points, as illustrated in Fig. 6. We tested the

same model with usual rotation, custom rotation and no ro-

tation at all. The custom rotation improved the results, but

the heavy augmentations without any rotation gave the best

metrics on the validation.

Figure 7. Evolution of the validation loss during training for dif-

ferent sets of augmentations.

6. Postprocessing

There was a difference in train and test the labelling pro-

cess of the dataset provided. The train set was labelled by a

single expert, while the test set was labelled by three inde-

pendent radiologists and the intersection of their labels was

used for the ground truth. This would yield to a smaller la-

belled boxes size, especially in the complicated cases. This



process can be simulated using outputs from 4 folds and/or

predictions from multiple checkpoints. The 20 percentile

was used instead of the mean output of anchor sizes, and

then it was reduced even more, proportionally to the differ-

ence between 80 and 20 percentiles for individual models

(with the scale of 1.6 optimised as a hyper-parameter).

The optimal threshold for the non-maximum suppression

(NMS) algorithm was also different for the train and test

sets due to different labelling process. The test set true la-

bels were available after the challenge. The NMS thresholds

had a dramatic impact on the mAP metric values. Fig. 8

shows the validation mAP metrics evolution for different

training epochs and NMS thresholds. The optimal NMS

thresholds on validation set varied significantly from epoch

to epoch with the optimum between 0.45 and 1 depending

on the model.

Figure 8. The validation mAP metric versus epochs and NMS

thresholds.

The other approach is re-scaling the predicted boxes

sizes for the test set to 87.5% of the original sizes to re-

flect the difference between test and train set labelling pro-

cess. The coefficient of 87.5% was chosen to approximately

match the sizes to the previous approach. These differences

between the train and test sets reflect differences in the an-

notation process for these datasets, with a consensus of ex-

pert radiologists used as ground truth in the test sets.

7. Results

The results of detection models can change significantly

between epochs and depend largely on thresholds. There-

fore, it is beneficial to ensemble models from different

checkpoints to achieve a more stable and reliable solution.

The outputs from the same model for 4 cross-validation

folds and several checkpoints were combined before apply-

ing NMS algorithms and optimizing thresholds (see the di-

agram of the ensemble in Fig. 9.

Figure 9. The diagram of the same model ensemble technique.

The final top results of the challenge are shown in Table

4.

Team Name Test set, mAP

Ian Pan and Alexandre Cadrin-Chênevert 0.25475

Dmytro Poplavskiy 0.24781

Phillip Cheng 0.23908

Table 4. The final leader board results in Pneumonia detection

challenge showing mAP metric calculated on the private test set.

The method described in this paper took second place in

the challenge. The model was based on RetineNet SSD with

Se-ResNext101 encoders pre-trained on ImageNet dataset,

heavy augmentations with custom rotation as described in

Section 6, multi-task learning with global classification out-

put (see Section 5) and postprocessing as in Section 7. For

the final ensemble, the outputs from the same model for

4 cross-validation folds and several checkpoints were com-

bined before applying NMS algorithms (as shown in Fig. 9).

The postprocessing with re-scaling predictions was applied

to compensate for the difference between the train and test

sets labelling processes.

8. Discussion

The other winner’s solutions were also based on the

ensemble of RetinaNet models with various inputs and

encoders[22]. Remarkably, all top teams made similar dis-

coveries regarding the differences between the training and

test sets. All three teams found that lowering threshold for

the NMS algorithm for the test predictions compared to the

validation set improved the test set scores.

In addition, systematic size reductions of the predicted

bounding boxes have been also applied by the other win-

ning teams [22]. These difference between the train and

test set reflect differences in the datasets labelling process.



The train set was labelled by a single expert, while the test

set was labelled by three independent radiologists and the

intersection of their labels was used for the ground truth.

9. Conclusions

In this paper, we propose a simple and effective algo-

rithm for the localization of lung opacities regions. The

model was based on single-shot detector RetinaNet with

Se-ResNext101 encoders, pre-trained on ImageNet dataset.

The number of improvements was implemented to increase

the accuracy of the model. In particular, the global clas-

sification output added to the model, heavy augmentations

were applied to the data, the ensemble of 4 folds and sev-

eral checkpoints was unitised to generalise the model. Ab-

lation studies have shown the improvements by the pro-

posed approaches for the model accuracy. This method

purposely does not involve test-time augmentation and pro-

vides a good trade-off between accuracy and resources. The

reported method achieved one of the best results in the chal-

lenge.
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