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Abstract

The comparative losses (typically, triplet loss) are ap-

pealing choices for learning person re-identification (ReID)

features. However, the triplet loss is computationally much

more expensive than the (practically more popular) classi-

fication loss, limiting their wider usage in massive datasets.

Moreover, the abundance of label noise and outliers in

ReID datasets may also put the margin-based loss in jeop-

ardy. This work addresses the above two shortcomings of

triplet loss, extending its effectiveness to large-scale ReID

datasets with potentially noisy labels. We propose a fast-

approximated triplet (FAT) loss, which provably converts

the point-wise triplet loss into its upper bound form, con-

sisting of a point-to-set loss term plus cluster compactness

regularization. It preserves the effectiveness of triplet loss,

while leading to linear complexity to the training set size.

A label distillation strategy is further designed to learn re-

fined soft-labels in place of the potentially noisy labels, from

only an identified subset of confident examples, through

teacher-student networks. We conduct extensive experi-

ments on three most popular ReID benchmarks (Market-

1501, DukeMTMC-reID, and MSMT17), and demonstrate

that FAT loss with distilled labels lead to ReID features

with remarkable accuracy, efficiency, robustness, and direct

transferability to unseen datasets.

1. Introduction

Person re-identification (ReID) has attracted tremendous

attention owing to its vast applications in video surveillance,

public safety, and so on. Given a person image spotted by

one camera, ReID aims to accurately match that probe im-

age against a large amount of gallery images, taken by other

cameras and timestamps. The dramatic visual appearance

variations of the same person, as caused by different poses,

view angles, illuminations, and backgrounds, constitute se-

rious challenges for learning robust identity representations.

Most existing ReID algorithms use a classification loss to

train their feature learning backbones [47, 40, 41, 18, 3, 44].

(a) Triplet Loss

(b) FAT Loss 

Figure 1: Illustrative comparison of standard triplet loss and FAT

loss. The former compares point-to-point distances, while the lat-

ter compares point-to-set distances while regularizing all cluster

sets to be compact. The solid arrows depict the “push and pull” ef-

fect of triplet loss and the point-to-set term of FAT loss. The dash

arrows represents the compactness regularization of FAT loss. See

details in Section 3.

However, ReID is essentially an “open-ended” retrieval

problem rather than closed-set classification, e.g., the train-

ing and testing sets usually have no overlapped identity

classes. The learned feature extractor should be able to gen-

eralize to matching unseen identities. The testing perfor-

mance is evaluated by the precision and recall of the match-

ing instances, rather than classification accuracy. Therefore,

the classification-driven learning could be misaligned with

the end goal. Instead, the comparative losses [30, 7, 24, 48],

which compares the distances between two sample pairs,

are naturally better choices, as empirically validated by a

handful of works [20, 18, 4, 39, 5]. Among many, the triplet

loss [12], which maximizes the margin between the intra-

class distance and the inter-class distance, has been mostly

used in ReID, in order to explicitly embed the relative orders

1



between right and wrong matches (i.e., the correct matches

should always be closer to the query than the wrong ones).

However, an important downside of triplet loss lies in

its computational expensiveness, which prohibits its wide

usage in the large-scale ReID applications. A naive triplet

loss that compares every possible pair of training samples

will incur cubic complexity w.r.t. the training set size [12].

Also, triplet loss relatively quickly learns to correctly map

most trivial triplets, rendering a large fraction of all triplets

uninformative. Applying triplet loss with randomly selected

triplets can accelerate training but quickly stagnates, or be-

comes difficult to converge. Hard sample mining [42, 45]

has recently become the standard practice in using triplet

loss, to select only “informative” (a.k.a. hard) pairs rather

than all pairs to enforce the loss. However, it runs the risk

of causing sample bias [42], and often appears fragile to

outliers. The vanilla triplet loss needs to calculate over

all PK(K � 1)(PK � K) possible triplets, where K de-

notes average number of images per identity and P identi-

ties in total [12]. The time complexity can be reduced to

PK(PK � 1) + PK when hard sample mining is used.

In this paper, we will propose a new fast-approximated

triplet (FAT) loss to trim down the computational cost of

triplet loss without hampering its effectiveness. Viewing all

images belonging to the same identity class as a cluster, the

proposed FAT loss re-defines a triplet to include an anchor,

its corresponding cluster centroid, and the centroid of an-

other cluster. The main idea of FAT loss is to replace point-

to-point distances with point-to-cluster distances, through

an upper bound relaxation of the triplet form. Such a re-

laxation simultaneously requires the query to be closest to

its ground-truth-cluster centroid, and enforces each cluster

to have a compact radius. The FAT loss thus has a linear

complexity w.r.t. the training set size.

Another downside of triplet loss, as well as many other

margin-based losses, lies in their fragility to label noise.

Unfortunately, ReID datasets are notorious to have many

noisy labels and outliers, such as label flipping, mislabel,

and multi-person coexistence, due to the tedious manual

annotation process. The proposed FAT loss can alleviate

the label noise to some extent, by averaging all samples

within the same cluster. To provide further improved ro-

bustness, we consider a distillation network to first generate

soft pseudo labels for each sample, associated with its confi-

dence. Then we use those soft labels in place of the original

labels to feed into the FAT loss, where each individual sam-

pleâs contribution to the model update will be re-weighted

by their label confidence.

In sum, we strive to make triplet loss a more effective,

efficient, and robust choice for ReID, via multi-fold efforts:

• We propose a fast-approximated triplet (FAT) loss to

remarkably improve the efficiency over the standard

triplet loss, with linear complexity to the training set

size. It is derived by relaxing triplet loss to its upper

bound form, and operates without hard sample mining.

• We are the first to demonstrate that explicitly consid-

ering and handling label noise can further boost ReID

performance. A distillation network is presented to as-

sign soft labels for samples in place of the original (po-

tentially noisy) hard labels. Combined with FAT loss,

a more robust re-ID feature can be learned.

• We conduct extensive experiments on three most pop-

ular ReID benchmarks, and demonstrate that FAT loss

with learned soft labels lead to comparable or supe-

rior ReID performance than using triplet loss and other

state-of-the-art baselines, with remarkably higher ef-

ficiency than triplet loss. We also observe improved

robustness and direct transferability to unseen data.

2. Related Work

Triplet Loss and Hard Sample Mining The triplet loss

was first introduced in FaceNet [30] by Google to train face

embeddings for the recognition task, where softmax cross

entropy loss failed to handle a variable number of classes.

The goal of triplet loss is to maximize the inter-class varia-

tion while minimizing the intra-class variation. Triple loss

is formulated as (1) below, where the triplet is defined as an

anchor sample a, a positive sample p from the same class

and a negative sample n from a different class (ya, yp, yn
denote class labels for a, p, n, respectively):

Ltri =
X

a,p,n
yp=ya

yn 6=ya

max{d(a, p) +m� d(a, n), 0} (1)

FaceNet picked a random negative for every pair of anchor

and positive, which was very time-consuming. Later on,

[12] improved the efficiency of triplet loss for the ReID task,

by proposing two triplet selection strategies: batch all and

batch hard. The batch all strategy selects all valid triplets

and averaged the loss. The batch hard strategy selects the

hardest positive and negative samples within the batch when

forming the triplets. The author suggested that batch hard

strategy with soft margin to yield better performance. [42]

found that selecting the hardest triplets often led to bad lo-

cal minima. They argued that the bias in the triplet selection

degraded the performance of learning with triplet loss, and

proposed a new variant of triplet loss that adaptively cor-

rects the distribution shift on the selected triplets.

Besides, there are many other successful practices in

applying triplet loss to ReID task. [6] proposed a multi-

channel convolutional neural network to learn global-local

parts features and improved the triplet loss requiring the

intra-class feature distances to be less than a predefined

threshold. [4] extended the triplet loss to a quadruplet form

and required the intra-class variations to be smaller than any



inter-class variations. [43] generalized the point-to-point

(P2P) triplet loss to the point-to-set (P2S) form by assuming

a positive set (to which the anchor belongs) and a negative

set (including all other clusters) for each anchor. It then

penalizes the difference between the distance from the an-

chor to the positive set centroid and the anchor-to-negative-

centroid distance. The model was also trained in a soft hard-

mining scheme with greater weights to harder samples.

Being related to previous works [12, 43], FAT loss differs

substantially in the following ways:

• FAT loss has linear time complexity w.r.t training

dataset size: O(PK) or O(PK2) (depending on the

choice of negative set), where K denotes the average

image number per identity and P the number of iden-

tities. Previous triplet losses have either cubic (vanilla)

and quadratic (with hard sample mining) time com-

plexity w.r.t training dataset size.

• FAT loss is analytically derived from the upper bound

of standard triplet loss. It consists of a P2S loss term

and intra-class compactness regularization. Up to our

best knowledge, all previous approximations or accel-

erations for triplet loss, e.g., [6, 43], are only empirical.

• We studied different choices of the negative clus-

ter/centroid, and compared their impacts. Note that

FAT loss chooses the negative on “cluster” level, and

does not refer to any individual sample mining.

Learning from Noisy Labels The growing scale of training

datasets embrace the potential of a more powerful model,

but introduces sample outliers and label noise during data

collection and annotation. [35] observed that a face recog-

nition model trained with only a subset 30% manually

cleaned-label samples can achieve comparable performance

with models trained on the full dataset. To overcome the

negative effect of noisy labels, [28] proposed a bootstrap

technique to modify the labels on-the-fly by augmenting the

prediction objective with a notion of consistency. [21] ex-

tended [25] and proposed a re-weighting method that can

be combined with any surrogate loss function for classifica-

tion, to handle class-conditional random label flipping. [32]

introduced an extra noise layer to absorb the label noise

by adapting the network outputs to the noisy label distri-

bution. [10] further augmented the correction architecture

by adding a softmax layer on top to explicitly connect the

correct labels to noisy ones. [26] provided a forward-and-

backward loss correction method given a class-condition la-

bel flipping probability. [34] proposed a generic conditional

random field (CRF) model as a robust loss to be plugged

into any existing network for label space smoothness and

therefore noise resistance. [36] designed a Siamese network

to distinguish clean labels from noisy labels and to simulta-

neously give clean labels more emphasis.

Interestingly, various label noise, such as class-

conditional or sample-conditional label flipping, mislabel-

ing, and multi-person co-existence, are extensively found

in ReID dataset. Yet to our best knowledge, few previous

works have formally studied how to handle them, and how

that may improve ReID performance.

Network Distillation Network distillation was first devel-

oped in [13] to transfer the knowledge in an ensemble of

models to a single model, using a soft target distribution

produced by the former models. [2] used distillation to train

a more efficient and accurate predictor. [22] unified distil-

lation and privileged information into one generalized dis-

tillation framework to learn better representations. [27] fur-

ther extended data distillation to omni-supervised learning

by ensemble of predictions from multiple transformations

of unlabeled data to generate new training annotations using

a single network. [23, 9] applied data distillation to multi-

modal training, while the testing sets might have noisy or

missing modalities. As a relevant work, [19] argued that

noisy labels contains useful ”side information” and shall not

be discarded. The authors proposed a distillation approach

to learn from noisy data guided by a knowledge graph.

Our proposed distillation algorithm to learn from noisy

labels differs from previous ones in the following respects:

• We are free from the assumption of the existence of a

manually-cleaned set. Instead, we train the teacher net-

work with the entire noisy dataset, but only use most

confident samples within a batch to update the param-

eters. We observed that the model updated based on a

subset of confident samples can achieve similar or bet-

ter performance, compared to the model trained with

all noisy-labeled samples.

• We investigate different loss functions for distillation;

the teacher network is trained with cross entropy loss

with the purpose of providing pseudo soft label associ-

ated with a confidence; the student network is trained

with FAT loss using the soft pseudo labels generated

by the teacher network. Hence instead of mimicking

a similar softmax classifier as the teacher network, the

student network has the capability to “innovate” on a

different task with the help of FAT loss, and eventually

outperforms the teacher network.

3. Method

3.1. Fast Approximated Triplet (FAT) Loss

Given an anchor image a with the identity label ya, the

triplet loss attempts to find a positive sample p with the

same identity label yp = ya and a negative sample n with

a different label yn 6= ya, and then maximizes the differ-

ence of distances between the positive pair d(a, p) and the

negative pair d(a, n) by a margin m. We typically use the

euclidean distance (or cosine similarity) between learned

ReID features fE(a), fE(p), fE(n) as distance metrics.

However, computing triplet loss exhaustively over all



Algorithm 1 Derivation of FAT loss as an upper bound for triplet loss (1).

Ltri = max{0, d(a, p) +m� d(a, n)}

 max{0, d(a, ca) + d(ca, p) +m�max{0, d(a, cn)� d(cn, n)}} . refer to both inequalities in (2)

= max{0, d(a, ca) + d(ca, p) +m� d(a, cn) + min{d(cn, a), d(cn, n)}} . move d(a, cn) out of inner max then reverse sign

= max{0, d(a, ca) +m� d(a, cn) + d(ca, p) + min{d(cn, a), d(cn, n)}}

= max{0, d(a, ca) +m� d(a, cn)}+ d(ca, p) + min{d(cn, a), d(cn, n)} . move non-negative sums out of max

 max{0, d(a, ca) +m� d(a, cn)}+ d(cp, p) + d(cn, n) . ca = cp; min{d(cn, a), d(cn, n)}  d(cn, n)

 max{0, d(a, ca) +m� d(a, cn)}
| {z }

anchor-dependent point-to-set loss

+ R(a) +R(n)
| {z }

cluster compactness

.R() defines the radius of the cluster adnd can be pre-computed

possible pairs is too expensive to be practical. We propose

a relaxation of the triplet loss 1 into its upper bound form.

We first have the following two triangle inequalities:

max{0, d(a, ca)� d(ca, p)}  d(a, p)  d(a, ca) + d(ca, p)

max{0, d(a, cn)� d(cn, n)}  d(a, n)  d(a, cn) + d(cn, n)
(2)

where ca, cn are defined as the centroids (average) of the

clusters that a, n belong to, respectively. Their proofs are

self-evident, given that d() is a well-defined distance func-

tion in some metric space. Notice that although we use Eu-

clidean distance for d() by default, our derivations are ap-

plicable to other distances too.

We next expand our derivation as in the outline (1). In-

terestingly, the upper bound consists of two terms: a point-

to-set (P2S) term which depends on the anchor point; plus

a penalty term on the cluster compactness, defined as the

largest cluster “radius” among all clusters, whose value is

decided by the entire dataset and is agnostic to the anchor.

We minimize this upper bound instead, and name it as the

fast approximated triplet (FAT) loss:

LFAT =
X

a,n
n 6=ya

max{0, d(a, ca) +m� d(a, cn)}+R(a) +R(n).

(3)

As the name suggests, the new loss will give rise to similarly

competitive ReID performance compared to the full triplet

loss, but with tremendously better efficiency. We now ana-

lyze FAT loss w.r.t. the triplet loss from two aspects.

As can be obviously seen from its form, FAT loss greatly

accelerates the cubic/quadratic time complexity of comput-

ing triplet loss, to linear complexity, w.r.t. the training set

size. We also examine how tight it approximates the origi-

nal tripelet loss. Observing (1), three relaxations take place

in the second, sixth and seven lines. For the first one, the

equality in (2) could be met when: a, ca, p are co-linear with

a, p on the same side of ca; while a, cn, n are also co-linear

with a, n on different sides of cn. The second relaxation

becomes tight if and only if d(a, cn) � d(n, cn), which

implies that a is sufficiently far away from the cluster of

cn. For the last one, the exact equality can only be taken

in a very special case, when every cluster has the same ra-

dius and every sample in a cluster distributes on a circle. In

sum, when clusters are well-separated and balanced in size,

FAT loss can provide a relatively tighter approximation for

triplet loss. However, it is always reasonable to expect that

minimizing this upper bound would lead to suppressing the

original triplet loss value too.

Normalized FAT Loss As a margin loss, FAT loss, as

well as triplet loss, is sensitive to input scales. Given the

fact that ReID features are also scale-sensitive: neighboring

features in the normalized space can be far away from each

other in the original feature space, the learned feature are

often normalized before feeding into the evaluation metrics.

That could be reflected in a normalized FAT loss:

LFATnorm =max{0, d(
a

||a||
, c0a) +m� d(

a

||a||
, c0n)}

+R0(a) +R0(n),
(4)

where R0 is similarly defined as the radius of the normalized

sample set. In practice, we empirically find that adding a

cross entropy (CE) loss LCE term will help stabilize training

with FAT or Normalized FAT loss notably. That leads to

minimizing a hybrid loss (LCE-FAT can be replaced to LFAT-N;

� is a scalar):

LCE-FAT = LFAT + � ⇤ LCE (5)

Choices of Centroids The choice of cluster centroids is

also found to be critical to the effectiveness of FAT loss.

Four options of cluster centroids are available: i) mean of

cluster features; ii) mean of normalized cluster features; iii)

normalized mean of cluster features; and iv) normalized

mean of normalized cluster features. Mathematically:

Ci1 =
1

Ni

X

yk=i

fE(Xk), Ci2 =
1

Ni

X

yk=i

fE(Xk)

kfE(Xk)k

Ci3 =

P

yk=i fE(Xk)

k
P

yk=i fE(Xk)k
, Ci4 =

P

yk=i
fE(Xk)

kfE(Xk)k

k
P

yk=i
fE(Xk)

kfE(Xk)k
k

(6)
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Figure 2: Example of four different centroid options.

A visual comparison of the four options are in Figure 2.

Since the original FAT loss (3) is calculated based on

un-normalized features, only the first centroid option Ci1

makes sense for it. The remaining three options can all be

utilized for the normalized FAT loss (4). Our experiments

indicate that the normalized mean of normalized cluster fea-

tures Ci4 works best with the normalized FAT loss.

3.2. Distillation for Noisy Label Robustness

Typically, there are three common label noises in ReID

datasets: i) label flip, i.e., an image is assigned to a wrong

identity class; ii) mislabeling, i.e., an image does not belong

to any known identity class; iii) multiple identities co-exist

in one image. Similar to other margin-based losses, triplet

loss is highly sensitive to label noise. Since the proposed

FAT loss has a P2S term where all samples within the same

cluster are averaged, hence alleviating noisy labels to some

extents. We hereby propose a label distillation approach

based on a teacher-student model, to improve FAT loss ro-

bustness to label noise further, using “soft labels” predicted

from another teacher model, trained with a loss that is less

sensitive to label noise, e.g., cross entropy. The pipeline is

plotted in the supplementary, with details explained below.

We first use a self-bootstrapping approach to learn the

teacher model robustly. The teacher net is first trained

with cross entropy loss on classifying all samples (includ-

ing noisy labels) for 5 epochs. It was previously observed

that the network would be more inclined to learning with

high confidence for “easy samples”, within the early stage

of training [16, 15]. Those confident, easy samples are hy-

pothesized to have labels that are semantically consistent

and correct, less confusing and ambiguous, and therefore

more reliable. We identify those most confidently predicted

samples based on the entropy of their currently predicted

softmax vectors. We then resume training for another 5

epochs; but now in each epoch, we will keep using those

identified confident samples, while not using or only par-

tially using the others that are more likely to contain label

noise or outliers. We periodically repeat the above process,

and each time we may gradually enlarge the pool of confi-

dent examples as the training continues. More details will

be presented in Section 4.1.

After the teacher model is trained, its predictions are

treated as soft labels to replace the original labels, for train-

ing the student model with FAT loss. Only the “confident”

labels eventually selected by the teacher net will participate

in averaging to estimate the cluster centroids. If we use the

hybrid FAT loss (5), then soft labels are the prediction tar-

gets for the cross entropy (softmax) loss too.

4. Experiment

4.1. Datasets and Implementation

We evaluate the proposed method on three most popular

large-scale benchmarks: Market-1501 [46], DukeMTMC-

reID [29, 49], and MSMT17 [37].

Market-1501 comprises 32,668 labeled images of 1,501

identities captured by six cameras. Following [46], 12,936

images of 751 identities are used for training, while the rest

are used for testing. Among the testing data, the test probe

set is fiCEd with 3,368 images of 750 identities. The test

gallery set also includes 2,793 additional distractors.

DukeMTMC-reID is a subset of the DukeMTMC

dataset [29] for person ReID. This dataset contains 36,411

images of 1,812 identities, cropped from the videos every

120 frames. These images are captured by eight cameras,

among which, 1,404 identities appear in more than two

cameras and 408 identities (distractors) who appear in only

one camera. The 1,404 identities are randomly divided,

with 702 identities for training and the others for testing.

In the testing set, one query image for each ID in each cam-

era is chosen for the probe set, while all remaining images

including distractors are in the gallery.

MSMT17 is the current largest publicly-available ReID

dataset. It has 126,441 images of 4,101 identities captured

by 15-camera network (12 outdoor, 3 indoor). We follow

the training-testing split of [37].The video is collected with

different weather conditions at three time slots (morning,

noon, afternoon). All annotations, including camera IDs,

weathers and time slots, are available. MSMT17 is signifi-

cantly more challenging than the other two, due to its mas-

sive scale, more complex and dynamic scenes, and severe

label noise (see examples in the supplementary).

Implementation of FAT Loss We implement our FAT

loss in PyTorch deep learning framework. In the training

phase, all images are resized to 144⇥432 and then ran-

domly cropped into 128⇥384 sub-images. Standard hori-

zontal flipping is adopted for data augmentation. In the test

phase, all images are re-sized to 128⇥384 and no data aug-

mentations are applied. All images have the training set



Table 1: Evaluation results on Market1501 and transfer results from Market1501 to DukeMTMC-reId. We use Resnet50 as our default

backbone and trained on Market1501, with only one exception indicated by * using DenseNet161 backbone.

Settings Test on Market1501 Transfer to DukeMTMC-reID

loss negative margin top1 top5 top10 mAP top1 top5 top10 mAP

Histogram Loss [33] NA NA 59.5 80.7 86.9 - - - -

Multi-loss class [18] NA NA 83.9 - - 64.4 - - - -

Point to Set Similarity [51] NA NA 70.7 - - 44.3 - - - -

Triplet loss [12] NA 1 84.9 94.2 - 69.1 - - - -

Support Neighbor Loss [17] NA NA 88.3 - - 73.4 - - - -

CycleGAN [8] NA NA - - - - 38.5 54.6 60.8 19.9

CE-FAT ctrdAll 1 89.1 95.0 96.7 71.6 34.4 51.5 57.6 18.9

CE-FAT ctrdAvg 1 89.2 95.3 97.0 72.4 35.1 51.2 57.6 19.2

CE-FAT ctrdHM 1 87.1 94.7 96.3 69.9 34.3 50.8 56.9 18.0

CE-FAT batchNeg 1 89.4 95.6 97.1 73.1 37.3 52.3 58.4 20.3

CE-P2S ctrdAll 1 87.4 95.0 96.7 68.9 27.6 42.9 50.0 14.1

CE-P2S batchNeg 1 87.2 94.6 96.7 67.0 28.1 42.6 49.2 14.3

CE-P2Snorm batchNeg 0.1 87.5 95.3 96.8 68.1 27.8 41.7 48.7 13.6

CE-FATnorm batchNeg 0.1 88.6 95.1 96.7 69.7 35.0 50.6 57.4 18.9

CE-FAT* (DenseNet161) batchNeg 1 91.4 96.6 97.7 76.4 40.8 57.1 63.2 23.4

Table 2: Evaluation results on DukeMTMC-reID and transfer results from DukeMTMC-reID to Market1501. We use Resnet50 as our

backbone, and trained on DukeMTMC-reID, with only one exception indicated by * using DenseNet161 backbone.

Settings Test on DukeMTMC-reID Transfer to Market1501

loss negative margin top1 top5 top10 mAP top1 top5 top10 mAP

Deep-Person [1] NA NA 80.9 - - 64.8 - - - -

CycleGAN [8] NA NA - - - - 48.1 66.2 72.7 20.7

CE-P2Snorm batchNeg 0.1 76.5 87.3 90.6 57.3 46.5 63.9 71.0 19.9

CE-FATnorm batchNeg 0.1 77.9 87.8 91.4 58.3 49.8 65.8 73.2 21.2

CE-P2S batchNeg 1 78.2 88.5 91.8 59.5 47.0 64.6 71.4 19.7

CE-FAT batchNeg 1 78.8 88.7 91.5 60.8 49.1 67.1 73.9 21.8

CE-FAT* (DenseNet161) batchNeg 1 80.8 89.5 92.0 63.1 54.7 70.8 77.4 25.2

Table 3: Evaluation results on MSMT17, DukeMTMC-reID, and Market1501. We use ResNet50 as our backbone and trained on MSMT17

with different negative sets.

loss negative set Test on MSMT17 Transfer to DukeMTMC-reID Transfer to Market1501

PDC [31] NA 58.0 73.6 79.4 29.7 - - - - - - - -

GLAD [38] NA 61.4 76.8 81.6 34.0 - - - - - - - -

HHL [50] NA - - - - 45.0 59.4 64.4 23.0 56.0 75.8 81.2 26.7

CE-P2Snorm batchNeg 64.8 78.3 83.0 33.8 49.1 64.9 70.6 29.2 51.6 68.9 75.5 23.9

CE-FATnorm batchNeg 66.2 79.4 83.7 33.1 51.2 66.1 71.1 29.5 54.8 70.9 76.5 25.1

CE-P2S batchNeg 65.2 78.5 82.9 33.7 49.9 67.6 74.5 22.9 48.7 63.5 69.3 28.5

CE-FAT ctrdAll 68.8 81.4 85.4 39.1 50.9 65.0 70.2 30.7 51.5 69.4 75.9 24.4

CE-FAT ctrdAvg 67.0 80.2 84.6 37.4 45.0 61.7 67.0 25.4 48.3 65.6 73.0 21.5

CE-FAT ctrdHM 67.7 80.2 84.5 36.2 50.1 64.4 70.2 28.4 48.4 66.0 72.5 21.5

CE-FAT batchNeg 69.4 81.5 85.6 39.2 49.2 64.8 69.6 28.7 50.6 68.0 74.9 23.6

mean subtracted and then normalized by the training set

standard deviation, before feeding into the network.

Following a standard ReID protocol, we use ResNet [11]

or Densenet [14] backbone as the feature extractor fE to-

wards learning a pedestrian representation directly super-

vised by FAT loss Lfat. The cluster centroids are computed

at the beginning of each epoch, using Ci1 for FAT loss and

Ci4 for normalized FAT loss in Equation 6. Besides, we

also compare four different options of choosing the nega-

tive cluster cn for computing FAT loss each time: i) ctrdAll:

identity classes that are different from the one a belong to;

ii) ctrdAvg: consider all other classes, except the one that a



Table 4: Evaluation results of the Teacher Net on MSMT17, DukeMTMC-reID, and Market1501. We use ResNet50 as our backbone and

trained on MSMT17.

Method
Test on MSMT17 Tranfer to DukeMTMC-reID Tranfer to Market1501

top1 top5 top10 mAP top1 top5 top10 mAP top1 top5 top10 mAP

whole set 65.1 78.2 82.8 34.5 48.2 63.8 69.9 29.0 51.1 68.3 74.2 23.5

hard threshold 64.5 77.8 82.2 33.7 46.5 62.8 69.0 27.4 49.9 66.2 73.3 23.0

soft threshold 64.8 78.3 83.0 34.2 48.2 63.5 69.0 28.9 49.6 67.3 74.1 23.1

hard percentage 64.2 77.5 82.1 34.2 49.3 64.4 69.8 29.8 52.0 69.2 76.5 24.8

soft percentage 62.9 76.1 80.9 32.6 50.5 66.0 71.0 30.3 52.4 69.6 76.0 24.6

Table 5: Evaluation results of the Student Net on MSMT17, DukeMTMC-reID, and Market1501. We use ResNet50 as our backbone and

trained on MSMT17.

loss negative set Test on MSMT17 Transfer to DukeMTMC-reID Transfer to Market1501

HHL [50] NA - - - - 45.0 59.4 64.4 23.0 56.0 75.8 81.2 26.7

CE-FAT batchNeg 69.4 81.5 85.6 39.2 49.2 64.8 69.6 28.7 50.6 68.0 74.9 23.6

CE-FAT-distillation batchNeg 66.2 79.2 83.6 36.5 50.9 66.6 72.2 31.3 52.8 69.2 75.9 25.4

belongs to, as one cluster and obtain one negative centroid

by computing the average of all negative centroids, which is

similar to [43] but differs in the way of calculating all nega-

tive samples’ mean; iii) ctrdHM: find a hard negative cluster

(in terms of closest centroid to the one that a belongs to),

from all classes of the whole dataset; iv) batchHM: find a

hard negative sample on “batch level”, e.g., from all classes

that are sampled by the current batch.

Implementation of Label Distillation The heavy label

noise on MSMT17 further motivates us to conduct label dis-

tillation experiments on it. Following the basic routine de-

scribed in Section 3.2, we further study four different modes

of identifying confident samples: i) hard threshold: select

all samples whose softmax entropy values are below a pre-

set threshold t as the trusted training subset, and discard all

un-selected samples; ii) soft threshold: select all samples

whose softmax entropy values are below a pre-set threshold

t/2, and then randomly select 50% of the remaining (uns-

elected) samples to add into the trusted training subset; iii)

hard percentage: always select 50% samples with lowest

softmax entropy values, as the trusted training subset; iv)

hard percentage: always select 25% samples with lowest

softmax entropy values first, and then randomly select an-

other 1/3 from the remaining 75% (unselected) samples to

add into the trusted training subset.

The important difference between “threshold” and “per-

centage” methods lies in whether we keep a constant or

dynamic size of the trusted training subset for the teacher

model. For the first two threshold-based methods, even

sticking to the same t throughout one training, the portion

of samples selected into the trusted set will be dynamic,

as more samples might become better confident as training

continues. Figure 3 visualizes this trend: given t  0.1, the

final training stage will always have considered all training

Figure 3: The number of samples actually used as the trusted

training subset, when training the ResNet50 teacher model with

different soft threshold t values, on the Market1501 dataset.

samples as trusted; while a larger t may lead to more “con-

servative” selection. We choose t = 0.1 as the empirical

default value found in experiments for i) and ii). Also, for

the two “soft” strategies ii) and iv), our hope is to utilize a

larger set of samples while letting the stochastic selection

“smooth out” the impacts from noisy labels.

4.2. Comparison Analysis on FAT loss

We first present a comprehensive ablation study on the

effectiveness of FAT loss in Table 1, using the Market1501

dataset. By default, we use the CE-FAT loss defined in (5),

with � = 1, as it consistently improves over either FAT or

CE loss alone. The margin m is chosen as 1 for FAT loss

and 0.1 for normalized FAT loss, as validated to be effective

in experiments. We study on the four choices of the negative

cluster (only ctrdAvg was previously explored in a similar

form [43]), as well as the FAT loss hyperparameter (mar-



gin m). We also compare CE-FAT with CE-P2S, the latter

defined by removing the cluster compactness term in FAT

loss; as well as the normalized versions for both, denoted as

CE-FATnorm and CE-P2S norm, respectively.

We evaluate different methods in terms of their top-

1/top-5/top-10 accuracy and mean average precision (mAP)

values obtained on the Market1501 testing set. Moreover,

we use the direct transfer performance of the Market1501-

trained feature extraction to the DukeMTMC-reID dataset,

as an additional performance criterion, to avoid overfitting

small ReID datasets. A few popular ReID loss options pro-

posed in previous works [33, 18, 51, 12] are also included

into comparison, so is a CycleGAN [8] baseline for trans-

fer evaluation. Note that CycleGAN is a domain adap-

tion method that demands re-training on the target domain,

while the direct transfer needs no extra re-training.

First, comparing CE-FAT with ctrdAll, ctrdAvg,

ctrdHM, and batchNeg, it is clear that batchNeg outper-

forms the other three. Second, comparing CE-P2S with

CE-FAT in fair settings, we show the necessity of clus-

ter compactness regularization in addition to the P2S loss;

for example, without the compactness term, we will see

1.8% (ctrdAll) and 2.2% (batchNeg) top-1 accuracy drops

on the Market1501 test case, and 7.5% (ctrdAll) and 9.2%

d(batchNeg) top-1 accuracy drops on the transfer case to

DukeMTMC-reID. The performance gaps clearly differen-

tiate FAT loss from previous empirical P2S losses, thanks

to our more rigorous upper-bound derivation. Third, no

performance gain has been observed on Market1501, when

using normalized features for FAT/P2S. Finally, CE-FAT

outperforms all state-of-the-art losses trained with the same

ResNet50, on the Market1501 testing set. Furthermore, af-

ter we replace the backbone into DenseNet161, CE-FAT

achieves not only further boosted Market1501 testing re-

sults, but also impressive direct transfer performance to

DukeMTMC-reID, even surpassing Cycle-GAN domain

adaption [8] that is re-trained with the target domain data.

Tables 2 and 3 report similar experiments using

DukeMTMC-reID ad MSMT17 datasets, respectively. With

most observations aligned with the Market1501 cases, we

find the training behavior on MSMT17 to slightly differ

from the other two (much) smaller datasets. In particu-

lar, while batchNeg remains effective for its own testing

set, ctrdAll becomes the best option when it comes to the

feature transferability evaluation. That might be attributed

to the heavier label noise on MSMT17, that likely bene-

fits from averaging the triplet effects between with current

one and all other clusters. Also, we observe CE-FATnorm

to outperform CE-FAT, when transferring from MSMT17

to the other two datasets. That implies that normalization

may become essential to overcome feature scale variances

on large datasets. Finally, training ResNet50 with CE-FAT

loss and batchNeg has surpassed the state-of-the-art perfor-

mance [37] ever reported on MSMT17.

4.3. Effect of Label Distillation

To overcome the noisy label issue on MSMT17, we next

investigate label distillation to further unleash the power of

FAT loss. Both teacher and student nets adopt the same

ResNet50 backbone for simplicity.

As shown in Table 4, for the training of the teacher net,

the soft threshold/percentage methods appear to outperform

their hard counterparts, as they can learn with a wider vari-

ety of samples (while hard methods may tend to select too

many similar easy samples), meanwhile smoothing out the

negative impacts of potential noisy samples due to stochas-

tic sampling/averaging effects. In comparison, soft thresh-

old seems to produce superior results on the same MSMT17

testing set, whereas soft percentage leads to better feature

transferability. It implies that soft percentage suffers from

less overfitting, because of its curriculum-style learning (as

Figure 3 shows) that progressively takes into account the

entire dataset information. To our surprise, our teacher

net trained with only the trusted subsets by soft thresh-

old/percentage yield competitive or even superior perfor-

mance than the one trained with the whole dataset, in par-

ticular on transfer cases. That proves that the teacher net

learns effectively and without being misled by noisy labels.

We then pick the teacher net trained with soft percent-

age, due to its best transfer performance, to provide soft

pseudo labels for training the student net. The training

of student net is supervised by the CE-FAT loss with the

batchNeg strategy, using the soft pseudo labels in place of

original one-hot labels for both CE and FAT terms. The

new model in Table 5, dubbed CE-FAT-distillation, does

not lead to better test results on MSMT17 than our best re-

sult (CE-FAT with batchNeg) in Section 4.2. However, it

produces state-of-the-art direct transfer performance from

MSMT17 to DukeMTMC-reID. Its transfer performance to

Market1501 largely surpasses that of CE-FAT without dis-

tillation, and shows competitiveness to state-of-the-art HHL

domain adaption [50]. To re-iterate, direct transfer does not

re-train on target domain data as domain adaption has to.

5. Conclusion

This work proposes the fast-approximated triplet (FAT)

loss, which remarkably improve the efficiency over the stan-

dard triplet loss in ReID models. Instead of using point-to-

point distances, the FAT loss uses a point-to-set distances

with cluster compactness regularization, which is derived

rigorously as an upper bound of standard triplet loss, with

linear complexity to the training set size. A distillation net-

work is also designed to assign soft labels for samples in

place of potentially noisy hard labels. Extensive experi-

ments demonstrate the high effectiveness and promise of

the proposed FAT loss along with label distillation.
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