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Abstract

Learning the distribution of multi-object scenes with

Generative Adversarial Networks (GAN) is challenging.

Guiding the learning using semantic intermediate represen-

tations, which are less complex than images, can be a solu-

tion. In this article, we investigate splitting the optimisation

of generative adversarial networks into two parts, by first

generating a semantic segmentation mask from noise and

then translating that segmentation mask into an image. We

performed experiments using images from the CityScapes

dataset and compared our approach to Progressive Grow-

ing of GANs (PGGAN), which uses multiscale growing of

networks to guide the learning. Using the lens of a seg-

mentation algorithm to examine the structure of generated

images, we find that our method achieves higher struc-

tural consistency in latent space interpolations and yields

generations with better differentiation between distinct ob-

jects, while achieving the same image quality as PGGAN

as judged by a user study and a standard GAN evaluation

metric.

1. Introduction

Recently, Generative Adversarial Networks (GANs) [9]

have made it possible to synthesise sharp, realistic images

from random noise. Much progress has been made in gener-

ating higher and higher resolution images, by methods such

as Progressive Growing of GANs (PGGAN) [16] and Big-

GAN [3], that developed innovations to stabilise the training

larger and deeper networks.

Despite these advances, challenges remain, in particular

in generating images that do not contain one centered ob-

ject. Often local textures are convincingly modelled while

global structure is incoherent. This can lead to a lack of

clear separation in the appearance of different generated ob-

ject classes. To illustrate this, we show interpolated PG-

GAN generations of street scenes and their DeepLab seg-

mentations [4] in Fig. 1. Large changes in the semantic

labels from one image to the next imply that, in some sense,

this method has learned to generate patches of “scene-like”

texture, without separating image regions into discrete ob-

jects. Transitions between images in the sequence end up

being transitions between texture patches rather than natural

changes in scene composition, unlike a real video sequence

and its corresponding segmentation shown in the same fig-

ure.

We argue that this lack of separation in object textures

can be mitigated by providing an internal representation

of the scene structure, thus making allowing the model to

generate individual objects more easily. In this work, we

decompose the generation process into two stages. First,

a GAN generates a semantic segmentation mask that acts

as the internal representation of the scene structure. The

segmentation mask is then translated into an image using

a conditional generation approach. Both PGGAN and our

proposed method guide the optimisation of networks during

network training, although in our case we use segmentation

masks rather than sequentially growing the networks. Fig. 1

shows that this difference in guiding leads to better object

separation in the generated images.

We implement the proposed approach as a combina-

tion of two existing techniques. To generate segmentation

masks, we train a Wasserstein GAN [1] with a DCGAN [21]

architecture, extended with two upsampling layers. To

texture these segmentation masks, we use pix2pix [14].

We validate the proposed approach using the CityScapes

dataset [6], which provides both images and pixel-level seg-

mentation masks. We compare the proposed approach with

both the basic GAN without guidance during optimisation

and the PGGAN.

The main findings of this paper as follows: Our method

achieves equal image quality in generating multi-object

scenes as PGGAN, as measured by a user study and by
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Progressive Growing of GANs (PGGAN). top: generated images, bottom: DeepLab segmentations

Real video sequence. top: real images, bottom: DeepLab segmentations

Our method. top: generated images, bottom: DeepLab segmentations

road sidewalk building wall fence tunnel pole traffic light traffic sign vegetation

terrain sky person rider car truck bus train motorcycle bicycle
Figure 1. For each of the 3 rows, top: an interpolation of generated images, bottom: semantic segmentations from DeepLab. The PGGAN-

generated images exhibit scene textures corresponding to erratic mixtures of object classes. Our method generates a segmentation map as

an intermediate step, and is able to clearly distinguish and place objects with smooth changes during interpolation.

the Frechèt Inception Distance (FID) metric [11]. Further-

more, we use segmentation networks as a tool to probe the

structure of generated images and show that our proposed

method interpolates in a more semantically meaningful way

than PGGAN, and generates images with more clearly dif-

ferentiated objects.

2. Related work

The main idea of this paper, which is decomposing scene

generation into semantic maps and image to image transla-

tion, has been very nicely explored in concurrent work [2].

Image generation Some works have proposed a hierar-

chical approach to image generation. LapGAN [7] trains

multiple generators and discriminators to operate at differ-

ent levels of the laplacian image pyramid. [13] use a hier-

archy of stacked generators and discriminators. Recently,

impressive results have been shown by growing the size of

the generator and discriminator by [16], and extended to

make use of style conditioning in StyleGAN [17].

Other breakthroughs include BigGAN [3], which does

not explicitly use multiscale training, and instead demon-

strates that larger models trained with larger minibatch sizes

benefit optimisation, and the Self-Attention GAN [26],

which provides a module that can account for long range

pixel dependencies.



Methods that split the generation of images into stages

include the Layered Recursive GAN [25] that splits the gen-

eration of images into background and foreground. [18]

generate images part by part using multiple generators.

Generating segmentation maps with a GAN has been ex-

plored by [8].

Conditional image generation Another relevant line of

work is conditional image generation, in particular works

using segmentation maps. Pix2pix [14] has shown that

image to image translation can give very realistic results

in going from a segmentation mask to a real image. Re-

cent improvements, such as CRN [5] and pix2pixHD [23]

have shown extensions to higher resolutions. [20] have

also shown very convincing translations from segmentation

maps to images using a semi-parametric approach. Im-

provements have also been shown by making use of spatial

normalisation in SPADE [19].

Factoring generation into structure and appearance

prediction [24] presents work in the same vein as ours. It

decomposes the generation into style and structure, where

structure takes the form of surface normals.

Aside from image generation conditioned on other im-

ages (e.g. segmentation maps), another approach is to con-

dition on natural language. [15] generate scene layouts

by conditioning on scene graphs and translate these using

CRN[5]. A similar approach makes use of conditioning on

text directly [12]. In video forecasting, first predicting the

future poses of humans and then generating frames has pro-

posed by [22].

3. Method

The proposed approach is composed of two steps: gener-

ation of segmentation masks and filling them in with more

detailed patterns. The overview of the approach is illus-

trated in Fig. 2.

Generating segmentation masks with GANs We train a

GAN to generate segmentation maps. We use the objective

of the Wasserstein GAN [1], with gradient penalty [10]. We

use a modified version of DCGAN [21]. The original archi-

tecture goes up to 64×64 resolution. To bring our generated

segmentation maps up to 256×256 resolution, we add two

upsampling layers, each of which have 64 feature channels.

Our generator has 5.4 M trainable parameters.

For the discriminator, we use the same approach as de-

scribed in PatchGAN [14]. We keep the DCGAN discrim-

inator, which operates on 64×64 patches of the segmenta-

tion maps, and average over different patches. Our discrim-

inator has 4.4M parameters.

Conditional image synthesis To render the segmentation

map, we train a pix2pix [14] with 11.4M parameters. We

did not train our models jointly. This work demonstrates an

effective combination of existing tools.

Dataset We use the CityScapes dataset [6], because it

contains varied scenes and pixelwise semantic annotations.

The dataset provides 22000 training images annotated with

coarse segmentations, and 3000 annotated with fine seg-

mentations. Examples are shown in Fig. 3.

We take a 1024×1024 crop of the original 1024×2048

images, and downscale it to 256×256. Although this type of

cropping does reduce the amount of variation in the scenes,

we find that this simplified task is still sufficiently chal-

lenging to showcase problems with the generation of multi-

object scenes.

4. Experimental settings

We evaluate several configurations for our model. At

the output of the generator, we experiment with two alter-

natives. The first is to encode segmentation maps using

the RGB colour scheme used to visualise the CityScapes

dataset. Therefore, the output of the generator is simply an

RGB image. The second is to use tensors of shape num

classes×width×height, where the class of every

spatial location is encoded as a one-hot vector. In this case,

the output of the generator is num classes-dimensional

and we use a soft-max as the output non-linearity.

Additionally, we experimented with upsampling in the

generator using either transposed convolutions or nearest-

neighbour upsampling, followed by a convolutional layer.

Finally, we also compare results in training with the

coarse and fine annotations provided by the CityScapes

dataset.

The training settings, e.g. the learning rate, were the

same as in the DCGAN paper. All segmentations are com-

puted using a pretrained DeepLabv3 model provided by [4].

4.1. Other methods

To show that the difficulties in capturing the distribu-

tion of multi-object scenes with a GAN, we train a model

to directly generate scenes from CityScapes. We use the

DCGAN architecture with two upsampling layers and re-

fer to this method as DCGAN∗. We used a learning rate of

0.00002.

We also compare our method to Progressive Growing

of GANs [16] (PGGAN). As mentioned in the introduc-

tion, this method constrains and guides the optimisation

by jointly growing the generator and discriminator during

training. The generator of this model has 23M parameters.

We train the model using the provided settings, until the

model has seen 150000 images.



Figure 2. Overview of image generation using segmentation masks as intermediate representations.

Figure 3. Example segmentation maps from CityScapes, finely and coarsely annotated

Since PGGAN does not have the benefit of supervision

with intermediate segmentation maps, our comparison is

not between two like things. However, the experimental re-

sults may still be informative in showing that intermediate

guidance with semantic segmentations is useful for generat-

ing multi-object scenes with clearly differentiable objects.

5. Results

5.1. Qualitative Evaluation

Example generations from different methods are shown

in Fig. 4. Apart from the DCGAN* image samples, all

generated image samples have similar quality. Segmenta-

tion maps generated by the different variants of our method

are indeed all similar to real segmentation maps. Nonethe-

less, the object shapes are not perfectly realistic, e.g. our

method predicts an uneven sidewalk and strange arrange-

ments of traffic signs in (f). This does not prevent realistic

translations through pix2pix. Another observation is that

our method seems to place fewer pedestrians or cars in the

middle of the road compared to real images. We see lit-

tle difference in the quality of one-hot-encoded and RGB-

encoded segmentation masks.

5.2. User Study

To evaluate the realism of generations, we asked Me-

chanical Turk workers to pick the image “that looks most

like a real photograph of a street scene”. In each compar-

ison, one image was from our method, and one from PG-

GAN. Numbers are averaged over 100 comparisons, done

by 25 workers each. Table 5.1 shows that users rate PG-

GAN and variants of our method equally on realism.

5.3. Fréchet Inception Distance

We report the Fréchet Inception Distance [11]. In this

metric, features for both the real and the generated images

are extracted from the pool 3 layer of an Inception network

trained on ImageNet. The distance is then the Wasserstein-

2 distance between Gaussians fitted to both classes. We re-

port the values in Table 5.1. Both PGGAN and our methods

have lower FID scores than our baseline of directly gener-

ating images with DCGAN. Images rendered from gener-

ated coarse annotations have FID scores similar to those of

PGGAN, whereas the scores for images rendered from our

generated fine annotations are higher. This could be due to

a lack of fine annotations for training.

5.4. Latent interpolations

We assume that short video sequences can be approxi-

mated by linear paths in the latent space of a good gener-

ative model. To check whether a model has this property,

we can map the beginning and end of a video sequence to

their latent representations, and then interpolate to recon-

struct the intermediate frames.

We evaluate our method by segmenting the first and last

video frames, and then finding the latent vectors that ap-

proximately reconstruct these segmentations. We linearly

interpolate between the first and last latent vector to gener-

ate intermediate segmentation maps, and render these with

pix2pix. To recover the latent representations of segmenta-

tion maps generated using our method, we start with a batch

of 64 latent vectors and minimise the cross entropy between

the generated and target segmentation by optimising the la-

tent vector using using Adam with a learning rate of 0.01 for

100 iterations, and pick the best one. We found that com-

puting the softmax of our generator output (after the output

softmax) before computing cross-entropy helped the opti-

misation. For this experiment we use our method trained on

fine annotations with one-hot encoding and upsampling via

transposed convolutions.

The results for a 25-frame sequence are shown in

Fig. 5.3. Segmentation masks of interpolations created by

our method remain quite faithful the structure of the video.

For reference, we adapt this interpolation procedure also

to PGGAN, by interpolating between the latent vectors that

reconstruct the first and last frames. We then segment these



(a) real images (b) DCGAN∗ (c) PGGAN

(d) ours, fine RGB seg. (e) ours, coarse one hot seg. (f) ours, fine one hot seg.

nearest upsampling transposed conv
Figure 4. Sample generations. Top section: image samples and their segmentations using DeepLab. Bottom section: samples generated

by variants of our method. Top row: GAN - generated segmentation masks, middle: filled-in translations of segmentation masks, bottom

re-segmentations using DeepLab. The quality of the generated images is similar across the methods, except for DCGAN*, which is worse.

In the generated fine annotations, many small objects have incorrect shapes for their class, such as sidewalks and pedestrians.

Fréchet Inception % preferring method

Distance over PGGAN

Method annot. seg. repr. upsampling ↓ better ↑ better

PGGAN 63.90

DCGAN∗ 302.36 23.9

Ours coarse onehot tr. conv 56.37 49.3

Ours coarse onehot nearest 58.43 49.4

Ours coarse RGB tr. conv 58.33 51.6

Ours fine onehot tr. conv 76.12 52.7

Ours fine onehot nearest 96.33 49.4

Ours fine RGB tr. conv 83.15 51.4

Table 1. Comparison of our method and PGGAN. Our method produces similar quality images as PGGAN for the coarse generation as

measured by the Fréchet Inception Distance. Users have an equal preference for both methods when asked to choose which image looked

more realistic.

interpolated frames. To recover the latent vectors of im-

ages in PGGAN, we also start with 64 initialisations and

then minimise the following loss, using Adam with a learn-

ing rate of 0.1 for 50 iterations: loss = mean squared er-



original video sequence

DeepLab segmentation of video sequence

Our reconstruction of the video, by interpolating matched segmentation maps

Our interpolated segmentation maps

PGGAN video reconstruction, interpolating between the reconstructions of the first and last frames

DeepLab segmentation of PGGAN interpolation.

Figure 5. A short video should correspond to a linear walk in the latent manifold. We reconstruct the first and last frames of the video by in-

verting the GAN of our method (matching our segmentations to the DeepLab segmentations) and of PGGAN (minimising the MSE between

generated and true images). We show the results of interpolating between the reconstructed endpoints of the video using both methods.

Our layouts are more consistent with the true changes in layout over the video, because of the intermediate object-based representations of

scenes.

ror(image, PGGAN(z)) + 0.01||z||2, where z is the latent

vector.

Because inverting a GAN generator is difficult and im-

precise, we notice that a region of trees is mapped to trees in

the reconstruction of the first frame, but to buildings in the

reconstruction of the last frame. Trees and buildings have

similar image intensities, leading a failure in their distinc-

tion by PGGAN. This leads to an implausible interpolation

in which trees morph into buildings.

Although the generations of our model and PGGAN are

of similar quality, this experiment shows that having a very

crude world model in the form of semantic segmentations

helps our method generate samples similar to true missing

frames.

5.5. Segmenting interpolations

Here we discuss further the segmented interpolations in

Fig. 1, and provide further examples in Fig 5.4. In other

sampled sequences, we observe the same noisy pattern in

the segmentations of interpolations. In particular, the pink

region, which have the label fence, are often predicted,

probably due to the blocky artefacts in the generated im-

ages.

Interpolations generated by our method, where the seg-



Progressive Growing of GANs (PGGAN). top: generated images, bottom: DeepLab segmentations.

Ours. top: generated fine seg. maps, middle: rendered images, bottom: DeepLab segmentations.

Ours. top: generated coarse seg. maps, middle: rendered images, bottom: DeepLab segmentations.
Figure 6. Both PGGAN and our method trained with fine annotations create scene textures with ambiguous object classes. Our method

with coarse annotations is able to clearly distinguish and place objects in a way that changes smoothly during interpolations.

mentation maps are fine, also produce very noisy segmen-

tation maps. There are two reasons why this might hap-

pen. First, the training set of fine annotations contains only

3000 images, compared to 22000 images of coarse annota-

tions. The generator might have overfit to these examples.

Secondly, the fine annotations are much more complex than

the coarse ones, and contain many small objects. Since our

generated fine segmentation maps are not perfect, the many

small noisy objects may get rendered into something un-

recognisable by pix2pix.

When we use our method trained with coarse annota-

tions, however, we see a much smoother and cleaner pattern

of segmentations from DeepLab. The source segmentations

generated by our method, and the re-segmentations of our

rendered images by DeepLab visually seem to match well,

which is not the case with fine annotations.

Most importantly, PGGAN tends to let objects appear

and dissolve without much physical consistency, whereas

our approach will keep them in existence, merely moving

them around. These transitions can be seen much more

clearly in video sequences generated from random walks in

the latent space, which can be viewed in the Supplementary



Material or at https://imgur.com/a/NlP9Lzn.

6. Discussion

We have proposed an alternative method for training

GANs to generate images with multiple objects. Segmen-

tation maps are less complex than than natural images, and

GANs have an easier time learning them than high reso-

lution images directly. Incorporating segmentation maps

into GAN training improves interpolations. Interpolations

produced by our method are aware of scene layouts, and

show a higher structural consistency between frames than

PGGAN. These preliminary results suggest that using inter-

mediate representations allows for the generation of scenes

with more distinct objects as revealed by their DeepLab seg-

mentations, while having equal realism to PGGAN genera-

tions, as measured by both our user study and the FID met-

ric.
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