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Abstract

Traditional Visual Question Answering (VQA) datasets

typically contain questions related to the spatial informa-

tion of objects, object attributes, or general scene ques-

tions. Recently, researchers have recognized the need to

improve the balance of such datasets to reduce the system’s

dependency on memorized linguistic features and statisti-

cal biases, while aiming for enhanced visual understand-

ing. However, it is unclear whether any latent patterns exist

to quantify and explain these failures. As an initial step

towards better quantifying our understanding of the perfor-

mance of VQA models, we use a taxonomy of Knowledge

Gaps (KGs) to tag questions with one or more types of KGs.

Each KG describes the reasoning abilities needed to arrive

at a resolution, and failure to resolve gaps indicates an ab-

sence of the required reasoning ability. After identifying

KGs for each question, we examine the skew in the distribu-

tion of questions for each KG. We then introduce a targeted

question generation model to reduce this skew, which allows

us to generate new types of questions for an image.

1. Introduction

When compared to artificially intelligent (AI) systems,

human cognition demonstrates a reasonably flexible system

when faced with gaps in knowledge while executing a pre-

scribed task. Humans often demonstrate both the ability to

identify gap(s) in their knowledge and the ability to resolve

these different gaps through diverse strategies (e.g., by seek-

ing clarification, conducting research, etc.).

Informally, a knowledge gap (KG) is an instance of

limited or missing information or capabilities, which leads

to an AI agent being inefficient or incapable of completing

a given task. AI agents, when presented a same/similar task
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Figure 1: Skew in the Distribution of Questions per KG

as humans, might not always have the perfect knowledge

to complete it [8]. A framework for KG identification and

resolution can facilitate flexibility for an AI agent during

both training and execution. As a preliminary effort to

understand how to build a system for AI agents to detect,

identify, and resolve the KGs that can occur, we leverage

visual question answering (VQA) tasks. As a first step, we

aim to detect gaps in knowledge and identify the knowledge

gap type in this work. VQA sits at an intersection of three

components of artificial intelligence: language, vision,

and reasoning, thus making it a challenging task. To the

best of our knowledge, we are the first to systematically

manipulate VQA questions to produce knowledge gaps

within AI agents.

Using a refined version of a KG taxonomy [1], we

initially eight different KGs that occur in the GQA dataset

[4]. Figure 1 shows the skew we observe in the distribution

of the number of questions per KG category. To alleviate

this skew and make questions more evenly distributed

across KGs, we apply a neural framework to generate

questions for specific KGs.



2. Related work

Commonsense reasoning for VQA agents: Recent VQA

datasets are a result of the realization that VQA agents can

be highly contingent upon statistical biases and tendencies

of the answer distribution and linguistic features [2, 9].

Hudson and Manning [4] create the GQA dataset to gain

control over the answer distribution and mitigate the heavy

dependence on linguistic features and priors in current VQA

frameworks. The FVQA [7], OK-VQA [6], and CRIC [3]

datasets all contain questions in which the image content

is not sufficient to answer the questions. These questions

typically require external information or commonsense rea-

soning to answer them and result in degraded performance

of state-of-the-art VQA models. To the best of our knowl-

edge, we are the first to tag VQA questions with the reason-

ing skills required to answer them. Our approach provides

a new channel to analyze the performance of VQA agents

using different KG categories.

Question generation: To overcome the skew in the distri-

bution of questions per KG, we generate question templates

and populate them with image annotations to create new

questions. Liu et al. [5] generate question and answer

pairs using a neural network architecture to transduce

knowledge base facts into natural language questions. They

combine template-based question generation techniques

and sequence-to-sequence learning approaches to generate

new questions. We closely follow their approach to create

questions that complement the GQA dataset.

3. Definition of knowledge gaps

There are five major types of KGs in the taxonomy pre-

sented in Figure 2, namely: Language, Spatial, Attribute,

Reasoning, and Philosophical Gaps. Language gaps arise

when unknown phrases or vocabulary words are introduced.

Spatial gaps occur when there is an error in understanding

the physical space of a given setting. Attribute gaps can

occur when an object’s (or person’s) characteristics are not

well understood. Reasoning gaps indicate that an agent has

difficulty in the cognitive process of understanding informa-

tion. Philosophical gaps are similar to reasoning gaps but

require meta-cognitive processes.

We focus on eight KGs identified in the GQA dataset

(colored in Figure 2): Attribute, Direction, Location,

Material, Reasoning, Sentiment, Size, and State Gaps. We

now define and ground these specific KGs for the VQA

setting. We refer the readers to [1] for an extended version

of the KG taxonomy and definitions.

Location Gap: Location gaps can occur when there is a

misunderstanding about a specific physical place or setting

of a context. We assign these gaps to questions in the dataset

about the location of a scene of an image.

Reasoning Gap: We tag questions that require external

knowledge about the scene or objects in an image with rea-

soning gaps.

Sentiment Gap: A sentiment gap can occur when an agent

is not able to understand the emotion or attitude of another

agent. Questions about the sentiment of an object (typically

humans or animals) are marked with this gap.

Size Gap: Size gaps (subtype of attribute gap), can occur

when an agent is trying to understand the physical space an

object or a person occupies. Questions inquiring about the

size, age, or height of an object are marked with size gap.

We use these KG definitions to create a rule-based tag-

ging system to automatically mark questions with their re-

spective KGs. Below, we present sample questions and the

KGs assigned by our system:

• Which are less healthy, the brownies or the cherries?

KG: Reasoning

• What is the device that the happy man is holding?

KG: Sentiment

• Is the large propeller blue and still?

KGs: Attribute, Size, State

• Where is the horse that looks white and brown

walking?

KGs: Attribute, Location

Due to space restrictions, we choose to focus on the

following KGs: Location, Reasoning, Sentiment, and Size

Gaps. The extended version of this paper [1] contains de-

tails for all eight KGs identified in the GQA dataset.

4. Knowledge gap identification

The GQA dataset [4] consists of 22M questions about

various day-to-day images. We choose to work with the

training dataset and direct the readers to the official GQA

website1 for more information about the original dataset.

We use the following annotations associated with each

question to automatically identify KGs: detailed type,

global group, and semantic filters (see [4, 1] for more de-

tails). For example, if a question has “placeVerify” as its

detailed type, we tag the question with a location gap.

First, we assign a KG based on the detailed type of a

question. Next, we examine a question’s global group to

allot a KG, which has not been previously assigned by the

detailed type. Lastly, we attempt to designate a KG using

the semantic filters extracted from a question’s functional

program. During each step of the pipeline, we try to assign

one KG and do not reassign previously specified KGs. Now,

we define the mapping of dataset annotations for each KG

(see [1] for a complete mapping of all eight KGs).

Location - detailed types: place, placeVerify, placeV-

erifyC, placeChoose, locationVerifyC, locationVerify;

global group: place, room, nature environment, urban

environment, road; semantic filters: location, place, room

1https://cs.stanford.edu/people/dorarad/gqa/

about.html



Figure 2: KG Taxonomy [1] - KGs identified in the GQA dataset are colored, and we focus on the KGs in bold font.

Reasoning - detailed types: diffAnimals, diffAnimalsC,

sameAnimals, sameAnimalsC, comparativeChoose; global

group: None; semantic filters: None

Sentiment - detailed types: None; global group: face

expression; semantic filters: face expression

Size - detailed types: None; global group: age, height,

thickness, depth, fatness, length, weight, width, size; se-

mantic filters: age, fatness, length, thickness, size, weight,

depth, width, height

As mentioned, we observe a skew in the distribution of

questions for each KG category (see Figure 1). Less than

3% of the questions are tagged with reasoning, sentiment,

and state gaps. About 7% of the questions are allotted with

a location gap. Around 9% of the questions are tagged with

a material gap and another 9% with a size gap. Attribute

gaps and direction gaps are assigned to about 48% and 24%

of the questions. This apparent skew inspires us to use a

question generation technique to balance dataset (in terms

of KGs). The extended version of the paper contains a de-

tailed description of the KG identification methodology [1].

5. Question generation

We aim to generate new questions for images that lack

certain KGs to remove the skew in the distribution of ques-

tions for each KG. We use the IBM Pytorch Seq2Seq frame-

work2 to train our models.

The template-based seq2seq (consisting of an encoder

and decoder) model can be viewed as a translator that con-

verts structured data (paths along a scene graph) into ques-

tion templates. These templates are populated in a down-

stream task with information from the scene graph to gen-

erate a complete question. For example, given a train-

ing path and question pair, “fries to the right of lettuce”,

we first transform the original question, “Which is less

healthy, the fries or the lettuce?”, into a question tem-

plate, “Which is less healthy, the OBJ or the OBJ ?”, and

2https://ibm.github.io/pytorch-seq2seq/public/

index.html

use it for training. Our neural question generation strat-

egy resembles that of [5] and is modelled as a probabilistic

framework.

P (Q|P ) =

N∏

i=1

P (wi|w<i, P ) (1)

Q = (w1, w2, ..., wn) represents a generated question tem-

plate that consists of tokens w1, w2, ..., wn.

P represents a path sequence of length L that

is fed into the seq2seq model’s encoder. P =
(g(o1), r1, IO, r2, IO, ..., rn, g(o2)), where o1 and o2 are

objects mentioned in the training questions. The function

g(·) describes objects as a concatenation of their attributes

and name in English. The rn(s) along a path are the rela-

tions among objects. We replace the intermediate objects

along a path with “IO” because we are only interested in

objects o1 and o2 that are present in the training question.

Encoder: The (Bi)LSTM encoder encodes a path sequence,

P , from a scene graph (of an image) into an embedding.

Template generation: To create training question tem-

plates, we replace the objects and attributes mentioned in

the question with “OBJ” and “ATTRIBUTE” placeholders.

Decoder: We use the built-in attention mechanism with an

LSTM decoder to make use of the alignment information

between scene graph paths and question templates. Dur-

ing decoding, we use teacher forcing (ratio = 0.25) to allow

the decoder to learn how to generate question templates.

We use the TopKDecoder, which performs a beam search

of length K = 10. Of the top decoded sequences, we se-

lect the template with the highest probability and with the

same number of “ATTRIBUTE” placeholders in the gener-

ated template as the original training template. If none of

the top K results meet this criterion, we use the template

with the highest probability as our output.

5.1. Experimental setup

For each KG type, we train two seq2seq models: 1)

triple-based model (L = 1), 2) path-based model (L ≤ 5).



KG BLEU

Score

Meteor

Score

# of Novel

Templates

# of Existing

Templates

Triple-based Model Results

Location 0.32 0.64 35 14

Reasoning 0.75 0.87 7 5

Sentiment 0.21 0.53 28 6

Size 0.16 0.50 18 78

Path-based Model Results

Location 0.26 0.59 38 19

Reasoning 0.69 0.83 6 9

Sentiment 0.17 0.50 30 8

Size 0.16 0.53 16 5

Table 1: Results for Each KG Model

A separate model for each KG allows for controlling the

types of templates to generate, as we try to reduce the skew

in distribution presented in Figure 1. Triples are in the form

of P = (g(o1), r1, g(o2)). Moreover, using paths of L > 1
can allow us to generate questions about objects that are

connected through intermediate nodes. We perform a grid

search for each KG model to select the best model. Addi-

tionally, experimental details can be found in [1].

5.2. Experimental results

We use BLEU3 and METEOR4 scores to evaluate our

question generation model. These metrics are commonly

used for Natural Language Generation tasks. Table 1

presents the results of our triple-based (L = 1) and path-

based (L ≤ 5) models. Only the state gap path-based model

achieves a higher METEOR score when compared to the

triple-based model. Table 1 also contains the number of

unique novel and existing (in the training data) templates

that were generated. However, our state gap models do

not perform well overall. We suspect that this might be-

cause of the limited number of training templates (see [1]).

Additionally, in [1], we show that our path-based direction

gap model improves the METEOR score and BLEU score

by 3% and 2% (respectively) when compared to the triple-

based direction gap model. These results are understand-

able because questions regarding spatial relations can bene-

fit from more relational information among objects.

Now, we present sample input and outputs from our

test set using our following triple-based models: material,

sentiment, reasoning, and size models. In the examples

below, I stands for the input to the model, GQT marks

the generated question templates, and PQT stands for the

populated question template.

• I: cap to the left of pants

GQT: “What is the OBJ near the OBJ made of ?”

3https://www.nltk.org/_modules/nltk/translate/

bleu_score.html
4https://www.nltk.org/_modules/nltk/translate/

meteor_score.html

PQT: “What is the cap near the pants made of?”

• IN: players to the right of man

GQT: “Which is younger, the OBJ or the OBJ ?”

PQT: “Which is younger, the players or the man?”

• IN: spectator to the right of cap

GQT: “Is the ATTRIBUTE OBJ to the right of the OBJ

?”

PQT: “Is the happy spectator to the right of the cap?”

• IN: bat to the right of shoe

GQT: “How big is the OBJ near the OBJ ?”

PQT: “How big is the bat near the shoe?”

6. Conclusion

In this work, we take initial steps to understand the

different types of reasoning skills needed for VQA tasks.

We use a taxonomy of KGs to design a framework for

identifying KGs for VQA questions. Using a question

generation technique, we reduce the skew in the distribution

of questions per KG category for the GQA dataset. In our

future work, we aim to advance our question generation

model and provide answers for generated questions. Ad-

ditionally, we aim to generate more human-like question

and to work towards resolving KGs. Our current work is an

initial step towards understanding the cognitive skills need

to advance AI agents.
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