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Abstract

Previous research on localizing a target region in an

image referred to by a natural language expression has

occurred within an object-centric paradigm. However, in

practice, there may not be any easily named or identifiable

objects near a target location. Instead, references may need

to rely on basic visual attributes, such as color or geomet-

ric clues. An expression like “a red something beside a blue

vertical line” could still pinpoint a target location. As such,

we begin to explore the open challenge of computational

object-agnostic reference by constructing a novel dataset

and by devising a new set of algorithms that can identify a

target region in an image when given a referring expression

containing only basic conceptual features.

1. Introduction

From object classification, visual scene description, to

visual question answering, there have been tremendous

strides made in deep learning based computer vision algo-

rithms over the last decade. These advances in computer

vision capabilities also include the task of reference resolu-

tion: identifying a specific location or pointing out a specific

entity within an image from a given referring expression [6].

Resolution of visual reference is an essential part of human

communication and collaboration, and there have been var-

ious efforts to develop methods to enable automated visual

reference resolution. However, despite these advances, the

state-of-the-art in computational reference still lags far be-

hind human capabilities.

One of the key limitations of present work in compu-

tational reference is that most work relies on well-defined

objects as both targets for reference or anchors in their re-

ferring expressions. However, in many instances, there may

not be any easily identifiable objects to reference intended

targets as shown in Figure 1. Additionally, as computer vi-

sion algorithms are deployed on mobile, robotic agents, fu-

ture algorithms will be faced with the need to perform ref-

erence resolution on increasingly complex scenes in real-

world environments with potentially novel, unknown ob-

Figure 1. Undefined or object-agnostic locations. How would

you describe to refer to these (labeled with orange circles) loca-

tions?

jects, or the absence of normal visual structure (e.g., post-

disaster recovery). In such situations, people can still refer

with attributes such as colors, textures, or geometric clues

such as lines or corners. For instance, a phrase such as “the

small yellow stuff left of that blue corner” may be sufficient

for a person to pinpoint the target location despite the ab-

sence of an anchoring object.

Thus, broadening the capability of computational sys-

tems of reference resolution requires the development of

“object-agnostic” algorithms that resolve references to par-

ticular points in a visual scene that do not refer to or are

anchored in well-defined objects. One difficulty in this task

is the degree to which most data on human reference re-

lies on object-centric tasks. For instance, psycholinguistic

studies of reference resolution have used interactive tasks or

abstract stimuli that involved references to specific objects

[16]. Likewise, studies of reference generation by human

subjects have also generally elicited referring expressions

that refer to specific visual objects in a scene [18, 15, 7].

Some initial work has stepped beyond object-centric refer-

ence by examining how people refer to groups of objects [2]



A	pink	something,	to	the	left	of	a	brown	corner,	
	to	the	right	of	a	gray	vertical	line (� = 2)

NP

PP

DT JJ NN TO NP

,

PPNP

DT NN IN NP

DT JJ NN

a pink something to

the left of

a brown corner

A	pink	something,	to	the	left	of	a	brown	corner
A	pink	something,	to	the	right	of	a	gray	vertical	line

NP

⋄

△

Figure 2. An example referring expression from Something-W.

Referred region is labeled with an orange rectangle. (An arrow

is included to assist the readers.) The original expression (△) is

divided into η expressions (⋄) with a common phrase.

and how this can be modeled computationally [4], though

this still does not address the problem of how to refer to any

arbitrary region in an image.

We propose to begin to tackle the open challenge of com-

putational object-agnostic reference in the following way.

First, because there is no existing data on how people re-

fer to points in a visual scene without recourse to objects,

we present a novel dataset, called ”Something-W,” com-

posed of images with referable conceptual features such as

lines and their directions, corners, and colors. Next, we de-

veloped a novel algorithm capable of identifying candidate

regions within a given image from a referring expression

utilizing only the aforementioned fundamental features.

2. Dataset

There is no existing dataset designed for training on the

conceptual (object-agnostic) attributes and the correspond-

ing referring expressions. Instead of starting from scratch,

we began with Wireframe [10] dataset, originally devised to

train models to parse wireframe in images, as it readily pro-

vides annotations for lines. In addition to the provided line

locations, we have added line directions, corners and color

information which are all used to automatically generate the

referring expressions for local blocks in the images.

2.1. SomethingW

The total number of the referring expressions in

Something-W is 25K which consists of 15K, 5K, and 5K

referring expressions for train, validation, and test, re-

spectively. Following the revision of the Google RefExp

dataset [13] by Nagaraja et al. [17] we have designed the

Something-W so that there is no overlap of images between

different splits.

An example referring expression which refers to a local

region (block) in an image is shown in Figure 2. Each block

can be referenced based on the fundamental attributes of it-

self and its 4-neighbors (i.e., left, right, above and below)

which are of the same size. Thus, the complexity of a refer-

ring expression can be scaled from one to four depending
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Figure 3. Something-W Composition. Referring expressions

with complexity (η) of 2 and 3 take up approximately 80% of the

dataset.

on how many of the neighboring regions were referenced in

the expression.

Figure 3 depicts the ratio of the referring expressions

with respect to their complexities (η). While the referring

expressions in our train set are extracted from 180 images

of the train set of the original Wireframe dataset, those in

our validation and test sets are generated from another 129

images of the test set of the same dataset.

2.2. Annotations

Color. We have exploited a color palette which includes

570 English color names and their RGB values [14]. Near-

est colors for each block is acquired using RGB values. To

match with more realistic scenarios where people would use

a smaller color vocabulary, we have post-processed the ini-

tial color names so that they would be tied with one of 21

(19 from [1], white, and black) frequently used color names.

Lines and corners. As line annotations are provided in the

original Wireframe dataset, we have exploited this informa-

tion to further extract the line directions and corner (junc-

tion) points. If a line falls within ±15◦ range of 90◦, 0◦, and

45◦, it is categorized as vertical, horizontal, or diagonal, re-

spectively. A location where two or more lines intersect is

annotated as a corner point.

Referring expressions. One referring expression is auto-

matically generated based on the previously annotated fun-

damental attributes (color, lines, corners) of the target block

itself and its 4 neighbors. The color label of a ‘self’ block is

used to generate the something phrase of a sentence (e.g., “a

yellow something”), while various attribute combinations

of the neighboring blocks are translated into supporting de-

scriptions with corresponding prepositional phrases. An ex-

pression is only included into the dataset when at least one

of the neighboring blocks contain reasonably salient line or

corner attribute. Saliency is determined by thresholding on

the previously generated corner or line maps. If one or two

salient neighboring blocks exist, same number of support-

ing phrases are generated. However, if there exist 3 or more

of them, the number of supporting phrases are randomly

determined to be an integer between 2 and the number of

salient neighbors. A preposition is randomly selected from

a subset of a list provided by Landau et al. [11]. These



"to	the	left	of",	"on	the	left	side	of"
"to	the	right	of",	"on	the	right	side	of"
"above",	"on	top	of",	"over"
"below",	"beneath",	"under",	"underneath"

Prepositional	Phrases
Left
Right
Above
Below

=
=
=
=

Something	Phrases

"something",	"thing",	"stuff",	"region",	
"portion",	"location",	"area",	"part"

Expr	=	a	+	[color]	+	[something]	+	[preposition]	+	[neighbor	attribute]	+	[neighbor]

Figure 4. Generating an expression.

measures are designed to inject more natural flavor to the

dataset. The list of prepositions and something phrases we

have exploited is provided in Figure 4.

3. Our Approach

We propose a novel set of algorithms and an architecture

to train the syntactic constituents of the expression with cor-

responding modules focusing on localizing the target with

its neighboring blocks. While the backbone architecture of

our model partially inherited the GroundNet [5], we devel-

oped a set of novel modules to enable visual references for

the new object-agnostic paradigm.

Modules. The overall diagram of our approach is shown

in Figure 5 where four major modules are depicted. We

have newly devised Visualize and LookAround while

Attend and Locate are inherited from the GroundNet.

These modules function within a computation graph (elab-

orated in detail in [5]) which intakes a constituency-based

parse tree (Figure 2) of a given expression.

Visualize. Unlike the previously introduced ‘object-

centric’ approaches which consider a few number of objects

where each object region covers up a relatively large por-

tion in the input image, our approach involves enormously

large number of regional locations (i.e., 562 = 3136 blocks)

which correspond to very small regions in the input images,

i.e., 4×4 in our baseline setting. Because of this, instead

of exploiting high level features of object regions (e.g., fc7

in [19]), we acquire low level deep CNN features which are

of two dimensional in nature. We have used the output from

Conv1 or Conv2 layer (both 56×56) of ResNet50 [9] pre-

trained on MS COCO Dataset [12]. Each 1×1 region in

the output of Conv1 (1 × 1 × 64) or Conv2 (1 × 1 × 256)

corresponds to a 4×4 region in the resized (224×224) input

image. The encoded features of the candidate block (ψc)

and the neighboring blocks (ψn) are fed into Locate and

LookAround. It is noteworthy to mention that making use

of such low level features from which are known to carry

crucial low level information [20] actually serve as an ad-

vantage for our approach as the fundamental attributes we

consider are closely correlated with basic shapes such as

corners, lines or colors.

LookAround. When referring expressions involve low-

level attributes, regions which are distant from the target

location is hardly ever mentioned. Instead, describing the

regions in the close vicinity of the target is often taken into

considering because there may be numerous regions which
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Figure 5. Overall Diagram of our approach. Four neural mod-

ules are presented. pt+ is the output score vector where each ele-

ment represents the score of a box given a a list of words.

share similar low-level attributes across the scene.

Based on such motivation, we devise a module,

LookAround, which predicts the likelihood of the blocks

given a textual expression which conveys a relationship

such as on the left of or below, while taking the visual fea-

tures of the itself and its neighboring blocks into consider-

ation. As can be seen in Figure 5, this module intakes the

encoded text feature (fww) from Attend, probability vec-

tor p from Locate, and visual features (ψc, ψn) from Vi-

sualize and outputs a proabability score vector p+. We

have designed two versions of LookAround variant upon

how the input features (visual and textual) are aggregated.

When SepEnc is used, the textual feature fww is encoded

(W c and Wn) with the candidate block and the neighbor-

ing blocks in a ‘separate’ manner as listed in Equations 1a

to 1f. In this case, linear weights (W c, Wn, W score) are

being learned. Symbols Θ, ⊙, and [ ] are used to repre-

sent L2 normalization, Hadamard product, and concatena-

tion, respectively. This process of acquiring a score s for a

single box is done for all the available boxes to construct a

score vector, which is then combined with p from Locate

to provide the final probability score p+.

ψn = [ψL, ψR, ψT , ψB ] (1a)

f cref = Θ(W cfww) (1b)

fnref = Θ(Wnfww) (1c)

f cenc = ψc ⊙ f cref (1d)

fnenc = ψn ⊙ fnref (1e)

s =W score[f cenc, f
n
enc] (1f)

When AggEnc (Equations 2a to 2d) is deployed instead,

the textual feature fww is combined with the encoded ver-

sion (fvis) of the concatenated (aggregated) visual feature

([Φψn
(ψc), ψn]) at a later stage in the module. Operation

Φa(b) is used to expand b to match the dimension of a.



Table 1. Top-K Accuracy. Accuracy (%) for all referring expres-

sions in the Test set. Models are trained from scratch.

Method Vis. feat K=1 K=5 K=10

AggEnc conv1 8.4 29.6 45.2

conv2 11.0 35.9 53.6

SepEnc conv1 8.5 31.7 49.4

conv2 9.0 32.4 50.1

NeiEnc conv1 7.3 26.2 41.8

conv2 8.9 32.6 51.1

ψn = [ψL, ψR, ψT , ψB ] (2a)

fvis =W agg[Φψn
(ψc), ψn] (2b)

fagg = Φfvis
(fww)⊙ fvis (2c)

s =W scorefagg (2d)

4. Experiments

Settings. For training, we have used stochastic gradient

descent for 6 epochs with initial learning rate of 0.01 and

learning rate decay of 0.5. The size of the hidden layer of

the LSTM was set to be 500. All the weights were initial-

ized using Xavier [8] with weight decay of 0.0005.

Evaluation Metric. As have used by previous referring ex-

pression approaches, we make use of the standard metric

of accuracy. Along with the exactly correct cases (K=1),

Top-K accuracy for K=5 and K=10 cases are also reported.

When the ground truth location falls within the Top-K pre-

dictions made by the model, it is counted a hit.

Regular Training. Top-K accuracy for different models

and settings are reported in Table 1. On top of AggEnc

and SepEnc, we have also reported the performance by an-

other variant of the LookAround module NeiEnc which was

implemented to leave out the incorporation of ψc and only

consider the neighboring blocks(ψn). The results show that

conv2 features are more effective in all cases. Aggregating

the candidate box and the neighboring boxes at an earlier

stage (i.e., AggEnc) works better than other encoding meth-

ods. In this scenario, train samples are trained at a random

order for each epoch disregarding the complexity (η).

Curriculum Learning. We demonstrate how our model

benefits from curriculum learning [3]. Instead of learning

all the available referring expressions at once, we started

out with easier train samples (η = 1 and 2) for the first

epoch and then introduced samples with η = 3 and η = 4
with each new epoch. Table 2 shows that not only does

the overall accuracy increase in all the K cases, but the im-

provement is achieved at an earlier epoch demonstrating the

effectiveness of the curriculum learning.
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