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Abstract

Empirical evidence suggests that color categories

emerge in a universal, recurrent, hierarchical pattern

across different cultures. This pattern is referred to as

the “Color Hierarchy”. Over two experiments, the present

study examines whether there is evidence for such hierarchi-

cal color category learning patterns in Convolutional Neu-

ral Networks (CNNs). Experiment A investigated whether

color categories are learned randomly, or in a fixed, hierar-

chical fashion. Results show that colors higher up the Color

Hierarchy (e.g. red) were generally learned before colors

lower down the hierarchy (e.g. brown, orange, gray). Ex-

periment B examined whether object color affects recall in

object detection. Similar to Experiment A, results found that

object recall was noticeably impacted by color, with colors

higher up the Color Hierarchy generally showing better re-

call. Additionally, objects whose color can be described by

adjectives that emphasise colorfulness (e.g. Vivid, Brilliant,

Deep) show better recall than those which de-emphasise

colorfulness (e.g. Dark, Pale, Light). These results highlight

similarities between humans and CNNs in color perception,

and provide insight into factors that influence object detec-

tion.

1. Introduction

The human eye can see 7,000,000 colors. However, from

these millions of colors, most languages have no more than

13 basic terms to conceptualize this vast color spectrum[2].

This segmentation in human language occurs along the

most salient dimension of color: hue (i.e. red, yellow, blue).

One of the most enduring theories regarding how these few,

hue-based categories emerge was first proposed by Berlin &

Kay half a century ago [1]. Their cross cultural research ob-

served a fixed sequence according to which languages gain

color terms over time.

To account for this evolution, Berlin & Kay [1] put for-
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ward two suppositions: (i) color lexicons for all languages

are drawn from a set of fixed “universal” categories, and (ii)

languages add color terms in a relatively fixed sequence,

such that; white, black < red < green, yellow < blue <

brown < purple, gray, orange, and pink. Therefore, if a lan-

guage has a term for a given color in this inequality, it will

also have terms for all colors to the left of that given color.

This sequence is referred to as the “Color Hierarchy”. The

endurance of this theory is bolstered by its replicability in

both human studies [2], and computational studies where

computational agents negotiate color terms for regions of

the hue spectrum via a “Category Game” [5].

Over two experiments, the present study aims to inves-

tigate color learning patterns in neural networks. Do neural

networks faithfully imitate the human process and learn col-

ors in an analogous, hierarchical way? Or rather, will neural

networks learn color labels in a non-interpretable random

way? Parallels have already been drawn between the human

visual system and CNNs in the domains of internal object

representation [4] and color perception [7]. If hierarchical

color learning patterns are observed in CNNs, this would

serve as additional evidence to suggest that CNNs can offer

at least partial fidelity to biological vision modeling. Addi-

tionally, if object detection models were shown to be influ-

enced by color, this could shed valuable insight into factors

that influence object detection performance.

2. Experiment A: CNN Color Classification

Recall Experiment

Experiment A examines how CNNs learn to classify

basic color categories. Specifically, are color categories

equally difficult to learn, or are color categories learned in

some predictable, hierarchical order similar to humans?

2.1. Dataset

Basic Color Dataset: The dataset for this experiment

was made up of 880 images taken from Google Images.

Images were gathered by searching for specific colors, (e.g

“red”) and downloading images that best encapsulate this

color (See Figure 1). Eight of the eleven English basic color

terms were used in this study. Black and white were ex-
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(a) blue (b) brown (c) green (d) gray

(e) orange (f) purple (g) red (h) yellow

Figure 1: Samples from the Basic Color Dataset used in Experi-

ment A

cluded because these terms can correspond to brightness

rather than hue [9]. Pink was also excluded, due to pink

being considered a shade of red in many languages [1]. 60

images for each color were assigned to the training set. The

remaining 50 images were assigned to the test set.

2.2. Method

This experiment used the CNN architecture outlined in

[6]. This CNN architecture was chosen as it has been proven

to successfully learn to classify colors from a dataset taken

from traffic camera images. Relu Activation was used for all

convolutional and fully connected layers. Softmax was used

for output. Stochastic gradient descent was used as an op-

timizer, with a learning rate of 0.001. Zoom, shear and flip

data augmentation, and mini batches of size 16 were also

used in training. The epoch in which a color was “learned”

was recorded for each color. Training was stopped when all

colors were successfully learned. This experiment defines

“learning” as achieving and maintaining recall on the test

dataset for a color category, such that;

TruePositive

TruePositive+ FalseNegative
> 0.85 (1)

Five color space image inputs were investigated in this ex-

periment; OPP, RGB, BGR1, YCbCr and YUV. For each

of the five color spaces, 500 CNNs were trained to classify

each of the eight colors shown in Figure 1. A total of 2,500

models were trained in this experiment. This large number

of models was required in order to obtain a normally dis-

tributed sample of learning epochs for each color, suitable

for Analysis of Variance (ANOVA) testing. ANOVA analy-

ses was then conducted to check for statistically significant

differences in learning times between colors.

1BGR is just a rearrangement of RGB, effectively acting as a control in

this study

Color Space Red Yellow Green Purple Blue Brown Orange Gray

OPP 19.44 23.50 24.73 24.55 28.38 33.81 34.01 33.08

RGB 22.99 27.73 27.09 29.20 31.99 36.60 37.43 36.75

BGR 22.62 27.12 27.15 28.90 31.39 36.17 37.23 36.30

YUV 19.62 22.69 25.72 20.56 21.60 32.72 32.75 31.92

YCbCr 17.49 23.81 26.78 20.49 23.06 33.44 33.58 32.55

Table 1: Mean number of epochs taken to learn each color for all

color spaces. The minimum number of epochs required to learn

each color is highlighted in bold.

2.3. Results

The average number of epochs taken to learn each color

category is summarised in Table 1. It is noteworthy that dif-

ferent color spaces exhibited different hierarchical learn-

ing patterns. Green was learned fastest using OPP color

space images as input. Red and purple were learned fastest

using YCbCr color space as input. Finally, yellow, blue,

brown, orange and gray were learned fastest using YUV

color space.

ANOVA analyses found statistically significant differ-

ences between the number of epochs required to learn col-

ors for all 5 color spaces. Post-hoc Games-Howell analyses

found hierarchical learning patterns in all 5 color spaces,

with OPP, RGB, BGR and YUV all having 4 hierarchical

levels, and YCbCr having 5 hierarchical levels. Some sim-

ilarities are observable in the hierarchical patterns found in

all 5 color spaces. Each hierarchy learned red in its first hi-

erarchical layer, and learned brown, gray and orange in its

final hierarchical layer. A similar pattern is also seen in the

Color Hierarchy[1] observed in humans, as outlined in the

Introduction. Results of ANOVA and Games-Howell anal-

yses are summarized in Table 2.

3. Experiment B: Faster R-CNN Colored

Clothing Recall Experiment

Experiment B examines how object color affects object

detection in Faster R-CNNs[8]. Specifically, does object

color affect how successfully Faster R-CNNs are able to de-

tect an object?

3.1. Dataset

Modanet: Zheng et al. [10] created a large scale

street fashion dataset with polygon annotations, contain-

ing 55,176 images. 13 categories are labeled in this dataset:

bag, belt, boots, footwear, outer (coat, jacket etc.), dress,

sunglasses, pants, top, shorts, skirt, headwear, scarfs. We

then added color attributes to each of the objects in the

dataset as follows: firstly, semantic segmentation was per-

formed on each object. Then 500 random RGB pixels were

sampled from this segmentation and mapped to their near-

est NBS-ISCC color label [3]. NBS-ISCC color labels aim

to be as commonly understandable as possible, using only



CS F η2 Epochs to Learn

OPP 206∗∗∗ .27 red < yellow = green = purple < blue < brown = gray = orange∗∗∗

RGB 141∗∗∗ .20 red < yellow = green = purple < blue < brown = gray = orange∗∗∗

BGR 151∗∗∗ .21 red < yellow = green = purple < blue < brown = gray = orange∗∗∗

YUV 232∗∗∗ .29 red = blue = purple < yellow < green < brown = gray = orange∗∗∗

YCbCr 270∗∗∗ .32 red < purple < yellow = blue < green < brown = gray = orange∗∗

Table 2: Results of ANOVA and post-hoc Games-Howell analyses on differences in epochs required to learn each color. 500 results per

color category from 500 networks were analyzed for each color space. F is the F -test statistic and η2 is the effect size. The “epochs to

learn” column describes the results of post-hoc analyses. The inequality (<) denotes a significant difference at the p < .01 level, with the

color to the left of the inequality being learned faster than the color to the right. Equality denotes the opposite. ∗∗ p < .01. ∗∗∗ p < .001.

Figure 2: Samples of color attributes assigned to objects in the

Modanet dataset using pixel sampling.

13 basic color terms and a handful of adjectives to create

267 unique color labels. The NBS-ISCC color label sam-

pled most often from the object pixel sampling process was

assigned as the label for that object (See Figure 2). If no

color label emerged for at least 10% of the labels for an ob-

ject, that object was assigned a null color label. Data was

given a train/test split of roughly 60/40, with image names

ending in 0, 1, 3, 5, 7 and 9 being added to the training set,

and the remaining images added to the test set.

3.2. Method

Experiment B trained a Faster R-CNN with a Resnet-50

backbone and a Feature Pyramid Network to detect the 13

clothing categories outlined above. Batches of 8 were used

in training. Stochastic gradient descent was used as an op-

timizer, with a learning rate of 0.005. Training continued

until mAP on the test dataset plateaued at close to 70%2.

Next, within all clothing categories, objects were further

sub-classified based on two criteria; basic color (e.g. strong

red shirts, moderate red shirts etc. were all categorised as

“red” shirts ), and descriptive adjective, (e.g. strong yellow-

ish pink shirts, strong red shirts etc, were all categorised as

“strong” colored shirts). Recall values were then calculated

2mAP scores cited in the original paper[10] were achievable when us-

ing a pre-trained backbone. However the purpose of this experiment was

to investigate color learning patterns, not to maximize model performance.

for each subcategory; i.e. out of all successfully recalled

shirts, what percentage of red shirts were recalled. Object

detections were prioritised based on the models certainty.

The maximum number of object detections allowed per im-

age equalled the number of ground truth objects in that im-

age. If a subcategory contained less than 50 instances (e.g.

if there were only 20 red belts in the test set), it was ex-

cluded from analyses, as denoted by the ‘-’ in tables 3 and

4. If a clothing category had less than 3 subcategories of ob-

jects (e.g. only brown and green boots met the 50 instance

subcategory threshold), this clothing category was excluded

from analyses. This is because a diverse range of subcate-

gory colors and descriptive adjectives per object category

are required to accurately and robustly assess the impact of

colors and adjectives on object detection. All color and de-

scriptive adjective recall scores across subcategories which

met the threshold were then averaged out to produce a mean

recall score for both colors and descriptive adjectives.

3.3. Results

Following other studies on color perception in computer

vision [7], the results outlined in this section were obtained

using OPP color space images as input. However a simi-

lar hierarchical pattern was also found for RGB color space

inputs. Table 3 shows recall per object category based on

color. Similar to Experiment A, red is the best recalled color

subcategory across most clothing categories, with colors

lower down the Color Hierarchy such as orange, brown and

pink showing the worst recall.

Table 4 shows recall per object category based on de-

scriptive adjective that was used to describe clothing color.

Adjectives which emphasise higher levels of chromatic hue

colorfulness, such as “Brilliant”, “Vivid” and “Deep”, show

best recall by the Faster R-CNN model. Conversely, ad-

jectives which de-emphasise colorfulness, such as “Dark”,

“Light” and “Pale”, show notably worse recall performance

across most clothing categories.



Category Red Green Blue Purple Yellow Pink Brown Orange Gray

Outer .725 .680 .669 .667 .647 .557 .571 .650 .696

Skirt .819 .673 .732 .727 - .62 .654 - -

Bag .752 .646 .669 .656 .675 .66 .694 .702 -

Footwear .807 .784 .805 .724 .752 .621 .740 .698 .755

Belt .657 - .456 .517 - .462 .660 .481 -

Top .629 .661 .614 .632 .619 .736 .580 .626 .423

Dress .702 .718 .698 .690 - .660 .500 - -

Pants .914 .859 .911 .878 - .830 .713 - -

Mean .751 .717 .694 .686 .673 .643 .639 .631 .625

Table 3: Recall for each clothing category based on color in Experiment B. The best recall score within each clothing category is highlighted

in bold.

Category Brilliant Vivid Deep Strong Dark Moderate Light Pale

Outer .725 .671 .703 .614 .715 .564 .602 .663

Skirt .805 .813 .758 .767 .739 .652 .633 .610

Boots - - .556 .559 .497 .421 .364 .265

Bag .790 .742 .710 .716 .675 .663 .632 .636

Footwear .807 .789 .755 .774 .730 .718 .733 .697

Belt - .563 .639 .599 .577 .561 .502 .402

Top .722 .722 .621 .665 .575 .579 .644 .654

Dress .720 .726 .636 .697 .664 .647 .659 .663

Pants - .902 .872 .831 .857 .815 .845 .843

Scarf - .296 .390 .351 .330 .382 .305 .303

Shorts - .759 .709 .763 .707 .795 .720 .778

Headwear - - .703 - .711 .641 .686 .617

Mean .762 .698 .671 .667 .648 .620 .610 .594

Table 4: Recall for each clothing category based on descriptive adjective used to describe the color in Experiment B. The best recall score

within each clothing category is highlighted in bold.

4. Conclusion and Future Work

Results from both experiments suggest hierarchical color

learning patterns in CNNs, similar to humans. Results from

Experiment A show that color categories are learned in a

hierarchical pattern, regardless of color space input type.

Results from Experiment B show that color has a notice-

able impact on recall for object detection in Faster R-CNNs.

Recall for red clothing items was on average 10% higher

than recall for pink, brown, orange or gray clothing items.

Additionally, “Brilliant”, “Vivid” and “Deep” colors which

emphasise colorfulness show noticeably better recall com-

pared to “Pale”, “Dark” and “Light” colors. Across both ex-

periments, colors higher up the Color Hierarchy, (e.g. red,

green) showed faster learning and better recall than colors

lower down the Hierarchy. Future work should explore how

these hierarchical learning patterns can be exploited to im-

prove model performance. For example, certain color space

image inputs may be more suitable, depending on what

color objects are being detected in object detection tasks.
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