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Abstract

The IntPhys Challenge aims to evaluate how well algo-

rithms capture “common sense” about the physical world

by measuring the ability to detect violations of intuitive

physics in dynamic multi-object visual scenes. One ap-

proach to this problem is to define or learn a detailed model

of the observations and dynamics and to then detect viola-

tions of that model. While viable, this approach poses chal-

lenges in acquiring an accurate enough model that can han-

dle detailed non-linear object interactions, such as visual

occlusion and collisions. In this work, we consider an al-

ternative approach, the Surprise and Explain (SnE) frame-

work, which aims for simplicity while remaining highly flex-

ible. The key idea is to exploit the assumption that, for the

vast majority of time, objects follow simple dynamic models,

e.g. linear dynamics. Further, when the simple dynamics

are occasionally violated (“surprises”) due to non-linear

interactions, e.g. collisions and occlusion, it is assumed

that there is a small set of detectable explanations for the

surprise. Violations of intuitive physics then correspond to

surprises for which an explanation cannot be inferred. This

paper develops an instantiation of the SnE framework and

demonstrates its potential in the IntPhys Challenge by plac-

ing 2nd at the time of this paper’s submission. 1

1. Introduction

It is intuitive for human beings to distinguish between

real and unreal physical scenarios. Studies on human in-

fants [12] have shown that key to human-like intelligence

is the capability to identify objects, reason about shape and

physical dynamics – fundamental building blocks towards

more complex human tasks. For machines this common

sense has yet to be achieved, despite rapid progress in arti-

ficial intelligence over the last decade in fundamental tasks

such as object classification, detection [9, 6] or neural con-

trol [8].

In this paper, we present a novel and efficient ’Surprise
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Figure 1. The Surprise and Explain (SnE) framework

and Explain’ framework for parsing natural physical object-

object interactions that comprises of three modules: per-

ception, dynamics and explanation. The perception module

identifies and localizes the objects in a given visual scene.

The dynamics module encodes the object state and velocity

and predicts future states. The explanation module uses the

current observation and past states to provide an explanation

for plausibility or implausibility of the current state.

Intphys challenge 2019 [10] examined systems for three

basic concepts of the physics of macroscopic solid objects:

object permanence, shape constancy, spatio-temporal conti-

nuity. Each of these concepts are tested in a series of con-

trolled possible and impossible clips, which are presented

without labels, and for which models have to return a plau-

sibility score. We apply simple models to this challenge and

achieved top performance in it.

2. Related Work

Some of the early works model physics of natural scenes

through simulation engines [2, 15]. Later, it was shown that

these engines could be made ‘learnable’ through deep neu-

ral networks [1]. Object-centric representation learning for

scene understanding is quite prominent in literature: [14]

builds on [1] to jointly learning perception with physics,

whereas [3, 13] look at learning dynamics of interactions

through decomposition of visual scene into object’s repre-
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sentation and its state properties.

Another line of work aims at extending the goals of per-

ception modules from knowing where an object is, to also

infer and predicting its future states. Visual imagination in-

troduced in [5] equips an agent with the ability to generate

potential future states of the world in response to an action

without actually performing that action. Two unsupervised

learning methods are presented in [10] for future frame pre-

dictions: a GAN-based approach and encoder-decoder net-

work. Probabilistic modelling provides robustness to uncer-

tainty in visual inputs such as occlusions or disappearance

[7]. Therefore, [4] obtains reliable long-term predictions

by outputting a distribution of outcomes while letting the

model implicitly learn the underlying physics. Likewise,

[11] arrive at robust predictions of future through proba-

bilistic simulations and particle filtering.

3. Method

The goal of our system is to solve the anomaly detection

problem where the model has to not only detect impossible

scenarios but also localize and identify the objects that are

involved in the implausible event.

• One approach is to learn a discriminative model to

classify whether an event is possible or not given the

current state of the environment. Learning such a

model requires a large amount of data of both classes

(i.e possible vs impossible), the fact that is not suit-

able in the context of this challenge where we are only

provided videos of plausible events.

• Another approach is to build a generative model whose

distribution ideally represents all possible events. We

can generate a set of possible events and then match the

current observation with those events. If there is a good

match, this observation can be considered plausible.

Otherwise, we regard the observation as an anomaly.

A drawback is that the number of possible events can

grow exponentially, depending on the complexity of

the environment.

Intuitively, when observing the world, we humans do not

think of every possible scenarios that can happen. Instead,

we implicitly form some simple events or so-called theo-

ries in our minds. If there is something surprising that does

not conform with our thought or theories, we then try to

find some explanations based on our prior knowledge for

the current observation. This idea motivates us to build

a framework coined as Surprise and Explain (SnE). This

framework is especially efficient when the number of possi-

ble violations is small, comparing to the number of possible

events. Our current framework deals with 4 types of vi-

olation including object permanence, energy conservation,

space-time discontinuity, and shape consistency.

Figure 1 describes our SnE framework. ot and ôt are the

observation at time t and the observation prediction. sht , st,
and ŝt+1|t are the nominal latent state, latent state, and the

prediction of st+1 when at time t respectively. LT
t and LO

t

are the transition and the observation likelihood. h, T, and

∆XoS are the state encoder, transition function, and correc-

tion function respectively.

Assume that a video includes N objects. Each object

On, where n = 1...N is the object’s index, maintains a

track, which is a set of states up to frame t denoted by

Sn(t) = (sn1 , s
n
2 , ...s

n
t ). From now on, we use st instead

of snt for short. The state at each frame st includes the cur-

rent position pt (i.e bounding box), the temporal velocity

vt, the current observation ot, the occlusion status zt, and

the average depth dt of the object.

3.1. Object Tracking

Because violations in a video of this challenge is always

related to objects, it is important that our framework is ca-

pable of tracking objects by predicting their precise trajec-

tories. However, we will show in later parts that our frame-

work can work well with a simple tracker by adding a se-

ries of surprise explanations. Let G denote our tracker. G is

implemented using Hungarian algorithm based on the prox-

imity between the detected objects in frame t with the set

of object tracks {Sn(t − 1)|n = 1...N}. We only use the

proximity and defer the appearance information for later vi-

olation detection in section 3.4.

3.2. State Encoding

For sht , given the observation ot and st−1, we perform

the tracking algorithm described above. Given the newly

associated object, we can directly extract the position pht ,

i.e the bounding box itself, and temporal velocity vht by sub-

tracting the current bounding box’s center with the previous

one’s. For those tracks that are associated with a proposal

in current frame, then their occlusion status zht = 0. Other-

wise, for unassociated tracks, zht = 1.

3.3. Transition Prediction

Let ŝt|t−1 = (p̂t, v̂t, d̂t). The predicted temporal ve-

locity of the object is calculated by averaging the temporal

velocity vht−1, difference of position between consecutive

frames, and the past velocity. Briefly, v̂t = βvt−1 + (1 −
β)vht−1. Therefore, the new position of the object can be

specified by v̂t and pt−1, i.e. p̂t = pt−1 + v̂t. d̂t is updated

using a linear model.

3.4. Explanation of Surprise (XoS)

Surprises can come from many sources including but

not limited to violations of physics (e.g discontinuity in

movement or inconsistent appearance of an object along the

video) and the inability of the model to detect rare events



(e.g collision or appearance deformation caused by partial

occlusion). Based on types of violations, we classify sur-

prises into 2 classes, motion-based and appearance-based

surprises which are captured by LT
t and LO

t respectively in

equation (1). Given sht , ŝt|t−1, and ot, we compute the Vio-

lation of Expectation (VOE) signal for a particular object u
at timestep t as follow:

V OEu
t = αLO

t + (1− α)LT
t (1)

in which LO
t is proportional to the similarity between

the current appearance with the appearance at the nearest

timestep t0 when the object is not occluded:

LO
t ∝ F (ot, ot0) (2)

where F is function that outputs the similarity of 2 objects.

We will discuss this function in section 3.5. When LO
t is too

small (i.e LO
t < θO), it is not necessarily that a violation

would takes place. Potential reasons could be either partial

occlusion or drastic change in object’s size. If this is the

case, we need to reset LO
t to 1. This event can be checked

by comparing the current object’s size with the average size

of the object in the last k frames.

When the object is visible zht = 0, we assume that the

observed velocity vht follows the normal distribution with

µ = v̂t and σ2 which is manually tuned by using the val-

idation set. Therefore, the transition likelihood is obtained

by:

LT
t ∝ exp (−(vht − v̂t)

2/σ2) (3)

If LT
t < θT (i.e potential violation), then we check the re-

gion in the moving direction. If there are some potential

objects, e.g. floor, other objects, occluder, etc., that can col-

lide with the object, we reset to LT
t = 1, otherwise keep LT

t

the same. When the object disappears zht = 1, assume that

the object is occluded if dot < d̂t, then:

LT
t ∝ exp (−max(dot − d̂t, 0)) (4)

We made an assumption that our tracker can track the

object reasonably well. Therefore, zht = 1, which happens

only if we cannot associate the track of this object with any

proposal in the current frame, indicates that the object either

is occluded by some occluders or simply disappeared (i.e

violation of the spatial-temporal continuity rule). In this

situation, LT
t computed in equation (4) is the likelilhood of

the object being actually occluded.

3.5. Appearance Matching

We implement appearance matching function F using the

Siamese network described in figure 2. To extract objects’

features, we first extract objects from video frames using

bounding boxes given by the tracker. The images are then

resized to 32 × 32, normalized between -1 and 1, and fed

Figure 2. Appearance Matching network

to the Resnet-18. The resulting feature vectors are concate-

nated and fed through a neural net including 3 fully con-

nected layers with 32, 8, and 1 hidden nodes respectively. A

sigmoid activation is applied to squash the similarity value

between 0 and 1. Training the Siamese requires triples of

images, each including an anchor, a positive, and a negative

image. We build a triple by first randomly choosing an ob-

ject from a arbitrary video. The positive one is chosen by

picking an object whose properties such as material, color,

and shape match those of the anchor. An object which has

at least 1 different property is chosen as the negative object.

4. Evaluation on IntPhys

4.1. Dataset

The Intphys dataset [10] includes training, validation,

and test sets organized as follow:

• Training set includes 11250 videos at 15fps. Each

video has 100 frames of size 284 × 284. Besides, the

segmentation masks and depth maps are also provided.

All the videos are possible; there are no violations.

• Validation and test’s videos are structured in groups of

4 or so-called k-uplet with k = 4. Each group con-

tains 4 videos, 2 possible and 2 impossible scenarios.

The test set includes 3240 groups split equally into 3

blocks. Each block contains videos to exclusively test

a concept.

Each video has several components that can be catego-

rized into 5 classes: sky, floor, wall, occluder, and object.

The object class can be further classified as cube, cone, and

sphere. The scene in a video is viewed from a fixed-position

camera. The difficult levels are controlled by the number of

objects, type of occlusion, and the dynamics.

4.2. Validation

To evaluate the results, the authors of [10] propose using

2 types of metric, absolute and relative error rate. Consider

a k-uplet Si=1..N = {Pos1i ..Pos
k/2
i , Imp1i ..Imp

k/2
i }.

Then we define relative error and the absolute error as:

LRel =
1

N
I{ΣjP (Posji ) < ΣjP (Impji )} (5)



block O1 block O2 block O3

rel abs rel abs rel abs

dpathak 0.07 0.15 0.18 0.22 0.16 0.19

dannygut 0.17 0.27 0.43 0.41 0.38 0.38

jcronsenb 0.34 0.32 0.43 0.43 0.41 0.4

cassini 0.12 0.42 0.21 0.37 0.36 0.47

Ours 0.11 0.24 0.08 0.17 0.21 0.28
Table 1. Intphys 2019 Leaderboard. The best and second best re-

sults are colored in red and blue respectively.

LAbs = 1−AUC({i, j;P (Posji )}, {i, j;P (Impji )}) (6)

The relative error encourages that within a set the score

of positive videos should be higher than that of negative

videos. On the other hand, the absolute error rate encourage

that globally the average score for positive videos should be

higher.

4.3. Results

According to the leaderboard as shown in 1, our frame-

work achieves 2nd place in block O1 and O3 in term of

relative and absolute errors. For block O2, we achieved the

highest score. Unfortunately, detailed descriptions of the

competing systems are not yet available for technical com-

parison.

5. Summary and Future work

We proposed a Surprise and Explain (SnE) framework

which was shown to be competitive in the IntPhys Chal-

lenge at the time of this writing. The key idea was to as-

sume that objects in the world typically follow simple dy-

namics that are easy to predict. However, when the simple

dynamics are violated, explanations for those violations can

be generated for typical situations that satisfy normal intu-

itive physics. In this paper, the simple dynamic model and

explanation module were engineered components. In future

work, it will be interesting to learn both of these compo-

nents. Further, there are a number of straightforward and

more fundamental improvements that can be made to the

perception module of the current system. It will also be in-

teresting to consider tighter integrations of perceptions and

the rest of the framework. In particular, a key advance will

be to learn latent state representations grounded in visual

data that support the assumptions of the SnE framework.
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