
3DQ-Nets: Visual Concepts Emerge in Pose Equivariant 3D Quantized Neural

Scene Representations

Mihir Prabhudesai∗, Shamit Lal∗, Hsiao-Yu Fish Tung,

Adam W. Harley, Shubhankar Potdar, Katerina Fragkiadaki

{mprabhud,shamitl,htung,aharley,smpotdar,katef}@cs.cmu.edu

Carnegie Mellon University

1. Introduction

Concept learning lies at the very heart of intelligence,

providing organizing principles with which to comprehend

the world (6). Most computer vision models learn concept

classifiers or detectors using labelled examples of object

boxes, poses and categories. Self-supervised or unsuper-

vised approaches mostly focus on (pre)training CNNs on

auxiliary pretext tasks to lessen the need for human labels

for a downstream recognition task. The visual “concepts”

learnt from pretext tasks are implicit and represented as dis-

tributed neural CNN activations (7). We see the following

limitations with representing concepts (solely) as neural ac-

tivations across multiple layers of a deep network: i) vi-

sual memory and computation are not separated (3), which

means that computation increases exponentially with the

number of visual concepts learnt, ii) concepts are not stored

somewhere and cannot be referred to or retrieved on de-

mand, iii) the number of concepts cannot increase automat-

ically based on new visual experiences, rather it is deter-

mined by the processing architecture; this misaligns with

the idea that animals are capable of spontaneous concept in-

stantiation in novel scenes (2), iv) concepts cannot be men-

tally manipulated by imagining variations, transformations

or mental simulations (8), v) concepts do not have any spa-

tial dimension and are hard to use for spatial reasoning.

In light of the above, we explore automated visual con-

cept learning in a 3D visual feature space inferred from

2.5D (RGB-D) input images using differentiable fully con-

volutional inverse graphics networks.

Our model, which we call 3DQ-Nets, detects objects in

the inferred 3D scene feature representations, and quantizes

the object 3D feature maps into a set of scale and pose

canonical 3D concepts, as shown in Figure 1. 3DQ-Nets

operate as a learnable inverse graphics engine: they reverse

camera projection and infer a set of 3D prototypes along-

∗Equal contribution

Figure 1: 3D scene parsing using 3DQ-Nets. We show

that given a RGB-D scene our model can parse the object

instances in the scene as a list of prototypes (C) and their

rotation(R) wrt to their canonical pose. Our real world scene

parsing results can be found here : [website link]

side their scales and 3D poses, that when neurally rendered,

match the input 2.5D images. Just like the environment in

a graphics engine, our 3D visual feature space is free of

cross-object interferences or occlusions. As our 3D visual

concepts learned do not account for partial object visibil-

ity it makes them maximally compressible: a small set of

prototypes can explain object images taken from different

camera views and various spatial arrangements.

We do not know of any other system that pursues 3D

object perception from the type of supervision considered

in this work. Our contributions over previous approaches

are summarized as follows: (i) A model that learns to detect

objects in 3D without 3D annotations. We outperform base-

lines that learn 3D detection by triangulating 2D bounding

boxes. (ii) A method to summarize object instances into

prototypes in a pose-equivariant way.

1

2. Object-Quantized 3D Mapping Networks

(3DQ-Nets)

The architecture of our model is depicted in Figure 2.

Given a set of posed RGB-D images of a static scene

our model constructs a 3D scene feature representation by

neural lifting and registering features extracted from each

frame. 3D scene representations are oriented and projected

to sampled viewpoints to predict the corresponding target

views, as a form of self-supervision for the weights of the

encoder and decoder. Additionally, our model detects ob-

jects in the inferred 3D scene representation and uses them

to improve the 3D visual feature representation by itera-

tively inferring 3D part correspondences across objects de-

tected in different scenes, and using metric learning to su-

pervise the feature representation to reinforce the inferred

correspondences (Section 2.1). Finally our model matches

these 3D object feature tensors against a set of 3D proto-

types by searching over 3D rotations (Section 2.2). Our

model optimizes over weights of the encoder, decoder, 3D

detector module and prototypes. We detail each module

in their respective section and present the learning of the

model in Section 3.

2.1. 3D feature learning using view prediction and
part correspondence mining (3DMining)

Geometry-aware Inverse Graphics Networks (GIGNs)

introduced in (11; 4) learn to “lift” RGB-D images of static

scenes to 3D scene feature maps differentiably while opti-

mizing end-to-end for a downstream task. We will denote

the 3D scene feature map inferred from the tth input im-

age as Mt ∈ R
w×h×d×c where t, w, h, d, c denote the view

number, width, height, depth and number of channels, re-

spectively.

Upon training, GIGNs map RGB-D image sequences to

complete 3D feature maps of the scene they depict, i.e.,

the model learns to imagine the missing or occluded in-

formation; we denote this 2D-to-3D mapping as Mt =
EGIGN(I1..It),Mt ∈ R

w×h×d×c. For notation simplicity,

we will drop the subscript from M. For further details on

GIGNs, please see (11; 4).

We train the encoder and decoder of our architecture, de-

picted in Figure 2, by predicting views, following work of

(4). The scene feature map M is oriented to a sampled query

viewpoint vqr and decoded to an RGB image and a depth

map, and compared with the ground truth RGB (Iqr) and

depth map (dqr) respectively: Lpred = ‖DRGB
GIGN

(M, vqr)−

Iqr‖1 + ‖Ddepth
GIGN

(M, vqr) − dqr‖1. Our model also iter-

ates between inferring part based correspondence between

objects in different scenes and updating its weights to em-

ulate the inferred correspondences. We empirically found

that we consistently obtained better 3D feature representa-

tions by additionally considering learning from cross-scene

part-based correspondences along with view prediction ob-

jective. We adopt the correspondence mining method of

ArtMiner (9) to operate in 3D as opposed to 2D.

2.2. Pose­equivariant 3D object quantization

We define a set of 3D prototypes, ek ∈
R

wp×hp×dp×c, k = 1 · · ·K that compress objects in

the scene in a view and scale equivariant manner: similar

object instances that vary in scale and pose are mapped to

the same prototype. We match detected object 3D feature

tensors to prototypes using a rotation sensitive feature

matching. Specifically, we exhaustively search across

rotations R in a parallel manner, considering increments of

10◦ across the vertical axis:

(i) (zoid, z
o
R) = argmink,R ‖ek − Rotate (Mo,R) ‖, ∀o ∈

{1, ...|O|}.

Having assigned objects to oriented prototypes, we up-

date our prototypes to minimize their Euclidean distance to

the assigned oriented and scaled object tensors:

(ii) L3DQ(e) =
K∑

k=0

∑

{o|zo
id
=k}

‖ek − Rotate(Mo, zoR)‖2

Equations i and ii can be seen as expectation maximiza-

tion steps for iterating between assignment of object in-

stances to prototypes and prototype updates.

3. Learning - optimization

We optimize our model with a combination of end-to-

end backpropagation and EM iterations. We then iterate

over the following steps: (i) 3D object detection. This

generates a set of 3D object proposals. (ii) Prototype up-

dating assigns detected object instances to prototypes and

updates the prototypes through end-to-end backpropagation

of the clustering loss to e as mentioned in Section 2.2.

(iii) Re-Labelling of 3D proposals using 3D center-surround

saliency and matching to prototypes. We keep the 3D ob-

ject proposals that have a good matching score against the

prototypes. We further filter out the 3D proposals whose

3D center-surround feature match score is below a thresh-

old. We then update the 3D object detector module to emu-

late such labels through standard gradient based supervised

learning.

4. Experiments

Our experiments aim to answer the following questions:

(i) How do 3DQ-Nets compare against their 2D equivalent,

2DQ-Nets? (ii) How do 3D features learnt by our model

compare to 2D features supervised by Imagenet classifica-

tion in task of Few Shot Learning? (iii) How much does

visual compression help 3D object detection?

Figure 2: Architecture for object-quantized 3D mapping networks (3DQ-Nets).

4.1. Datasets

We show our model’s performance on various datasets.

For Our CLEVR veggie dataset, we build upon the CLEVR

Blender simulator (5) and add 17 vegetable object models

bought from Turbosquid. Each scene is recorded by 28

RGB-D cameras. Our CARLA dataset uses the 26 vehi-

cle classes available in the CARLA simulator of (1) with

17 RGB-D cameras placed within a view sphere. BigBIRD

(10) contains multiview shots for 125 different objects ro-

tating on a table. We assign the objects to 41 different ob-

ject category labels, combining similar objects into a single

class. Our Real world desk scenes dataset training setup

consists of 8 Microsoft Kinect Azure sensors surrounding

the table to capture multiview RGB-D data. During test

time, we move a single Kinect sensor around the scene.

4.2. Visual feature compressibility

Figure 3: Classification accuracy with varying length of

prototype dictionary for the CARLA dataset.

In this section, we measure classification accuracy across

varying length of the prototype dictionary, where accuracy

Figure 4: Scene reconstruction of target RGB (column 1)

using the learnt prototypes from the 2DQ-Net (column 2)

and 3DQ-Net models (column 3).

is measured by assigning category labels to prototypes and

letting such labels propagate through instance-to-prototype

assignments. Higher accuracy for the same number of pro-

totypes indicate increased compressibility of visual infor-

mation. We compare our model that quantizes 3D object

instances into pose-equivariant 3D prototypes (3DQ-Nets)

against the following formulations: (i) 2DQ-Nets, a 2D

CNN model that optimizes an autoencoding objective, and

quantizes detected 2D boxes into a discrete set of 2D pro-

totypes using 2D rotation search, and (ii) no-rot-3DQ-Nets,

a model similar to ours that assigns instances to 3D pro-

totypes without rotation search, rather, minimizing direct

Frobenius norm of the tensor-difference between a 3D in-

stance and a 3D prototype.

We show these comparisons in Table 1 and in Figure

3. We see from Figure 3 that compressing visual features

in the 3D feature space yields significantly higher classifi-

cation accuracy than applying such compression in the 2D

feature space, which is expected, since objects appear very

different when projected in 2D from different viewpoints.

As a result, 2D models usually require multiple prototypes

to handle such appearance variation even of a single object

instance. We further show that adding rotation search in 3D

enforces objects with similar appearance but with different

poses to be clustered together. In Figure 4 we also show the

reconstruction of a scene after replacing the object instance

in the scene with the learnt prototype. We see that the 2D

prototype ends up learning the mean representation of ob-

jects in different poses, which appears as a circular blur.

Datasets. 2DQ-Nets no-rot-3DQ-Nets 3DQ-Nets

CLEVR 0.23 0.73 0.77

BigBIRD 0.28 0.81 0.83

Table 1: Classification accuracy with dictionary size of 50

prototypes on CLEVR and BigBIRD datasets.

4.3. 3D object detection supervised by compression

In this section, we show how the mAP of our 3D detec-

tor improves over time when supervised by visual compres-

sion and 3D center-surround. We consider two initialization

schemes for our 3D detector: i) we train our detector with

a set of gt 3D boxes (3D-pretrain), ii) we train our detector

by triangulating 2D object proposals from our 2D object-

ness detector (2Dtriang-pretrain). We show results in Table

2. From the results, we see our detector can improve its

detection by a large margin after finetuning its weights by

learning on the positive examples suggested by the learned

object prototypes and negatives examples from the center

surround check.

Datasets
3D pre-

train

3DQ-Nets

(final)

2D triang-

pretrain

3DQ-Nets

(final)

CARLA 0.41 0.59 0.32 0.41

CLEVR 0.42 0.61 0.37 0.52

Table 2: Initial and final 3D detection meanAP at

IoU=0.5 using detected 2D proposal triangulation versus

ground-truth 3D bounding boxes in a training set.

4.4. Few­shot learning

In this section, we evaluate the ability of 3DQ-Nets to

learn from a small set of annotations. We use gt boxes in

our training process inorder to isolate the contribution of

the feature quality. For our model, we use the annotated

instances from the training set to assign labels to the proto-

types by voting. In Table 3, we compare 3DQ-Nets against

two 2D baseline models pretrained on the ImageNet classi-

fication task: (i) Finetuning ResNet-18 image classifier with

our train set and using the top layer to assign labels to 2D

object crops from the test set (ResNetClass), (ii) using the

top average pool layer activations of ResNet-18 image clas-

sifier and retrieving the nearest labelled train set instance

for each test set instance (ResNetRet).

We show the results in Table 3. Our model outperforms

both baselines that either use or learn from ResNet features

which are trained on huge number of image labels.

Datasets. ResNetRet ResNetClass 3DQ-Nets

CARLA 0.27 0.58 0.71

CLEVR 0.8 0.72 0.75

BigBIRD 0.40 0.67 0.82

Table 3: Object labelling accuracy under a few-shot learn-

ing setting for the proposed 3DQ-Nets and two baselines,

ResNetRet and ResNetClass

References

[1] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun. CARLA: An open urban driving simulator. In

CORL, pages 1–16, 2017. 3
[2] B. T. F, K. Talia, and A. G. A. A review of visual mem-

ory capacity: Beyond individual items and toward structured

representations. 11:4–4, 2011. 1
[3] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-

chines. CoRR, abs/1410.5401, 2014. 1
[4] A. W. Harley, F. Li, S. K. Lakshmikanth, X. Zhou, H.-Y. F.

Tung, and K. Fragkiadaki. Embodied view-contrastive 3d

feature learning. arXiv, 2019. 2
[5] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,

C. Lawrence Zitnick, and R. Girshick. CLEVR: A diag-

nostic dataset for compositional language and elementary

visual reasoning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2901–

2910, 2017. 3
[6] D. Kumaran, J. Summerfield, D. Hassabis, and E. Maguire.

Tracking the emergence of conceptual knowledge during hu-

man decision making. Neuron, 63:889–901, 09 2009. 1
[7] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S.

Corrado, J. Dean, and A. Y. Ng. Building high-level fea-

tures using large scale unsupervised learning. In Proceedings

of the 29th International Coference on International Confer-

ence on Machine Learning, ICML’12, page 507–514, Madi-

son, WI, USA, 2012. Omnipress. 1
[8] M. Palmiero, R. Di Matteo, and M. Belardinelli. The rep-

resentation of conceptual knowledge: Visual, auditory, and

olfactory imagery compared with semantic processing. Cog-

nitive processing, 15:143–157, 04 2014. 1
[9] X. Shen, A. A. Efros, and M. Aubry. Discovering visual pat-

terns in art collections with spatially-consistent feature learn-

ing. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2019. 2
[10] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel.

Bigbird: A large-scale 3d database of object instances. 2014

IEEE International Conference on Robotics and Automation

(ICRA), pages 509–516, 2014. 3
[11] H.-Y. F. Tung, R. Cheng, and K. Fragkiadaki. Learning spa-

tial common sense with geometry-aware recurrent networks.

In CVPR, 2019. 2

