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Abstract

Explainable artificial intelligence (XAI) methods rely on
access to model architecture and parameters that is not al-
ways feasible for most users, practitioners, and regulators.
Inspired by cognitive psychology, we present a case for re-
sponse times (RTs) as a technique for XAI. RTs are observ-
able without access to the model. Moreover, dynamic infer-
ence models performing conditional computation generate
variable RTs for visual learning tasks depending on hier-
archical representations. We show that MSDNet, a condi-
tional computation model with early-exit architecture, ex-
hibits slower RT for images with more complex features in
the ObjectNet test set, as well as the human phenomenon of
scene grammar, where object recognition depends on intra-
scene object-object relationships. These results cast light
on MSDNet’s feature space without opening the black box
and illustrate the promise of RT methods for XAl

1. Introduction

The majority of techniques developed for XAl depend on
privileged access to the architecture and parameters of the
model in question [1]. If XAl as a field is to provide satis-
fying explanations for decisions and behaviours to all users,
researchers will need ways to generate explanations from
“outside” the black-box — without having to inspect the
model or using it in publicly infeasible circumstances. Ex-
planations from outside the black box are desirable because
they empower any user to investigate the cause and conse-
quence of otherwise inscrutable model processes. Democ-
ratizing XAI will require the inference of black-box pro-
cesses from observable behaviours.

The black-box problem in XAl is similar to the challenge
faced in building explainable models of a different black
box — the human mind. Cognitive psychologists make
inferences about mental processes using only experimen-
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tal stimuli and observed behaviours. Some ML researchers
have already begun to model Al decisions using methods
from cognitive psychology [2]. For inspiration, we turn to
response time (RT) methods for explaining visual process-
ing in humans. Unlike other XAI techniques, RT analyses
can be conducted purely “outside” the black box.

We document a new XAl technique for dynamic infer-
ence models measuring only the softmax output and system
clock. Our method is agnostic to model architecture, its
implementation, and the dynamic inference strategy used,
making it adaptable to any use-case where variable RTs are
available. We test the human phenomena of object recogni-
tion from non-canonical viewpoints [3] and scene grammar
[4] and show that RT analysis enables testing hypotheses
about models’ hierarchical feature representations.

2. Background
2.1. RT methods for explaining human vision

RT is an easily-measured external behaviour for humans
that corresponds to the complexity of mental operations [5].
However, unlike human brains, most DNNs for computer
vision perform a fixed number of operations over a static
time interval, resulting in a uniform and uninformative RT
distribution. If we want to use RT methods to explain DNN
behaviours, we require a distribution of RTs.

2.2. Conditional Computation

Conditional computation [0] enables resource-efficient
dynamic inference: these models allocate more computa-
tional resources and processing time to harder examples and
less to easy examples. Viola and Jones [7] introduced the
idea of using cascades in order to sequentially process input
by increasingly complex classifiers. We focus our work on
dynamic inference models that are augmented with auxil-
iary intermediate classifiers, providing a way to “early exit”
for easy inputs as soon as the decision criteria is met [8].
Huang et al.’s Multi-Scale DenseNet (MSDNet) [£] is an
example of a successful early exit model that utilizes dense



connections and multi-scale features to achieve near state-
of-the-art results on ImageNet [9]. Phuong et al [10] im-
prove upon MSDNet’s performance by additionally training
with self-distillation from the final classifier into early-exits.

2.3. Scene Grammar

Humans depend on scene grammar, or object-scene con-
gruities, to guide perception and attention [!1]. A seman-
tic violation occurs when an object’s identity is statistically
uncorrelated with that of other scene elements, whereas a
syntactic violation occurs when the statistically reliable in-
terposition of objects in a scene is upset. Scene grammar ef-
fects also occur in artificial neural networks, with evidence
for decreased performance in object and scene classifica-
tion [12]. If MSDNet composes higher-order object fea-
tures representing these relationships, they ought to occur
in deeper layers, manifesting as a slower RT.

3. Measuring RT from Dynamic Inference

The MSDNet architecture we employed has 38 layers
with four scales of feature maps at each layer and five early
exit classifiers attached at layers 10, 17, 24, 31, and 38 re-
spectively. The model was pre-trained for image classifica-
tion on ImageNet and achieves mean top-5 accuracy of 87.8,
90.4, 91.5, 91.8, and 92.3% across its classifiers, respec-
tively. MSD-Net produces variable RTs that correspond
to the complexity of representation required for classifica-
tion by short-circuiting the remaining layers once an inter-
mediate classification reaches a certain confidence thresh-
old (measured as maximum value of classifier logits). This
dovetails with the premise of RT methods in that more com-
plex mental processes require more time. RT can therefore
be used as a direct correlate of hierarchical processing.

The models were implemented with the PyTorch [13] li-
brary. To ensure that RT statistics were model- as well as
implementation-independent, we relied on the system clock
time elapsed during the forward pass of test input. The sys-
tem used to perform the RT calculations had 2 x E5-2620
v2 Hex-core processors (12 physical CPU cores) and 128
GB RAM. Model parameters were loaded using PyTorch’s
parallel module onto two 11 GB NVIDIA 2080Ti GPUs and
each input was passed individually during test time. Exact
values of RT depend on system hardware, so our analysis
and all conclusions are based on relative changes in RT in
response to different inputs, architectures, or training reg-
imens. Inferences about black-box processes are plausible
to the extent that they produce reliable patterns of variance
in response to controlled factors.

4. ObjectNet - Experiment & Results

To quantify the over-representation of canonical view-
points and backgrounds in ImageNet, Barbu & Mayo et

al. created ObjectNet, a 50,000-image test set for object
recognition tasks that features common objects (many over-
lapping with ImageNet classes) viewed from non-canonical
viewpoints on non-stereotyped backgrounds [3]. To achieve
a more diverse set of features, they recruited thousands of
workers to photograph objects from specified angles com-
municated via smartphone. The result is a test set that is
more inclusive of objects’ non-canonical features. When
popular object recognition models are tested on ObjectNet,
they exhibit performance decrements of up to 45%.

We profiled MSDNet, pre-trained on ImageNet for ob-
ject recognition, on the ObjectNet test set, measuring sys-
tem clock time as RT, top 5 classes for each of 5 classi-
fiers, and the softmax confidence of those classifications.
Because ObjectNet is difficult for object recognition mod-
els, it is a candidate test case for proof of concept that RT
can be used to measure performance in DNNs. More impor-
tantly, because ObjectNet deliberately includes many non-
canonical and presumably complex object features, which
may be over-represented in later layers, it ought to display
strong RT effects for models with hierarchical representa-
tion and dynamic inference, including MSDNet.
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Figure 1. (A) Examples of chairs from ImageNet (top; blue) and
ObjectNet (bottom; red). (B) Illustrative example of the step
function describing the early-exit RT for five randomly-selected
chairs from both ImageNet and ObjectNet. (C) Mean early-exit
RT across all test images that had top-5 accuracy in the final aux-
iliary classifier. The values on the right vertical axis indicate the
mean processing time for each of £ = 5 auxiliary classifiers.

Figure 1 illustrates how quickly MSDNet can make a de-
cision given a range of confidence values between 0 and 1.
Results from five randomly-selected images of chairs from



both test sets are plotted to show how confidence propagates
through the model, occasionally increasing RT in steps. The
best performance would be a reverse-L shape, where the
classifier £ = 1 is sufficiently confident to identify the chair
across the full range of thresholds.

RT was aggregated across all images in each set for
every level of confidence. These values were submitted
to an independent-samples #-test to affirm that RT can in-
deed be used as a reliable indicator of performance (¢ =
9.29, p < .001). Looking at the mean RT across all con-
fidence thresholds, MSDNet processes ImageNet test stim-
uli 31.11% faster than ObjectNet stimuli with overlapping
labels (27.40 ms vs. 39.77 ms). Because ObjectNet is char-
acterized by a range of rotational viewpoints and non-
canonical backgrounds, we infer that the higher-order fea-
tures required to identify these items are better represented
across MSDNet’s auxiliary classifiers.

5. SCEGRAM - Experiment & Results

The SCEGRAM database [ 14] is a set of images of 62 in-
door scenes with carefully curated manipulations of scene
grammar. For each scene, there are four images (see Figure
2): consistent scene grammar (CON), inconsistent seman-
tics (SEM), inconsistent syntax (SYN), and inconsistent se-
mantics and syntax (SEMSYN). The semantic and syntactic
manipulations are fully crossed. So for a given scene, say a
kitchen counter, there are four versions of the image: a pot
in a pile of dishes (CON); a clock in a pile of dishes (SEM);
a pot affixed to the dishwasher door (SYN); and a clock af-
fixed to the dishwasher door (SEMSYN). All other visual
features in the scene are identical, allowing for experimen-
tal inferences about the scene grammar manipulations.

We profiled MSDNet object recognition performance on
248 SCEGRAM images, taking the same measurements as
in the ObjectNet experiment. If MSDNet composes higher-
order object features in later layers, then early-exit decisions
should be made using coarse features. If high-confidence
classification depends on processing higher-order object
features such as inter-object or object-scene relationships,
then images with inconsistent scene grammar ought to be
processed slower on average than images with consistent
scene grammar. Because MSDNet was pre-trained for ob-
ject recognition, we can predict that RT effects should be
specific to semantic, rather than syntactic inconsistencies.

Step functions of RT given the full range of confidence
thresholds are displayed in Figure 3. The mean early-exit
RT across all 62 scenes for the full range of confidence
thresholds was determined to generalize a profile of the re-
lationship between RT, confidence, and scene grammar (see
Figure 3B). Visual inspection of these means reveals better
performance for scenes with consistent grammar with local
troughs around 0.2 and 0.4 confidence. In human subjects
experiments with electro-physiological or other time series
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Figure 2. Illustrative example of SCEGRAM'’s test stimuli. Images
feature two orthogonal manipulations: semantic (in)consistency
and syntactic (in)consistency. A single scene is therefore pre-
sented to the model four times, with different combinations of
scene grammar. Each of the four images has an additional clone
without the critical object which controls for low-level visual dif-
ferences with their object-present counterparts. These clones are
not photoshopped and have no low-level artifacts; the critical ob-
ject was physically removed from the photograph.

data, it is common to specify a window of interest within
which to compare RTs from different conditions [4]. We
defined the boundaries for these windows as the mean con-
fidence required by the model to reach the subsequent clas-
sifier’s RT (e.g. if RT for £ = 2 is 0.03 s, what is the mean
confidence at which MSDNet reaches 0.03s?). To charac-
terize whether RT differences were reliable across scenes,
we submitted the data to a three-way repeated-measures
ANOVA with semantics (consistent, inconsistent), syntax
(consistent, inconsistent), and classifier window (thresholds
described above) as within-subjects factors. As expected,
the classifier produced a strong effect on RT (F(3,183) =
222.59, p < .001), indicating that RTs were slower as image
processing progressed through the model. The critical result
is that, as expected, there was a significant effect of seman-
tics (F(1,61) = 4.87, p = .031), indicating that SCEGRAM
images with inconsistent semantic information were classi-
fied reliably slower than images with consistent semantics.
No other effects reached statistical significance.

We can also predict when scene grammar effects should
not emerge on RT. RTs were collected for the object-absent
clone images corresponding to each of the same 248 SCE-
GRAM images used above. These images are identical ex-
cept that the critical object has been removed, resulting in
images with no inconsistencies. As predicted, there was no
effect of semantic inconsistency (F¥(1,61) = 0.36, p = 0.55).
Likewise, training MSDNet with self-distillation, which im-
proves early layers’ feature representations and achieves
higher accuracy in earlier auxiliary classifiers, shows no
scene grammar effects because it performs at a higher level
relatively early. This is evident from the linear, diagonal
shape in Figure 3D relative to the original bowed shape.
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Figure 3. (A) Illustrative example of the step function describ-
ing the early-exit RT for a single scene in SCEGRAM. (B) Mean
early-exit RT across all SCEGRAM scenes, grouped by scene
grammar condition. Consistent scene grammar (CON) has visi-
bly faster RT for responses around 0.2 and 0.4 confidence. The
values on the right vertical axis indicate the mean processing time
for each of k = 5 auxiliary classifiers. (C) Same analysis for the
object-absent clone images in SCEGRAM. These are technically
all semantically consistent. As predicted, they share the same RT
profile as CON. (D) Same analysis for distilled MSDNet.

6. Conclusions and Future Work

These experiments demonstrate the value of RT analy-
ses as a method to probe the inner workings of otherwise
opaque models. We were able to test a priori, falsifiable
hypotheses about the relationship between input space and
response time using two different test sets. We showed that
classification that depends on access to higher-layer fea-
tures takes longer for dynamic inference models using con-
ditional computation. These analyses could be used to form
expectations for when and how models should perform in
situations where explanations are desirable, but privileged
access to a model is denied.

Like humans, MSDNet composes features hierarchi-
cally, with distributed complexity across its intermediate
classifiers. However, the RT analysis failed to reveal an
interaction between SCEGRAM condition and processing
window, so we cannot make any statements about when the
semantic features are processed in MSDNet. In contrast,
humans show a clear double dissociation in neurophysio-
logical recordings: semantic violations trigger an early neu-
ral signature, whereas syntactic violations occur later [4].

In future, we would like to extend our RT analyses to
other dynamic inference models as well as to other visual
tasks and their controls, starting with the effect of rotation,

background and viewpoint variations on object detection
(published but yet to be released for ObjectNet).
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