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Abstract

Explainable artificial intelligence (XAI) methods rely on

access to model architecture and parameters that is not al-

ways feasible for most users, practitioners, and regulators.

Inspired by cognitive psychology, we present a case for re-

sponse times (RTs) as a technique for XAI. RTs are observ-

able without access to the model. Moreover, dynamic infer-

ence models performing conditional computation generate

variable RTs for visual learning tasks depending on hier-

archical representations. We show that MSDNet, a condi-

tional computation model with early-exit architecture, ex-

hibits slower RT for images with more complex features in

the ObjectNet test set, as well as the human phenomenon of

scene grammar, where object recognition depends on intra-

scene object-object relationships. These results cast light

on MSDNet’s feature space without opening the black box

and illustrate the promise of RT methods for XAI.

1. Introduction

The majority of techniques developed for XAI depend on

privileged access to the architecture and parameters of the

model in question [1]. If XAI as a field is to provide satis-

fying explanations for decisions and behaviours to all users,

researchers will need ways to generate explanations from

“outside” the black-box — without having to inspect the

model or using it in publicly infeasible circumstances. Ex-

planations from outside the black box are desirable because

they empower any user to investigate the cause and conse-

quence of otherwise inscrutable model processes. Democ-

ratizing XAI will require the inference of black-box pro-

cesses from observable behaviours.

The black-box problem in XAI is similar to the challenge

faced in building explainable models of a different black

box — the human mind. Cognitive psychologists make

inferences about mental processes using only experimen-
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tal stimuli and observed behaviours. Some ML researchers

have already begun to model AI decisions using methods

from cognitive psychology [2]. For inspiration, we turn to

response time (RT) methods for explaining visual process-

ing in humans. Unlike other XAI techniques, RT analyses

can be conducted purely “outside” the black box.

We document a new XAI technique for dynamic infer-

ence models measuring only the softmax output and system

clock. Our method is agnostic to model architecture, its

implementation, and the dynamic inference strategy used,

making it adaptable to any use-case where variable RTs are

available. We test the human phenomena of object recogni-

tion from non-canonical viewpoints [3] and scene grammar

[4] and show that RT analysis enables testing hypotheses

about models’ hierarchical feature representations.

2. Background

2.1. RT methods for explaining human vision

RT is an easily-measured external behaviour for humans

that corresponds to the complexity of mental operations [5].

However, unlike human brains, most DNNs for computer

vision perform a fixed number of operations over a static

time interval, resulting in a uniform and uninformative RT

distribution. If we want to use RT methods to explain DNN

behaviours, we require a distribution of RTs.

2.2. Conditional Computation

Conditional computation [6] enables resource-efficient

dynamic inference: these models allocate more computa-

tional resources and processing time to harder examples and

less to easy examples. Viola and Jones [7] introduced the

idea of using cascades in order to sequentially process input

by increasingly complex classifiers. We focus our work on

dynamic inference models that are augmented with auxil-

iary intermediate classifiers, providing a way to “early exit”

for easy inputs as soon as the decision criteria is met [8].

Huang et al.’s Multi-Scale DenseNet (MSDNet) [8] is an

example of a successful early exit model that utilizes dense



connections and multi-scale features to achieve near state-

of-the-art results on ImageNet [9]. Phuong et al [10] im-

prove upon MSDNet’s performance by additionally training

with self-distillation from the final classifier into early-exits.

2.3. Scene Grammar

Humans depend on scene grammar, or object-scene con-

gruities, to guide perception and attention [11]. A seman-

tic violation occurs when an object’s identity is statistically

uncorrelated with that of other scene elements, whereas a

syntactic violation occurs when the statistically reliable in-

terposition of objects in a scene is upset. Scene grammar ef-

fects also occur in artificial neural networks, with evidence

for decreased performance in object and scene classifica-

tion [12]. If MSDNet composes higher-order object fea-

tures representing these relationships, they ought to occur

in deeper layers, manifesting as a slower RT.

3. Measuring RT from Dynamic Inference

The MSDNet architecture we employed has 38 layers

with four scales of feature maps at each layer and five early

exit classifiers attached at layers 10, 17, 24, 31, and 38 re-

spectively. The model was pre-trained for image classifica-

tion on ImageNet and achieves mean top-5 accuracy of 87.8,

90.4, 91.5, 91.8, and 92.3% across its classifiers, respec-

tively. MSD-Net produces variable RTs that correspond

to the complexity of representation required for classifica-

tion by short-circuiting the remaining layers once an inter-

mediate classification reaches a certain confidence thresh-

old (measured as maximum value of classifier logits). This

dovetails with the premise of RT methods in that more com-

plex mental processes require more time. RT can therefore

be used as a direct correlate of hierarchical processing.

The models were implemented with the PyTorch [13] li-

brary. To ensure that RT statistics were model- as well as

implementation-independent, we relied on the system clock

time elapsed during the forward pass of test input. The sys-

tem used to perform the RT calculations had 2 × E5-2620

v2 Hex-core processors (12 physical CPU cores) and 128

GB RAM. Model parameters were loaded using PyTorch’s

parallel module onto two 11 GB NVIDIA 2080Ti GPUs and

each input was passed individually during test time. Exact

values of RT depend on system hardware, so our analysis

and all conclusions are based on relative changes in RT in

response to different inputs, architectures, or training reg-

imens. Inferences about black-box processes are plausible

to the extent that they produce reliable patterns of variance

in response to controlled factors.

4. ObjectNet - Experiment & Results

To quantify the over-representation of canonical view-

points and backgrounds in ImageNet, Barbu & Mayo et

al. created ObjectNet, a 50,000-image test set for object

recognition tasks that features common objects (many over-

lapping with ImageNet classes) viewed from non-canonical

viewpoints on non-stereotyped backgrounds [3]. To achieve

a more diverse set of features, they recruited thousands of

workers to photograph objects from specified angles com-

municated via smartphone. The result is a test set that is

more inclusive of objects’ non-canonical features. When

popular object recognition models are tested on ObjectNet,

they exhibit performance decrements of up to 45%.

We profiled MSDNet, pre-trained on ImageNet for ob-

ject recognition, on the ObjectNet test set, measuring sys-

tem clock time as RT, top 5 classes for each of 5 classi-

fiers, and the softmax confidence of those classifications.

Because ObjectNet is difficult for object recognition mod-

els, it is a candidate test case for proof of concept that RT

can be used to measure performance in DNNs. More impor-

tantly, because ObjectNet deliberately includes many non-

canonical and presumably complex object features, which

may be over-represented in later layers, it ought to display

strong RT effects for models with hierarchical representa-

tion and dynamic inference, including MSDNet.
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Figure 1. (A) Examples of chairs from ImageNet (top; blue) and

ObjectNet (bottom; red). (B) Illustrative example of the step

function describing the early-exit RT for five randomly-selected

chairs from both ImageNet and ObjectNet. (C) Mean early-exit

RT across all test images that had top-5 accuracy in the final aux-

iliary classifier. The values on the right vertical axis indicate the

mean processing time for each of k = 5 auxiliary classifiers.

Figure 1 illustrates how quickly MSDNet can make a de-

cision given a range of confidence values between 0 and 1.

Results from five randomly-selected images of chairs from



both test sets are plotted to show how confidence propagates

through the model, occasionally increasing RT in steps. The

best performance would be a reverse-L shape, where the

classifier k = 1 is sufficiently confident to identify the chair

across the full range of thresholds.

RT was aggregated across all images in each set for

every level of confidence. These values were submitted

to an independent-samples t-test to affirm that RT can in-

deed be used as a reliable indicator of performance (t =

9.29, p < .001). Looking at the mean RT across all con-

fidence thresholds, MSDNet processes ImageNet test stim-

uli 31.11% faster than ObjectNet stimuli with overlapping

labels (27.40 ms vs. 39.77 ms). Because ObjectNet is char-

acterized by a range of rotational viewpoints and non-

canonical backgrounds, we infer that the higher-order fea-

tures required to identify these items are better represented

across MSDNet’s auxiliary classifiers.

5. SCEGRAM - Experiment & Results

The SCEGRAM database [14] is a set of images of 62 in-

door scenes with carefully curated manipulations of scene

grammar. For each scene, there are four images (see Figure

2): consistent scene grammar (CON), inconsistent seman-

tics (SEM), inconsistent syntax (SYN), and inconsistent se-

mantics and syntax (SEMSYN). The semantic and syntactic

manipulations are fully crossed. So for a given scene, say a

kitchen counter, there are four versions of the image: a pot

in a pile of dishes (CON); a clock in a pile of dishes (SEM);

a pot affixed to the dishwasher door (SYN); and a clock af-

fixed to the dishwasher door (SEMSYN). All other visual

features in the scene are identical, allowing for experimen-

tal inferences about the scene grammar manipulations.

We profiled MSDNet object recognition performance on

248 SCEGRAM images, taking the same measurements as

in the ObjectNet experiment. If MSDNet composes higher-

order object features in later layers, then early-exit decisions

should be made using coarse features. If high-confidence

classification depends on processing higher-order object

features such as inter-object or object-scene relationships,

then images with inconsistent scene grammar ought to be

processed slower on average than images with consistent

scene grammar. Because MSDNet was pre-trained for ob-

ject recognition, we can predict that RT effects should be

specific to semantic, rather than syntactic inconsistencies.

Step functions of RT given the full range of confidence

thresholds are displayed in Figure 3. The mean early-exit

RT across all 62 scenes for the full range of confidence

thresholds was determined to generalize a profile of the re-

lationship between RT, confidence, and scene grammar (see

Figure 3B). Visual inspection of these means reveals better

performance for scenes with consistent grammar with local

troughs around 0.2 and 0.4 confidence. In human subjects

experiments with electro-physiological or other time series
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Figure 2. Illustrative example of SCEGRAM’s test stimuli. Images

feature two orthogonal manipulations: semantic (in)consistency

and syntactic (in)consistency. A single scene is therefore pre-

sented to the model four times, with different combinations of

scene grammar. Each of the four images has an additional clone

without the critical object which controls for low-level visual dif-

ferences with their object-present counterparts. These clones are

not photoshopped and have no low-level artifacts; the critical ob-

ject was physically removed from the photograph.

data, it is common to specify a window of interest within

which to compare RTs from different conditions [4]. We

defined the boundaries for these windows as the mean con-

fidence required by the model to reach the subsequent clas-

sifier’s RT (e.g. if RT for k = 2 is 0.03 s, what is the mean

confidence at which MSDNet reaches 0.03 s?). To charac-

terize whether RT differences were reliable across scenes,

we submitted the data to a three-way repeated-measures

ANOVA with semantics (consistent, inconsistent), syntax

(consistent, inconsistent), and classifier window (thresholds

described above) as within-subjects factors. As expected,

the classifier produced a strong effect on RT (F(3,183) =

222.59, p < .001), indicating that RTs were slower as image

processing progressed through the model. The critical result

is that, as expected, there was a significant effect of seman-

tics (F(1,61) = 4.87, p = .031), indicating that SCEGRAM

images with inconsistent semantic information were classi-

fied reliably slower than images with consistent semantics.

No other effects reached statistical significance.

We can also predict when scene grammar effects should

not emerge on RT. RTs were collected for the object-absent

clone images corresponding to each of the same 248 SCE-

GRAM images used above. These images are identical ex-

cept that the critical object has been removed, resulting in

images with no inconsistencies. As predicted, there was no

effect of semantic inconsistency (F(1,61) = 0.36, p = 0.55).

Likewise, training MSDNet with self-distillation, which im-

proves early layers’ feature representations and achieves

higher accuracy in earlier auxiliary classifiers, shows no

scene grammar effects because it performs at a higher level

relatively early. This is evident from the linear, diagonal

shape in Figure 3D relative to the original bowed shape.
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Figure 3. (A) Illustrative example of the step function describ-

ing the early-exit RT for a single scene in SCEGRAM. (B) Mean

early-exit RT across all SCEGRAM scenes, grouped by scene

grammar condition. Consistent scene grammar (CON) has visi-

bly faster RT for responses around 0.2 and 0.4 confidence. The

values on the right vertical axis indicate the mean processing time

for each of k = 5 auxiliary classifiers. (C) Same analysis for the

object-absent clone images in SCEGRAM. These are technically

all semantically consistent. As predicted, they share the same RT

profile as CON. (D) Same analysis for distilled MSDNet.

6. Conclusions and Future Work

These experiments demonstrate the value of RT analy-

ses as a method to probe the inner workings of otherwise

opaque models. We were able to test a priori, falsifiable

hypotheses about the relationship between input space and

response time using two different test sets. We showed that

classification that depends on access to higher-layer fea-

tures takes longer for dynamic inference models using con-

ditional computation. These analyses could be used to form

expectations for when and how models should perform in

situations where explanations are desirable, but privileged

access to a model is denied.

Like humans, MSDNet composes features hierarchi-

cally, with distributed complexity across its intermediate

classifiers. However, the RT analysis failed to reveal an

interaction between SCEGRAM condition and processing

window, so we cannot make any statements about when the

semantic features are processed in MSDNet. In contrast,

humans show a clear double dissociation in neurophysio-

logical recordings: semantic violations trigger an early neu-

ral signature, whereas syntactic violations occur later [4].

In future, we would like to extend our RT analyses to

other dynamic inference models as well as to other visual

tasks and their controls, starting with the effect of rotation,

background and viewpoint variations on object detection

(published but yet to be released for ObjectNet).

Acknowledgement

The authors would like to thank Mary Phuong for shar-

ing her code and pre-trained models.

References

[1] I. Rahwan et al., “Machine behaviour,” Nature, vol. 568,

no. 7753, 2019.

[2] S. Ritter et al., “Cognitive psychology for deep neural net-

works: A shape bias case study,” in Proceedings of the 34th

International Conference on Machine Learning, vol. 70,

2017.

[3] A. Barbu et al., “Objectnet: A large-scale bias-controlled

dataset for pushing the limits of object recognition mod-

els,” in Advances in Neural Information Processing Sys-

tems, 2019.
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