

225

Abstract

This paper proposes a novel RHF-Net (Recursive

Hybrid Fusion pyramid network) to solve the problem of

small object detection on real-time embedded devices.

Though the object detection accuracy rate is improved by a

large margin with SoTA (State-of-The-Art) models, e.g.,

SSD, YOLO, RetinaNet, and RefineDet, they are still

problematic for small object detection and inefficient on

embedded systems. One novelty of the RHF-Net is a

bidirectional fusion module) that allows to fuse feature

maps with both the top-down and bottom-up directions to

generate flexible FPs for small object detection. This

module can be easily integrated to any feature pyramid

based object detection model. Another novelty of this net is

a recursive concatenation and reshaping module which can

recursively concatenate not only high-level semantic

features from deep layers but also reshape spatially richer

features from shallower layers to prevent small objects

from disappearing. RHF-Net net adopts computationally

low-cost and feature preserving operations in the fusion,

thus it is efficient and accurate even on embedded devices.

The superiority of RHF-Net is investigated on the COCO

benchmark and UAVDT dataset in terms of mAP and FPS.

1. Introduction

Since 2012, huge breakthroughs in object detection have

been occurred one after another with the technology

advancements on deep convolutional neural network (CNN)

based models. Very first outstanding CNN model was

AlexNet [1] which beat all the former SoTA classical

machine learning models on ILSVRC challenge. Currently,

there are two-stage (proposal driven) and one-stage (direct)

object detection models in the literature; that is, the

region-proposal based (two-stage) detection model such as

R-CNN [2], faster R-CNN [3], SPP-Net [4], or Mask R-NN

[5], and the regression based (one-stage) model such as SSD

[8], RetinaNet [17], or YOLOv3 [7]. Generally, the former

is known for its higher accuracy and the latter is known for

its better efficiency. In the latest few years, accuracies of the

one-stage model have been improved with a large margin by

various state-of-the-art models like FPN [6], YOLOv3 [7],

and SSD [7], which usually consist of deep feature

extractors (backbones, i.e., DarkNet-53 [7] and

ResNet-101[10]), a feature pyramid (FP), and a classifier.

Using a small or medium sized backbone can reduce the

computational cost and thus increase the efficiency.

However, a shallow backbone cannot generate rich

semantic features for object detection. In order to increase

the accuracy of object detection, the above SoTA methods

usually adopt a deeper backbone (more than a hundred of

layers) which will lead to a small object (<3232 pixels in

extent) in an input image become a single pixel at the final

feature layer while extracting its features. Obviously, a

single pixel is not sufficient for discriminating an object

from its background. Generally speaking, deepening the

network can enhance the accuracy but it leads to not only a

higher computational cost, but also a lower detection rate on

small objects. Thus, the above SoTA object detectors are

problematic and unsuitable for small object detection.

To improve both the accuracy and efficiency, the

detection model should avoid using too many

feature-richness dithering operations such as convolutions,

and computationally expensive operations, such as pooling

and addition, to preserve as much as possible features for

prediction. Lately, to improve the accuracy on small object

detection, a feature pyramid (FP) structure is commonly

adopted in the SoTA detectors due to its multi-scale

structure. With this structure, abundant spatial information

can be extracted from the last few layers of the network

backbone. In general, FP is a multiple-layered pyramid

structure that extracts spatial features from the last feature

layer so that features can be fused with a top-down direction

for detecting various scaled objects. There are few common

types of FPs employed in object detection models, i.e.,

pyramidal feature hierarchy (bottom-up), hourglass

(bottom-up and top-down), SPP (spatial pyramid pooling),

SPP + multi-scale fusion (which are adopted in SSD [7],

FPN [6], SPP [4]), and PFPN [13], respectively. Hourglass

FPs are generated by fusing last three layers of a backbone.

On the other hand, SPP-based FPs [4][13] are generated

from the last layer of a backbone. Thus, hourglass FPs

contain richer multi-scaled features than SPP-based FPs,

Recursive Hybrid Fusion Pyramid Network for Real-Time Small Object Detection

on Embedded Devices

Ping-Yang Chen1, Jun-Wei Hsieh2, Chien-Yao Wang
3
, and Hong-Yuan Mark Liao3

1Department of Computer Science, National Chiao Tung University, Taiwan
2College of Artificial Intelligence and Green Energy, National Chiao Tung University, Taiwan

3Institute of Information Science, Academia Sinica, Taiwan
pingyang.cs08g@nctu.edu.tw, jwhsieh@nctu.edu.tw, kinyiu@iis.sinica.edu.tw,

and liao@iis.sinica.edu.tw

mailto:jwhsieh@nctu.edu.tw

226

Concat

Conv. / 2x up

3x3 Conv. /

1x1 conv

Scale 1 (13×13)

Conv. 5L

Hourglass Feature

Pyramid

Scale 2 (26×26)

Scale 3 (52×52)

Predictions

Backbone

(DarkNet53)

b) Architecture of YOLOv3 with an hourglass FP.

3x3 Conv. /

1x1 conv
Conv. 5L

Reshape

Concat

Hourglass Feature Pyramid

Backbone
Final FP

Bottom-up

path

Top-Down

path

Scale 1

Scale 2

Scale 3

Predictions

SPP

DarkNet-53

FE

RESC FE

FE

SPP - Spatial Pyramid Pooling

RESC - REShaped and

 Concatenated Block

FE - Feature Extractor

FP - Feature Pyramid
Input size: 512x512x3

RESC

d) Architecture of a proposed RHF net with

Darknet-53 as a backbone

SPPBackbone

a) SPP based FP network.

Scale 1

Final Feature

Pyramid

Scale 2

Scale 3

Predictions

Reshape

Concat

Hourglass Feature Pyramid

Final FP

Bottom-up

path

Scale 1

Scale 2

Scale 3

Predictions

Top-down

path

Hybrid Bottom-Up

Fusion Module

Hybrid Bottom-Up

Fusion Module

Top-Down path

Top-Down path

C) Combination of an hourglass FP based model and a proposed

Hybrid Bottom-up Fusion module

Figure 1. Architectures of a) SPP based FP network, b) YOLOv3 [7] with an hourglass feature pyramid, c) a model updated with a

proposed hybrid bottom-up fusion module, and d) a proposed RHF model consists of a backbone (Darknet53 [7]), a three-scaled

hourglass feature pyramid, and a final FP generated by the hybrid fusion module. Scale 1 adopts SPP (spatial pyramid pooling) and a

feature extractor (FE), and Scale 2 and 3 comprises of RESC (REShaped and Concatenated) block, and FE.

and this will lead to a higher accuracy in small object

detection. However, the hourglass-based method adopts a

top-down path to generate a three-scale FP for object

prediction by summing features from the deeper layers to

the shallower layers of the backbone. This one-directional

path will prohibit the networks from detecting small objects.

Therefore, its accuracy on small object detection will be

problematic if small object features have already

disappeared at the last layer of a backbone. This problem

can be solved if contextual features of small objects from

shallow layers can be recursively brought to other deeper

layers for object prediction. To solve all above mentioned

problems, we propose a novel deep detection model named

RHF net (Recursive Hybrid Fusion pyramid network) to

recursively fuse feature maps with both the top-down and

bottom-up mechanism to generate flexible FPs for small

object detection. First direction is a top-down path which

forms an hourglass FP. The second direction is a hybrid

bottom-up path that generates final FP layers by

concatenating not only the reshaped features from a

shallower layer but also features of the current layer of the

hourglass FP. With this hybrid fusion mechanism, an object

with very small size (even if it is down-sampled to 1 pixel)

can re-appear at shallower layers. Another novelty of the

proposal RHF net is to create a RESC (REShaped and

Concatenation) module which can be recursively executed

to not only concatenate high-level semantic features from

deep layers to shallower layers (top-down direction) but

also re-shape spatially richer features of small objects at a

shallower layer to a deeper layer (bottom-up direction). The

RHF-net can perform better than SoTA FP-based methods

due to its special design on concatenation and reshaping

operations during the fusion process. Figure 1 shows the

architecture of RHF net which is composed of DarkNet-53

as a backbone, an hourglass FP, and a final FP. DarkNet-53

is adopted due to its outstanding feature extraction ability

and a low computational cost compared to very deep

backbones, e.g., ResNet-101. The hourglass FP is generated

by recursively performing the RESC block, SPP, and

convolutional feature extractors (FEs) for the tradeoff

between accuracy and efficiency. The hybrid architecture is

superior to the SoTA FP-based methods, e.g., YOLOv3[7],

PFPNet, SSD[8], RefineDet, RetinaNet[17], MobileNet

[42], PeLee [20], due to its special computationally

low-cost and feature preserving operations. Superiority of

the RHF net over the existing SoTA methods is proven for

general object detection and small object detections on the

MS COCO [45] and UAVDT [44] benchmark datasets.

Moreover, in case of a light backbone is adopted, the

proposed model will also perform the best among SoTA

light-weight nets for real-life small object detection on

embedded devices. Main contributions of this paper are

summarized as follows:

 Superior performances in terms of accuracy and

efficiency are achieved by the proposed RHF net;

 Hourglass FP based object detection models are

improved by adding our hybrid fusion module;

 Small object features are enriched in deeper layers

by fusing higher-semantic features from a shallower

layer with RESC block and the hybrid fusion module.

226

Therefore, a higher accuracy is achieved for small

object detection;

 Computation cost is decreased with a large margin

by adopting concatenation operations instead of

using addition and convolution;

 Feature richness is preserved by fusing features not

only from a shallower layer but also a current layer

with a reshaping operation instead of pooling and

addition operations;

2. Related Works

2.1. One-stage object detectors

One-stage object detector consists of a backbone

network (referred to backbone) and a predictor. The

backbone is a stacked feature map that is pre-trained as a

single image classifier on a very large dataset, i.e.,

ImageNet. In 2013, the first CNN-based one-stage object

detector OverFeat [15] was developed using

sliding-window paradigm. Then, two years later, YOLO [16]

achieved the SoTA performance by integrating bounding

box proposal and subsequent feature resampling as one

stage. Moreover, YOLO divides an input image into 77

grids and simultaneously predicts bounding boxes and class

confidences on each grid. Next, SSD [8] employed

in-network multiple feature maps for detecting objects with

varying shapes and sizes, and this feature makes SSD more

robust than YOLO. YOLOv2 [9] achieved outstanding

results in terms of accuracy and efficiency by proposing

DarkNet-19 [9] as a backbone, and it includes several new

aspects such as batch normalization, higher resolution

classifier, anchor box prediction. For better detection of

small objects, FPN is developed using a feature pyramid

(FP) structure and it achieves a higher detection accuracy on

small objects. Later, the SoTA YOLOv3 [7] was developed

by adopting the concept of FPN. By changing the backbone

from DarkNet-19 [9] to DarkNet-53 [7], YOLO v3 achieves

the best performance. Similarly, RetinaNet [17], a

combination of FPN and ResNet as a backbone, proposes

the use of focal loss to significantly reduce false positives in

one-stage detectors by dynamically adjusting the weights of

each anchor box.

2.2. Latest one-stage object detectors

An hourglass feature pyramid (HFP) (see Figure 1(b, c,

and d)), one of common types of FP, is adopted in many

models, e.g., FPN, YOLOv3, RetinaNet, and RefineDet, to

improve the detection rate of small objects. HFP is

generated by fusing from a high-feature resolution in the

deepest layer of a backbone to a low-feature resolution in

the shallower scales with a top-down path and lateral

connections, in which the shallower layers are expected to

richen strong features of small objects. Consequently, HFP

provides a higher accuracy on small object detection.

However, most of these models have a high computational

cost due to their very deep backbones and high-cost

operations such as convolutions. Thus, the models are not

applicable for real-time embedded applications. Moreover,

fusing features of small objects along the top-down

pathways is not possible if small objects are already

disappeared or become 1 pixel.

2.3. Latest one-stage object detectors

Since object detection is one of the most popular fields

in computer vision, several SoTA models have been

developed in the past one year. RefineDet [19] employed an

Encode-Decode structure for deepening the network and

up-sampling deeper scale features to the shallower scales to

enrich the contextual information for the final FP. Based on

the VGG16 [1] backbone, it achieved APS of 16.3 and AP50

of 54.5 on input size 512, MS COCO [45] test-dev. A newly

proposed PeLee [20] model, a variant of DenseNet [21],

outperformed SSD+MobileNet by 6.53% on Stanford Dogs

[22] dataset with its much shallower network. However,

PeLee has a lower performance on MS COCO [45] dataset

and lower accuracy on small object detection. PFPN [13]

adopts VGGNet-16 as a backbone and SPP for generating a

final FP from the last layer of a backbone which

concatenates multi-scale features. The above mentioned

model outperformed other methods on small object

detection. CornerNet [24], with Hourglass-104 as a

backbone, detects an object bounding box as a pair of key

points via a corner pooling technique, and it outperformed

the existing methods on multi-scale general object detection

and small object detection categories. The latest SoTA

one-stage object detector M2Det [29] outperformed all the

existing methods on all multi-scale categories on MS

COCO. However, all these models are not suitable for a

real-time object detection task due to their high

computational cost.

3. Method

Most of the SoTA methods, i.e., FPN, YOLOv3, RetinaNet,

and RefineDet use an HFP to improve the detection rate of

small objects. The HFP is often generated from a very deep

backbone by fusing features along a top-down path.

Consequently, HFP provides a higher accuracy on small

object detection but makes these models time-consuming

and not applicable for real-time embedded applications due

to high-cost operations such as convolutions. Moreover,

fusing features of small objects along the top-down

pathways is not possible if small objects are already

disappeared or become 1 pixel. To reduce the computation

cost, this paper proposes a RESC (REShaped and

Concatenation) block to recursively generate an hourglass

227

Bottleneck

(W/2,H/2,D/2)

Upsample 2x

(W,H,D/2)

B
o

ttle
n

e
c

k

(W
,H

,D
/2

)

C
o

n
v

 3
x
3

(W
,H

,D
)

RESC Block (CB)

Scale n+1

FE

DarkNet53
(W,H,D)

CONCAT2
(W,H,D+D/2+D)

CONCAT1
(W,H,D+D/2)

Bottleneck

(2W,2H,D/8)

REORG1

(W,H,D/2)

Scale n

DarkNet53
(2W,2H,D/2)

C
o

n
v

 3
x
3

(W
,H

,D
)

B
o

ttle
n

e
c

k

(W
,H

,D
/2

)

C
o

n
v

 3
x
3

(W
,H

,D
)

B
o

ttle
n

e
c

k

(W
,H

,D
/2

)

B
o

ttle
n

e
c

k

(W
,H

,2
5

5
)

RESC

Prediction

Feature Extractor (FE)

Scale 0

DarkNet53

Scale 0

Shallower Scale

FE Prediction

Prediction

Bottleneck

(W/4,H/4,D)

Upsample 4x

(W,H,D)

SPP

FE

𝑭𝑅1𝑛

𝑭𝐶𝐵6𝑛 𝑭𝐶𝐵𝑛

Even Deeper Scale

Scale n-1

DarkNet53
(W/2,H/2,2D)

RESC

Deeper Scale

FE Prediction

1n

Fin
P



0

Fin
P

n

Fin
P

+1n

Fin
P

0

B
P

1n

B
P



n

B
P

1n

B
P



Current Scale

Applicable if n>1

Applicable if n>2

𝑩𝑛−1 𝑩𝑛−2

𝑩𝑛

(W/2,H/2,D)

CONCAT3
(W,H,D+D/2)

Bottleneck

(2W,2H,D/8)

REORG2

(W,H,D/2)

𝑭𝑅2𝑛

Bottom-up Fusion

Module (BFM)

BottomUp

Fusion

BottomUp
Fusion

BottomUp

Fusion

𝑭𝐶𝐵0𝑛

𝑭𝐶𝐵1𝑛

𝑭𝐶𝐵2𝑛 𝑭𝐶𝐵3𝑛

𝑭𝐶𝐵4𝑛

𝑩0

𝑷𝐻0

𝑷𝐻𝑛−1

𝑷𝐻𝑛

𝑪𝑛+1

𝑪𝑛

𝑪1

𝑪𝑛+2 𝑷𝐵𝑛+2

𝑪𝑛−1

𝑷𝐻𝑛+1 𝑭𝐶𝐵𝑛+1

BottomUp

Fusion

Figure 2. Final feature pyramid generating flowchart for Scale n consisting of RESC block and FE. However, for the Scale0, feature

pyramid scale is generated with SPP and FE.

FP by merging features not only from the deeper layers but

also from the shallower layer. In addition to the RESC

block, a hybrid bottom-up fusion module is proposed to fuse

the hourglass FP from a bottom-up path so that more

discriminant features to identify small and medium objects

can be fed into the final feature map for object prediction.

 Figure 1(d) illustrates the basic architecture of our RHF

net, a one-stage object detection model for real-time object

detection, which consists of an hourglass FP and the hybrid

fusion module. We denote the RHF-Net with a quadruple

(, , ,) , where is a backbone, is an

hourglass FP generating function, is a final FP

generating function, and is a prediction function.

could be any feature extracting backbone, i.e., DarkNet-53

[7] or ResNet-101[10]. From , base features
B

P

1 2 1{ , ,..., }n

B B B

 P P P can be formed for generating an

hourglass FP, i.e.,
1 2 1{ , ,..., }n

H H H H

P P P P and the final FP,

i.e., 1 2 1{ , ,..., }n

Fin Fin Fin Fin

P P P P , where n is the number of

scales for FP. The function takes
B

P as input to generate

H
P by recursively performing the RESC module (see

Figure 2). Finally, predicts the object class and bounding

box from Fin
P by a logistic regression.

 Figure 2 demonstrates a comprehensive flowchart to

generate the nth scale of a final FP, where the RESC block

and FE (feature extractor) together form
n

H
P , the nth scale

of an hourglass FP, and then the hybrid fusion module forms
n

Fin
P , the nth scale of the final FP. The RESC block

generates the final FP,
Fin

P , by recursively concatenating

and reorganizing four different scales from
B

P . RESC

block adopts concatenation for fusing features of a deeper

layer to a current layer and reorganization operation for

fusing features of a shallower layer to a current layer. Both

operations have a very low computational cost and can

preserve all the contextual information. Under those

circumstances, the accuracy and efficiency are both

improved. On the other hand, the zero-th scale is generated

by SPP (spatial pyramid pooling) [4], FE, and the hybrid

fusion module.

Max 5x5

(W,H,D)

Max 9x9

(W,H,D)

Max 13x13

(W,H,D)

Concat
(W,H,3D)

Spatial Pyramid Pooling𝑭𝑆𝑃𝑃(0)
 𝑭𝑆𝑃𝑃(1)
 𝑭𝑆𝑃𝑃(2)

𝑷𝐵0

B
o

ttle
n

e
c
k

(N
,N

,D
)

𝑭𝑆𝑃𝑃

(a)

C
o
n

v
 3

x
3

(W
,H

,D
)

B
o

ttle
n
e

c
k

(W
,H

,D
/2

)

C
o
n

v
 3

x
3

(W
,H

,D
)

B
o

ttle
n
e

c
k

(W
,H

,D
/2

)

B
o

ttle
n
e

c
k

(W
,H

,2
5

5
)

Prediction

Feature Extractor (FE)

𝑷𝐹𝑛 𝑭𝐶𝐵𝑛

(b)

Figure 3. (a) Spatial pyramid pooling block. (b) FE block.

Figure 3(a) shows SPP that consists of a bottleneck layer,

3 max pooling layers with kernel sizes of (55), (99), and

(1313), and a concatenation. Number of feature channels

226

are reduced to half with the bottleneck layer, then three

groups of max pooled feature maps with the same

dimension, (0)

SPP
F , (1)

SPP
F , and (2)

SPP
F , are generated. For

concatenation purpose, all three max pooling operations

employ a zero padding and a stride of 1 to create the same

output sized feature maps. The concatenated max pooled

features will become the output of SPP.

3.1. RESC Module for Feature Fusion

RESC block has two concatenation and one reshaping

operations, i.e., CONCAT1, CONCAT2, and REORG1 [9].

Unlike concatenation methods in SoTA methods, the

proposed RESC block recursively concatenates contextual

features of not only adjacent layers but also even deeper

(n-2)th layer. In other words, RESC block fuses features

from 4 adjacent scales (shallow, current, deep, and deeper)

of a backbone to richen the features for better detection.

CONCAT1 concatenates current scale features of a

backbone n

B
P and features

1

n

CB
F that come from the output

of bottleneck layer
1n

B


 after FE in the deeper scale.

CONCAT2 is applied to concatenate
4

n

CB
F of current scale,

reshaped features
1

n

R
F of a shallow scale

1n

B


P , and 4

up-sampled features from even deeper scale. The output of

RESC block
n

CB
F can be formulated as:

 4 6

4

() () ()

1

() ()

1

[, ,], 2

[,], otherwise.

n n n

CB R CBn

CB n n

CB R

n   


F F F
F

F F
 (2)

To increase feature richness for deeper scales, REORG1

brings contextual features from a shallow layer to its deep

layer without subsequent operations. First, the bottleneck

layer uses 1×1 convolution to reduce the number of

channels from D/2 to D/8. Then, REORG1 takes every

single pixel of a feature map from the bottleneck block to

generate 4 channels by separating adjacent pixels into

different channels. If the size of feature maps were (2W, 2H,

D/8), then the size of reshaped features is (W, H, D/2).

3.2. Feature Extractor

Figure 3(b) illustrates the flowchart of the FE block. It

is put after the RESC block to extract more contextual and

semantic features from fused features of 4 adjacent scales.

The FE block consists of 2 consecutive parts of feature

extraction where each part includes one bottleneck layer

and a 3 3 convolutional layer. The former is employed to

reduce the number of channels from D to D/2. The latter is

employed to extract contextual features. Output of the

second bottleneck layer is fed to RESC at the shallower

scale for fusion.

3.3. Hybrid Bottom-up Fusion

FE can generate more contextual and semantic features. If

the output of FE can be added into the final FP with a

bottom-up direction, higher accuracy in object detection

should be obtained. Thus, different from other SoTA

methods which create prediction maps only from a

top-down direction (see the red path in Figure 1(a)), this

paper proposes a hybrid bottom-up fusion module to fuse

the hourglass FP, i.e.,
H

P not only from a top-down

direction but also from a bottom-up direction (see the green

block in Figure 1(c) or (d)). The bottom-up fusion can bring

contextual features from shallower scales to enrich the

features in the final FP to predict and detect small and

medium objects more accurately. The hybrid fusion module

consists of CONCAT3, REORG2, and two bottleneck

layers. CONCAT3 merges the outputs of FE and REORG2,

i.e., n

H
P and 2

n

R
F (which is the reorganized feature map of

1n
C in the shallow scale) to generate n

C . In other words,

the output of CONCAT3 can be calculated as follows:

 2[,]n n n

R H
C F P . (3)

The last bottleneck layer is used for fixing the number of

channels to L, L=255 for our RHF net. Finally, the last layer

outputs the final FP, i.e., n

Fin
P at the scale n.

3.4. Backbone

For the trade-off between accuracy and efficiency,

most SoTA object detectors adopt VGGNet-16 or

ResNet-101 which have 16 and 101 layers, respectively.

The former’s accuracy is limited for its number of
convolution layers and the latter is limited for inference

speed but with high accuracy. However, we chose

DarkNet-53 [7] as the backbone of RHF net due to its

medium-sized architecture and excellent feature extraction

capability. Input image size is 512512 and sizes of the

backbone feature pyramid scales are 1616512,

3232512, and 6464256, respectively. For edge

computing, the RHF net can adopt a shallower backbone

similar to Tiny15 from YOLOv3-tiny, or PeLee net [20].

4. Experimental Results

We have employed three datasets (CarFlow,

UAVDT[44], and COCO[45]) to evaluate our model using

a machine with NVIDIA Jetson TX2 and NVIDIA Titan X.

CarFlow is an in-house dataset consisting of 6000 (train:

2500, val: 500, and test: 3000) images with a resolution

1920×1920 that were extracted from day/night videos

captured by a fisheye camera installed at different

intersections and tested for edge computing (NVIDIA

Jetson TX2 which works on mode 0). Metric adopted for

performance evaluation is Average Precision (AP).

Inference time is represented as FPS (Frames per Second).

227

4.1. Accuracy Improvements by Hybird Fusion Module

Since the RHF net is developed for improving the

accuracy of small object detection, we evaluate the effects

of our RHF model with/without hybrid fusion module on

object detection based on the CarFlow and UAVDT

dataset[44]. Table 1 tabulates the ablation studies to show

the advantage of this module. A light backbone, i.e., Pelee

is adopted here to test the computation load of this hybrid

fusion module. Clearly, from Table 1, the accuracy of small

object detection is most significantly improved if the hybrid

fusion module is adopted. Table 2 shows the ablation study

of our method with/without the hybrid fusion module based

on the UAVDT dataset. Three backbones, i.e.,

Darknet53[7], CSPdarknet53 [23], and VGG-16 [1] were

compared in this table. Actually, when Darknet53 [7] was

adopted as the backbone without the fusion module, the

detector will be YOLOv3 [19] which is used as a baseline

for performance comparisons. Table 1 and Table 2 tell us

the computation load of this hybrid module is light and can

be ignored even though different backbones are adopted.

Both tables prove the generalization of our method to

improve the accuracy of object detection across different

backbones. An important phenomenon found from Table 1

and Table 2 is: the accuracy of a light backbone is

improved with a larger margin than a deep one.

Table 1. Ablation study of Hybrid Fusion Module on CarFlow

dataset.

Table 2. Ablation study of Hybrid Fusion Module on UAVDT

dataset [44].

backbone Hybrid fusion AP fps

Darknet53 [7]
59.39 28.9

✔ 62.18 28.5

CSPdarknet53

[23]

65.89 36.8

✔ 68.75 36.4

VGG-16 [1]
 53.98 31.8

✔ 55.18 31.3

4.2. Improvements by RHF net (RESC Module + Hybrid

bottom-up fusion module)

Another novelty of this work is the design of RESC

module. With the hybrid fusion module and the RESC

module, we proposed the RHF net for object detection

especially in small object. Table 3 shows the ablation study

of RESC and hybrid fusion module on the CarFlow dataset.

Clearly, the fusion module improves the accuracy of object

detection more than the RESC module. Table 4 shows the

ablation study of RESC and the hybrid fusion module on the

UAVDT dataset[44]. The fusion module spends less time

and is more efficient that the RESC module. CSPdarknet53

[23] is also a light backbone. It is also true for the RESC

module that the accuracy of a light backbone is improved

with a larger margin than a deep one. From Table 3 and

Table 4, the hybrid fusion model works better than the

RESC module in terms of both accuracy and efficiency

under different backbones. Important finding is that the

proposed RHF net reduces the computational cost but also

improves the accuracy by reducing convolutional layers and

replacing addition by concatenation operation. The tables

also prove the generalization of our RHF net to improve the

accuracy of object detection under different backbones.

Table 3. Ablation study of RESC and Hybrid Fusion Module

on the CarFlow dataset.

Table 4. Ablation study of RESC and Hybrid Fusion Module

on the UAVDT dataset [44].

backbone RESC Hybrid fusion AP fps

Darknet53

 ✔ 62.18 28.5

✔ 61.25 28.1

✔ ✔ 66.18 27.8

CSPdarknet53

✔ 68.75 36.4

✔ 67.61 35.2

✔ ✔ 70.42 34.8

VGG-16

 ✔ 55.18 31.3

✔ 56.14 30.8

✔ ✔ 60.13 29.8

(a) YOLOv3_512x512

(b) RHF 512x512

Figure 4. Small Object detection results on MS COCO dataset.

Backbone Hybrid fusion FPS APS APM APL

Pelee-SPP

416x416

 15.9 34.49 16.67 12.01

✔ 15.6 43.93 21.19 12.15

Backbone RESC Hybrid fusion SPP Bflops FPS Test-AP50 Test-Night-AP50

Pelee

416x416

✔ 4.732 16.7 33.99 17.73

✔ ✔ 5.219 16.1 36.67 19.85

 ✔ ✔ 5.889 15.6 37.69 20.93

✔ ✔ ✔ 6.525 15.3 38.59 20.23

228

Figure 4 shows the comparisons of object detection

between YOLO v3 and RHF on one image (with input size

512 512) selected from MS COCO test-dev set. They

models are a) YOLOv3, b) RHF net with the hybrid

bottom-up fusion module. It is obvious that the last one

receives the best detection results.

4.3. Learning rich information with light weight backbone

Table 5 tabulates the performances of RHF and other

SoTA methods, which can run on Nvidia Jetson TX2 for

real-time. The existing methods (YOLO3, SSD, RefineDet)

cannot perform real-time on TX2 embedded device since

their FPS < 3. We select the Pelee backbone to prove that

RHF can use a lightweight backbone to learn rich

information from RHF. From Table 5, our proposed RHF

model outperforms the SoTA models to prove its capability

for real-time applications on TX2 embedded device.

Table 5. Ablation Study with SoTA backbone on Jetson TX2.

Method Backbone Size FPS* AP AP50 AP75 APS APM APL

YOLOv3 darknet53 416 2 55.3

v3-tiny Tiny15 416 17 - 33.1 - - - -

Pelee Pelee 304 14 22.4 38.3 22.9 - - -

RHF Pelee 416 23 26.7 49.5 26.3 10.3 28 37.4

PRN[49] Pelee 416 27 - 45 - 8.1 24.4 34.7

 *FPS including preprocessing, model inference, and postprocessing time.

4.4. Comparisons with SoTA Models

To compare the efficiency and accuracy of the RHF net

with SoTA models, the inference time is calculated for a

single image by taking the sum of the CNN time and NMS

(non-maximum suppression) time of 999 random images,

and divide by 999. Table 6 shows the comparisons with

other SoTA methods. All the compared methods were

evaluated on NVIDIA Titan X. The corner-net [24] is not

compared due to its inefficiency with a huge backbone.

 Inherited from the nature of YOLO V3, our RHF model

is not suitable for smaller input size such as 320320. Thus,

for the input size 300300 and 320320, our RHF net is

lower than M2Det-320 and LRFNet-320. However, our

RHF-416 model outperforms other SoTA models under

320320 input size for the metrics AP, AP50, AP75, APS,

and APL. Although the input size of RHF-416 model is

larger than M2Det-320, its efficiency is up to 50 fps which is

nearly 2.5 times faster than M2Det-320 with the backbone

ResNet-101. For the input size 512512, RHF net-512

achieved the highest AP50 than the second best performance

by M2Det-512-ResNet101, and the second best APS of 19.0

after M2Det 512-ResNet101. Although M2Det-512

outperformed other methods on MS COCO [14], its model

is complicated and time-consuming for a real-time object

detection task. If efficiency is considered, for the input size

608608, the accuracy of our RHF model outperforms

M2Det-512 with better accuracy (21.3 in APs) and double

efficiency. For applications such as traffic flow estimation,

counting from drone, or smart farming to detect small

objects, our method will be more suitable than M2Det.

Inference time vs. APs curve is shown in Figure 5. RHF has

the advantage of hybrid fusion of multi-scale contextual

features and computationally low yet feature preserving

operations; therefore, it achieves outstanding

speed-accuracy compared with SoTA methods.

5. Discussion and Conclusions

The effectiveness of the hybrid fusion module to

improve the accuracy of small object detection is proven

and can be generalized to different backbones. Because

pooling is a cheaper operation than convolution, it is often

adopted to design a light backbone for efficiency

improvement. However, if an object is small, the pooling

operation will also let it disappear in the last layer of feature

pyramid. Shift-invariance should be carefully tackled to

achieve high detection rates based on edge computing. The

hybrid bottom-up fusion module will be a good solution to

improve the accuracy of small object detection. Moreover,

the recursive RESC module improves the contextual

features of all scaled images (small, medium, and large).

Experimental results prove that our RHF net is superior for

real-time applications especially for small object detection.

RHF-416 [Pelee]

Figure 5. AP50 vs. Inference Time Curve. RHF nets are tested on NVIDIA Titan X.

229

Table 6. Comparisons on MS COCO test-dev set

Method Backbone Input size FPS AP AP50 AP75 APS APM APL

Faster R-CNN [3] VGGNet-16 ~1000x600 7 21.9 42.7 - - - -

R-FCN [3] ResNet-101 ~1000x600 9 29.9 51.9 - 10.8 32.8 45

Faster R-CNN w/ FPN [3] ResNet-101-FPN ~1000x600 6 36.2 59.1 39 18.2 39 48.2

Cascade R-CNN ResNet-101-FPN ~1280x800 7 42.8 62.1 46.3 23.7 45.5 55.2

Mask-RCNN ResNet-101-FPN ~1280x800 5 39.8 62.3 43.4 22.1 43.2 51.2

SNIP DPN-98 - - 45.7 67.3 51.1 29.3 48.8 57.1

Deformable R-FCN ResNet-101 ~1000x600 8 34.5 55 - 14 37.7 50.3

SSD-300 [8] VGGNet-16 300x300 43 25.1 43.1 25.8 6.6 25.9 41.4

SSD [8] ResNet-101 321x321 50 28 45.4 29.3 6.2 28.3 49.3

YOLOv3-320 [7] DarkNet-53 320x320 45 - 51.5

CFENet-300 [30] VGGNet-16 - - 30.2 50.5 31.3 12.7 32.7 46.6

RefineDet-320 [29] VGGNet-16 320x320 38.7 29.4 49.2 31.3 10 32 44.4

RefineDet-320 [29] ResNet-101 320x320 - 32 51.4 34.2 10.5 34.7 50.4

RFBNet [48] VGGNet-16 300x300 67 30.3 49.3 31.8 11.8 31.9 45.9

EFIP VGGNet-16 300x300 71 30 48.8 31.7 10.9 32.8 46.3

PFPNet-R320 [13] VGGNet-16 320x320 33 31.8 52.9 33.6 12 35.5 46.1

M2Det-320 [29] VGGNet-16 320x320 33.4 33.5 52.4 35.6 14.4 37.6 47.6

M2Det-320 [29] ResNet-101 320x320 21.7 34.3 53.5 36.5 14.8 38.8 47.9

LRFNet [12] VGGNet-16 300x300 77 32 51.5 33.8 12.6 34.9 47

LRFNet [12] ResNet101 300x300 53 34.3 54.1 36.6 13.2 38.2 50.7

RHF [Ours] DarkNet-53 320x320 61 32.3 53.4 34.8 13.8 36.5 48.9

YOLOv3-416 [7] DarkNet-53 416x416 35 - 55.3 - - - -

RHF-416 [Ours] Pelee 416x416 103 26.7 49.5 26.3 10.3 28 37.4

RHF-416 [Ours] DarkNet-53 416x416 50 35.2 57.5 37.6 15.9 37.5 48.9

YOLOv2 [9] DarkNet-19 544x544 40 21.6 44 19.2 5 22.4 35.5

YOLOv3-608 [7] DarkNet-53 608x608 19.8 33 57.9 34.4 18.3 35.4 41.9

SSD-512 [8] VGGNet-16 512x512 22 28.8 48.5 30.3 10.9 31.8 43.5

SSD-512 [8] ResNet101 513x513 31.3 31.2 50.4 33.3 10.2 34.5 49.8

DSSD ResNet101 513x513 6.4 33.2 53.3 35.2 13 35.4 51.1

RefineDet-512 [29] VGGNet-16 512x512 22.3 33 54.5 35.5 16.3 36.3 44.3

RefineDet-512 [29] ResNet101 512x512 - 36.4 57.5 39.5 16.6 39.9 51.4

Rev-Dense VGGNet-16 512x512 - 31.2 52.9 32.4 15.5 32.9 43.9

CFENet-512 [30] VGGNet-16 - - 34.8 56.3 36.7 18.5 38.4 47.4

RFBNet [48] VGGNet-16 512x512 33 33.8 54.2 35.9 16.2 37.1 47.4

RFBNet-E [48] VGGNet-16 512x512 30 34.4 55.7 36.4 17.6 37 47.6

RetinaNet [17] ResNet-101-FPN ~832x500 11 34.4 55.7 36.8 14.7 37.1 47.4

RetinaNet+AP-Loss[17] ResNet-101-FPN 512x512 11 37.4 58.6 40.5 17.3 40.8 51.9

EFIP VGGNet-16 512x512 34 34.6 55.8 36.8 18.3 38.2 47.1

PFPNet-S512 [13] VGGNet-16 512x512 24 33.4 54.8 35.8 16.3 36.7 46.7

PFPNet-R512 [13] VGGNet-16 512x512 24 35.2 57.6 37.9 18.7 38.6 45.9

M2Det-512 [29] VGGNet-16 512x512 18 37.6 56.6 40.5 18.4 43.4 51.2

M2Det-512 [29] ResNet-101 512x512 15.8 38.8 59.4 41.7 20.5 43.9 53.4

LRFNet [12] VGGNet-16 512x512 38 36.2 56.6 38.7 19 39.9 48.8

LRFNet [12] ResNet-101 512x512 31 37.3 58.5 39.7 19.7 42.8 50.1

RHF-512 [Ours] ResNet-101 512x512 29.1 37.7 59.8 40.1 19.9 42.9 51.5

RHF-608 [Ours] DarkNet-53 608x608 32 37.1 60.3 40.0 21.3 39.9 45.5

225

References

[1] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,”
arXiv:1409.1556, 2014.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich

feature hierarchies for accurate object detection and semantic

segmentation," In CVPR, 2014.

[3] S. Ren, et al., “Faster r-cnn: Towards real-time object

detection with region proposal networks,” In NIPS, 2015.
[4] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid

pooling in deep convolutional networks for visual

recognition,” In ECCV, 2014.

[5] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask
r-cnn,” In ICCV, 2017.

[6] T.Y. Lin, et al., “Feature pyra-mid networks for object

detection,” In CVPR, 2017.

[7] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” arXiv:1804.02767, 2018.

[8] W. Liu, et al., “SSD: Single shot multibox detector,” In
ECCV, 2016.

[9] J. Redmon and A. Farhadi. “Yolo9000: better, faster,
stronger,” arXiv:1612.08242, 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” In CVPR 2016.

[11] D. Scherer, A. Muller, and S. Behnke, “Evaluation of
pooling operations in convolutional architectures for object

recognition,” In ICANN, 2010.
[12] T. Wang, et al. “Learning Rich Features at High-Speed for

Single-Shot Object Detection,” In ICCV 2019.

[13] S.-W. Kim, H.-K. Kook, J.-Y. Sun, M.-C. Kang, and S.-J. Ko,

“Parallel Feature Pyramid Network for Object Detection,” In
ECCV, 2018.

[14] S. Y. Woo, et al., “Gated bidirectional feature pyramid
network for accurate one-shot detection,” vol. 30,
pp.543-555, machine vision and applications, 2019.

[15] P. Sermanet, et al., “Overfeat: Integrated recognition,
localization and detection using convolutional networks,” In
ICLR, 2014.

[16] J. Redmon, et al., “You only look once: Unified, real-time

object detection,” In CVPR, 2015.
[17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal

Loss for Dense Object Detection,” In ICCV, 2017.
[18] R. Zhang, “Making Convolutional Networks Shift-Invariant

Again,” In ICLR 2019.
[19] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-Shot

Refinement Neural Network for Object Detection,” In CVPR,
2018.

[20] R. J. Wang, X. Li, C. X. Ling, “Pelee: A Real-Time Object

Detection System on Mobile Devices,” In NIPS, 2018.
[21] G. Huang, Z. Liu, L. van der Maaten, L., K.Q. Weinberger,

“Densely connected convolutional networks,” In CVPR,
2017.

[22] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel
dataset for fine-grained image categorization: Stanford

dogs,” In Proc. CVPR Workshop on Fine-Grained Visual

Categorization, volume 2, page 1, 2011.

[23] C.Y. Wang, et al., “CSPNet: A New Backbone that can

Enhance Learning Capability of CNN,” arXiv e-prints

arXiv:1911.11929 (Nov 2019).

[24] H. Law and J. Deng, “CornerNet: Detecting Objects as
Paired Keypoints,” In ECCV, 2018.

[25] X. Wu, et al., “Single-Shot Bidirectional Pyramid Networks

for High Quality Object Detection,” AAAI 2018.
[26] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully

convolutional one-stage object detection,” In CVPR 2019.
[27] C. Zhu, Y. He, and M. Savvides, “Feature selective

anchor-free module for single-shot object detection,” In
CVPR 2019.

[28] J. Cao, Y. Pang, J. Han, and X. Li, “Hierarchical Shot
Detector,” In ICCV 2019.

[29] Q. Zhao, et al., “M2Det: A Single-Shot Object Detector

based on Multi-Level Feature Pyramid Network,” AAAI
2019.

[30] Krizhevsky, A., Sutskever, I., & Hinton, G. E., “ImageNet

classification with deep convolutional neural networks,” In
Communications of the ACM, 60(6), 84–90. 2012.

[31] https://rebootingcomputing.ieee.org/lpirc/2019

[32] X. Wu, D. Zhang, J. Zhu, and C.H. Hoi, “Single Shot
Bidirectional Pyramid Networks for High Quality Object

Detection,” In AAAI 2018.
[33] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei,

“Deformable convolutional networks,” In ICCV, 2017.
[34] T. Kong, A. Yao, Y. Chen, F. Sun, “HyperNet: Towards

Accurate Region Proposal Generation and Joint Object

Detection,” In CVPR, 2016.
[35] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick,

“Inside-Outside Net: Detecting Objects in Context with Skip

Pooling and Recurrent Neural Networks,” In CVPR, 2016.
[36] Y. Zhu, C. Zhao, J. Wang, X. Zhao, Y. Wu, and H. Lu,

“CoupleNet: Coupling Global Structure with Local Parts for
Object Detection,” In ICCV, 2017.

[37] B. Bosquet, et al., “STDnet: A ConvNet for Small Target
Detection,” In BMVC, 2018.

[38] S. Bell, C. L. Zitnick, K. Bala, R. Girshick, “Inside-outside

net: Detecting objects in context with skip pooling and

recurrent neural networks,” In CVPR, 2016.
[39] J. Jeong, H. Park, N. Kwak, “Enhancement of ssd by

concatenating feature maps for object detection,” In BMVC,
2017.

[40] C. Eggert, S. Brehm, A. Winschel, D. Zecha and R. Lienhart,

"A closer look: Small object detection in faster R-CNN,"

In Proc. IEEE Int. Conf. on Multimedia and Expo, Hong

Kong, pp. 421-426, 2017.

[41] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho,

“Augmentation for small object detection,”
arXiv:1902.07296v1, 2019.

[42] A. G. Howard, et al., “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” In ECCV,
2018.

[43] X. Zhang, et al., “ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices,” In
ICCV, 2017.

[44] https://sites.google.com/site/daviddo0323/
[45] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.

Ramanan, P. Doll´ar, C.L. Zitnick, “Microsoft coco:
Common objects in context,” In ECCV, 2014.

https://rebootingcomputing.ieee.org/lpirc/2019
https://sites.google.com/site/daviddo0323/

226

[46] Z. Cai, Z. and N. Vasconcelos, “Cascade R-CNN: Delving
into high quality object detection,” arXiv preprint
arXiv:1712.00726, 2017.

[47] Y. Bai, Y. Zhang, M. Ding, B. Chanem, “SOD-MTGAN:

Small Object Detection via Multi-Task Generative

Adversarial Network,” In ECCV, 2018.
[48] Songtao Liu, Di Huang, and Yunhong Wang,

“Receptive field block net for accurate and fast object
detection,” In Proceedings of European Conference on
Computer Vision, 2018.

[49] C. Wang, M. Liao, P. Chen, and J. Hsieh,” Enriching Variety

of Layer-wise Learning Information by Gradient

Combination”, In LPIRC, 2019.

