
 

225 

Abstract 

 

This paper proposes a novel RHF-Net (Recursive 

Hybrid Fusion pyramid network) to solve the problem of 

small object detection on real-time embedded devices.  

Though the object detection accuracy rate is improved by a 

large margin with SoTA (State-of-The-Art) models, e.g., 

SSD, YOLO, RetinaNet, and RefineDet, they are still 

problematic for small object detection and inefficient on 

embedded systems.  One novelty of the RHF-Net is a 

bidirectional fusion module) that allows to fuse feature 

maps with both the top-down and bottom-up directions to 

generate flexible FPs for small object detection.  This 

module can be easily integrated to any feature pyramid 

based object detection model.  Another novelty of this net is 

a recursive concatenation and reshaping module which can 

recursively concatenate not only high-level semantic 

features from deep layers but also reshape spatially richer 

features from shallower layers to prevent small objects 

from disappearing. RHF-Net net adopts computationally 

low-cost and feature preserving operations in the fusion, 

thus it is efficient and accurate even on embedded devices. 

The superiority of RHF-Net is investigated on the COCO 

benchmark and UAVDT dataset in terms of mAP and FPS. 

1. Introduction 

Since 2012, huge breakthroughs in object detection have 

been occurred one after another with the technology 

advancements on deep convolutional neural network (CNN) 

based models. Very first outstanding CNN model was 

AlexNet [1] which beat all the former SoTA classical 

machine learning models on ILSVRC challenge. Currently, 

there are two-stage (proposal driven) and one-stage (direct) 

object detection models in the literature; that is, the 

region-proposal based (two-stage) detection model such as 

R-CNN [2], faster R-CNN [3], SPP-Net [4],  or Mask R-NN 

[5], and the regression based (one-stage) model such as SSD 

[8], RetinaNet [17], or YOLOv3 [7].  Generally, the former 

is known for its higher accuracy and the latter is known for 

its better efficiency. In the latest few years, accuracies of the 

one-stage model have been improved with a large margin by 

various state-of-the-art models like FPN [6], YOLOv3 [7], 

and SSD [7], which usually consist of deep feature 

extractors (backbones, i.e., DarkNet-53 [7] and 

ResNet-101[10]), a feature pyramid (FP), and a classifier. 

Using a small or medium sized backbone can reduce the 

computational cost and thus increase the efficiency.  

However, a shallow backbone cannot generate rich 

semantic features for object detection.  In order to increase 

the accuracy of object detection, the above SoTA methods 

usually adopt a deeper backbone (more than a hundred of 

layers) which will lead to a small object (<3232 pixels in 

extent) in an input image become a single pixel at the final 

feature layer while extracting its features.  Obviously, a 

single pixel is not sufficient for discriminating an object 

from its background.  Generally speaking, deepening the 

network can enhance the accuracy but it leads to not only a 

higher computational cost, but also a lower detection rate on 

small objects.  Thus, the above SoTA object detectors are 

problematic and unsuitable for small object detection. 

To improve both the accuracy and efficiency, the 

detection model should avoid using too many 

feature-richness dithering operations such as convolutions, 

and computationally expensive operations, such as pooling 

and addition, to preserve as much as possible features for 

prediction. Lately, to improve the accuracy on small object 

detection, a feature pyramid (FP) structure is commonly 

adopted in the SoTA detectors due to its multi-scale 

structure.  With this structure, abundant spatial information 

can be extracted from the last few layers of the network 

backbone.  In general, FP is a multiple-layered pyramid 

structure that extracts spatial features from the last feature 

layer so that features can be fused with a top-down direction 

for detecting various scaled objects. There are few common 

types of FPs employed in object detection models, i.e., 

pyramidal feature hierarchy (bottom-up), hourglass 

(bottom-up and top-down), SPP (spatial pyramid pooling), 

SPP + multi-scale fusion (which are adopted in SSD [7], 

FPN [6], SPP [4]), and PFPN [13], respectively.  Hourglass 

FPs are generated by fusing last three layers of a backbone. 

On the other hand, SPP-based FPs [4][13] are generated  

from the last layer of a backbone. Thus, hourglass FPs 

contain richer multi-scaled features than SPP-based FPs,
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Figure 1. Architectures of a) SPP based FP network, b) YOLOv3 [7] with an hourglass feature pyramid, c) a model updated with a 

proposed hybrid bottom-up fusion module, and d) a proposed RHF model consists of a backbone (Darknet53 [7]), a three-scaled 

hourglass feature pyramid, and a final FP generated by the hybrid fusion module.  Scale 1 adopts SPP (spatial pyramid pooling) and a 

feature extractor (FE), and Scale 2 and 3 comprises of RESC (REShaped and Concatenated) block, and FE. 

 

and this will lead to a higher accuracy in small object 

detection.  However, the hourglass-based method adopts a 

top-down path to generate a three-scale FP for object 

prediction by summing features from the deeper layers to 

the shallower layers of the backbone. This one-directional 

path will prohibit the networks from detecting small objects.  

Therefore, its accuracy on small object detection will be 

problematic if small object features have already 

disappeared at the last layer of a backbone.  This problem 

can be solved if contextual features of small objects from 

shallow layers can be recursively brought to other deeper 

layers for object prediction.  To solve all above mentioned 

problems, we propose a novel deep detection model named 

RHF  net (Recursive Hybrid Fusion pyramid network) to 

recursively fuse feature maps with both the top-down and 

bottom-up mechanism to generate flexible FPs for small 

object detection.  First direction is a top-down path which 

forms an hourglass FP. The second direction is a hybrid 

bottom-up path that generates final FP layers by 

concatenating not only the reshaped features from a 

shallower layer but also features of the current layer of the 

hourglass FP.  With this hybrid fusion mechanism, an object 

with very small size (even if it is down-sampled to 1 pixel) 

can re-appear at shallower layers. Another novelty of the 

proposal RHF net is to create a RESC (REShaped and 

Concatenation) module which can be recursively executed 

to not only concatenate high-level semantic features from 

deep layers to shallower layers (top-down direction) but 

also re-shape spatially richer features of small objects at a 

shallower layer to a deeper layer (bottom-up direction). The 

RHF-net can perform better than SoTA FP-based methods 

due to its special design on concatenation and reshaping 

operations during the fusion process.  Figure 1 shows the 

architecture of RHF net which is composed of DarkNet-53 

as a backbone, an hourglass FP, and a final FP. DarkNet-53 

is adopted due to its outstanding feature extraction ability 

and a low computational cost compared to very deep 

backbones, e.g., ResNet-101. The hourglass FP is generated 

by recursively performing the RESC block, SPP, and 

convolutional feature extractors (FEs) for the tradeoff 

between accuracy and efficiency.  The hybrid architecture is 

superior to the SoTA FP-based methods, e.g., YOLOv3[7], 

PFPNet, SSD[8], RefineDet,  RetinaNet[17], MobileNet 

[42], PeLee [20], due to its special computationally 

low-cost and feature preserving operations. Superiority of 

the RHF net over the existing SoTA methods is proven for 

general object detection and small object detections on the 

MS COCO [45] and UAVDT [44] benchmark datasets. 

Moreover, in case of a light backbone is adopted, the 

proposed model will also perform the best among SoTA 

light-weight nets for real-life small object detection on 

embedded devices.  Main contributions of this paper are 

summarized as follows: 

 Superior performances in terms of accuracy and 

efficiency are achieved by the proposed RHF net; 

 Hourglass FP based object detection models are 

improved by adding our hybrid fusion module; 

 Small object features are enriched in deeper layers 

by fusing higher-semantic features from a shallower 

layer with RESC block and the hybrid fusion module. 
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Therefore, a higher accuracy is achieved for small 

object detection;  

 Computation cost is decreased with a large margin 

by adopting concatenation operations instead of 

using addition and convolution; 

 Feature richness is preserved by fusing features not 

only from a shallower layer but also a current layer 

with a reshaping operation instead of pooling and 

addition operations; 

2. Related Works 

2.1. One-stage object detectors 

One-stage object detector consists of a backbone 

network (referred to backbone) and a predictor. The 

backbone is a stacked feature map that is pre-trained as a 

single image classifier on a very large dataset, i.e., 

ImageNet. In 2013, the first CNN-based one-stage object 

detector OverFeat [15] was developed using 

sliding-window paradigm. Then, two years later, YOLO [16] 

achieved the SoTA performance by integrating bounding 

box proposal and subsequent feature resampling as one 

stage.  Moreover, YOLO divides an input image into 77 

grids and simultaneously predicts bounding boxes and class 

confidences on each grid. Next, SSD [8] employed 

in-network multiple feature maps for detecting objects with 

varying shapes and sizes, and this feature makes SSD more 

robust than YOLO.  YOLOv2 [9] achieved outstanding 

results in terms of accuracy and efficiency by proposing 

DarkNet-19 [9] as a backbone, and it includes several new 

aspects such as batch normalization, higher resolution 

classifier, anchor box prediction. For better detection of 

small objects, FPN is developed using a feature pyramid 

(FP) structure and it achieves a higher detection accuracy on 

small objects.  Later, the SoTA YOLOv3 [7] was developed 

by adopting the concept of FPN.  By changing the backbone 

from DarkNet-19 [9] to DarkNet-53 [7], YOLO v3 achieves 

the best performance.  Similarly, RetinaNet [17], a 

combination of FPN and ResNet as a backbone, proposes 

the use of focal loss to significantly reduce false positives in 

one-stage detectors by dynamically adjusting the weights of 

each anchor box. 

2.2. Latest one-stage object detectors  

An hourglass feature pyramid (HFP) (see Figure 1(b, c, 

and d)), one of common types of FP, is adopted in many 

models, e.g., FPN, YOLOv3, RetinaNet, and RefineDet, to 

improve the detection rate of small objects.  HFP is 

generated by fusing from a high-feature resolution in the 

deepest layer of a backbone to a low-feature resolution in 

the shallower scales with a top-down path and lateral 

connections, in which the shallower layers are expected to 

richen strong features of small objects. Consequently, HFP 

provides a higher accuracy on small object detection. 

However, most of these models have a high computational 

cost due to their very deep backbones and high-cost 

operations such as convolutions.  Thus, the models are not 

applicable for real-time embedded applications. Moreover, 

fusing features of small objects along the top-down 

pathways is not possible if small objects are already 

disappeared or become 1 pixel. 

2.3. Latest one-stage object detectors 

Since object detection is one of the most popular fields 

in computer vision, several SoTA models have been 

developed in the past one year. RefineDet [19] employed an 

Encode-Decode structure for deepening the network and 

up-sampling deeper scale features to the shallower scales to 

enrich the contextual information for the final FP. Based on 

the VGG16 [1] backbone, it achieved APS of 16.3 and AP50 

of 54.5 on input size 512, MS COCO [45] test-dev. A newly 

proposed PeLee [20] model, a variant of DenseNet [21], 

outperformed SSD+MobileNet by 6.53% on Stanford Dogs 

[22] dataset with its much shallower network. However, 

PeLee has a lower performance on MS COCO [45] dataset 

and lower accuracy on small object detection. PFPN [13] 

adopts VGGNet-16 as a backbone and SPP for generating a 

final FP from the last layer of a backbone which 

concatenates multi-scale features.  The above mentioned 

model outperformed other methods on small object 

detection. CornerNet [24], with Hourglass-104 as a 

backbone, detects an object bounding box as a pair of key 

points via a corner pooling technique, and it outperformed 

the existing methods on multi-scale general object detection 

and small object detection categories. The latest SoTA 

one-stage object detector M2Det [29] outperformed all the 

existing methods on all multi-scale categories on MS 

COCO. However, all these models are not suitable for a 

real-time object detection task due to their high 

computational cost. 

3. Method 

Most of the SoTA methods, i.e., FPN, YOLOv3, RetinaNet, 

and RefineDet use an HFP to improve the detection rate of 

small objects.  The HFP is often generated from a very deep 

backbone by fusing features along a top-down path.  

Consequently, HFP provides a higher accuracy on small 

object detection but makes these models time-consuming 

and not applicable for real-time embedded applications due 

to high-cost operations such as convolutions. Moreover, 

fusing features of small objects along the top-down 

pathways is not possible if small objects are already 

disappeared or become 1 pixel.  To reduce the computation 

cost, this paper proposes a RESC (REShaped and 

Concatenation) block to recursively generate an hourglass
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Figure 2. Final feature pyramid generating flowchart for Scale n consisting of RESC block and FE. However, for the Scale0, feature 

pyramid scale is generated with SPP and FE.

FP by merging features not only from the deeper layers but 

also from the shallower layer.  In addition to the RESC 

block, a hybrid bottom-up fusion module is proposed to fuse 

the hourglass FP from a bottom-up path so that more 

discriminant features to identify small and medium objects 

can be fed into the final feature map for object prediction. 

   Figure 1(d) illustrates the basic architecture of our RHF 

net, a one-stage object detection model for real-time object 

detection, which consists of an hourglass FP and the hybrid 

fusion module. We denote the RHF-Net with a quadruple 

( , , , ) , where  is a backbone,   is an 

hourglass FP generating function,   is a final FP 

generating function, and  is a prediction function.   

could be any feature extracting backbone, i.e., DarkNet-53 

[7] or ResNet-101[10]. From , base features 
B

P  

1 2 1{ , ,..., }n

B B B

 P P P  can be formed for generating an 

hourglass FP, i.e., 
1 2 1{ , ,..., }n

H H H H

P P P P  and the final FP, 

i.e., 1 2 1{ , ,..., }n

Fin Fin Fin Fin

P P P P , where n is the number of 

scales for FP. The function  takes 
B

P   as input to generate 

H
P  by recursively performing the RESC module (see 

Figure 2).  Finally,  predicts the object class and bounding 

box from Fin
P  by a logistic regression.  

 Figure 2 demonstrates a comprehensive flowchart to 

generate the nth scale of a final FP, where the RESC block 

and FE (feature extractor) together form 
n

H
P , the nth scale 

of an hourglass FP, and then the hybrid fusion module forms 
n

Fin
P , the nth scale of the final FP.  The RESC block 

generates the final FP, 
Fin

P , by recursively concatenating 

and reorganizing four different scales from 
B

P . RESC 

block adopts concatenation for fusing features of a deeper 

layer to a current layer and reorganization operation for 

fusing features of a shallower layer to a current layer. Both 

operations have a very low computational cost and can 

preserve all the contextual information. Under those 

circumstances, the accuracy and efficiency are both 

improved. On the other hand, the zero-th scale is generated 

by SPP (spatial pyramid pooling) [4], FE, and the hybrid 

fusion module.  
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Figure 3. (a) Spatial pyramid pooling block. (b) FE block. 

 

Figure 3(a) shows SPP that consists of a bottleneck layer, 

3 max pooling layers with kernel sizes of (55), (99), and 

(1313), and a concatenation. Number of feature channels 
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are reduced to half with the bottleneck layer, then three 

groups of max pooled feature maps with the same 

dimension, (0)

SPP
F , (1)

SPP
F , and (2)

SPP
F , are generated.  For 

concatenation purpose, all three max pooling operations 

employ a zero padding and a stride of 1 to create the same 

output sized feature maps. The concatenated max pooled 

features will become the output of SPP. 

3.1. RESC Module for Feature Fusion 

RESC block has two concatenation and one reshaping 

operations, i.e., CONCAT1, CONCAT2, and REORG1 [9]. 

Unlike concatenation methods in SoTA methods, the 

proposed RESC block recursively concatenates contextual 

features of not only adjacent layers but also even deeper 

(n-2)th layer. In other words, RESC block fuses features 

from 4 adjacent scales (shallow, current, deep, and deeper) 

of a backbone to richen the features for better detection. 

CONCAT1 concatenates current scale features of a 

backbone n

B
P  and features 

1

n

CB
F  that come from the output 

of bottleneck layer 
1n

B


 after FE in the deeper scale.  

CONCAT2 is applied to concatenate 
4

n

CB
F  of current scale, 

reshaped features 
1

n

R
F  of a shallow scale 

1n

B


P , and 4 

up-sampled features from even deeper scale. The output of 

RESC block 
n

CB
F  can be formulated as: 

 4 6

4

( ) ( ) ( )

1

( ) ( )

1

[ , , ], 2

[ , ],       otherwise.

n n n

CB R CBn

CB n n

CB R

n   


F F F
F

F F
 (2) 

To increase feature richness for deeper scales, REORG1 

brings contextual features from a shallow layer to its deep 

layer without subsequent operations. First, the bottleneck 

layer uses 1×1 convolution to reduce the number of 

channels from D/2 to D/8. Then, REORG1 takes every 

single pixel of a feature map from the bottleneck block to 

generate 4 channels by separating adjacent pixels into 

different channels.  If the size of feature maps were (2W, 2H, 

D/8), then the size of reshaped features is (W, H, D/2).  

3.2. Feature Extractor  

Figure 3(b) illustrates the flowchart of the FE block.  It 

is put after the RESC block to extract more contextual and 

semantic features from fused features of 4 adjacent scales.  

The FE block consists of 2 consecutive parts of feature 

extraction where each part includes one bottleneck layer 

and a 3 3 convolutional layer.  The former is employed to 

reduce the number of channels from D to D/2.  The latter is 

employed to extract contextual features.  Output of the 

second bottleneck layer is fed to RESC at the shallower 

scale for fusion. 

3.3. Hybrid Bottom-up Fusion 

FE can generate more contextual and semantic features.  If 

the output of FE can be added into the final FP with a 

bottom-up direction, higher accuracy in object detection 

should be obtained. Thus, different from other SoTA 

methods which create prediction maps only from a 

top-down direction (see the red path in Figure 1(a)), this 

paper proposes a hybrid bottom-up fusion module to fuse 

the hourglass FP, i.e.,  
H

P  not only from a top-down 

direction but also from a bottom-up direction (see the green 

block in Figure 1(c) or (d)).  The bottom-up fusion can bring 

contextual features from shallower scales to enrich the 

features in the final FP to predict and detect small and 

medium objects more accurately. The hybrid fusion module 

consists of CONCAT3, REORG2, and two bottleneck 

layers. CONCAT3 merges the outputs of FE and REORG2, 

i.e.,  n

H
P  and 2

n

R
F  (which is the reorganized feature map of 

1n
C  in the shallow scale) to generate n

C .  In other words, 

the output of CONCAT3 can be calculated as follows: 

 2[ , ]n n n

R H
C F P .                           (3) 

The last bottleneck layer is used for fixing the number of 

channels to L, L=255 for our RHF net. Finally, the last layer 

outputs the final FP, i.e.,  n

Fin
P  at the scale n. 

3.4. Backbone 

For the trade-off between accuracy and efficiency, 

most SoTA object detectors adopt VGGNet-16 or 

ResNet-101 which have 16 and 101 layers, respectively.  

The former’s accuracy is limited for its number of 
convolution layers and the latter is limited for inference 

speed but with high accuracy.  However, we chose 

DarkNet-53 [7] as the backbone of RHF net due to its 

medium-sized architecture and excellent feature extraction 

capability.  Input image size is 512512 and sizes of the 

backbone feature pyramid scales are 1616512, 

3232512, and 6464256, respectively. For edge 

computing, the RHF net can adopt a shallower backbone 

similar to Tiny15 from YOLOv3-tiny, or PeLee net [20].  

4. Experimental Results 

We have employed three datasets (CarFlow, 

UAVDT[44], and COCO[45]) to evaluate our model using 

a machine with NVIDIA Jetson TX2 and NVIDIA Titan X. 

CarFlow is an in-house dataset consisting of 6000 (train: 

2500, val: 500, and test: 3000) images with a resolution 

1920×1920 that were extracted from day/night videos 

captured by a fisheye camera installed at different 

intersections and tested for edge computing (NVIDIA 

Jetson TX2 which works on mode 0).  Metric adopted for 

performance evaluation is Average Precision (AP). 

Inference time is represented as FPS (Frames per Second). 



 

227 

4.1. Accuracy Improvements by Hybird Fusion Module 

Since the RHF net is developed for improving the 

accuracy of small object detection, we evaluate the effects 

of our RHF model with/without hybrid fusion module on 

object detection based on the CarFlow and UAVDT 

dataset[44].  Table 1 tabulates the ablation studies to show 

the advantage of this module.  A light backbone, i.e., Pelee 

is adopted here to test the computation load of this hybrid 

fusion module.  Clearly, from Table 1, the accuracy of small 

object detection is most significantly improved if the hybrid 

fusion module is adopted.  Table 2 shows the ablation study 

of our method with/without the hybrid fusion module based 

on the UAVDT dataset. Three backbones, i.e., 

Darknet53[7], CSPdarknet53 [23], and VGG-16 [1] were 

compared in this table.  Actually, when Darknet53 [7] was 

adopted as the backbone without the fusion module, the 

detector will be YOLOv3 [19] which is used as a baseline 

for performance comparisons. Table 1 and Table 2 tell us 

the computation load of this hybrid module is light and can 

be ignored even though different backbones are adopted. 

Both tables prove the generalization of our method to 

improve the accuracy of object detection across different 

backbones. An important phenomenon found from  Table 1 

and  Table 2 is:  the accuracy of a light backbone is 

improved with a larger margin than a deep one. 

Table 1. Ablation study of Hybrid Fusion Module on CarFlow 

dataset. 

Table 2. Ablation study of Hybrid Fusion Module on UAVDT 

dataset [44]. 

backbone Hybrid fusion AP fps 

Darknet53 [7]  
59.39 28.9 

✔ 62.18 28.5 

CSPdarknet53 

[23] 
 

65.89 36.8 

✔ 68.75 36.4 

VGG-16 [1] 
 53.98 31.8 

✔ 55.18 31.3 

 

4.2. Improvements by RHF net (RESC Module + Hybrid 

bottom-up fusion module) 

Another novelty of this work is the design of RESC 

module. With the hybrid fusion module and the RESC 

module, we proposed the RHF net for object detection 

especially in small object.  Table 3 shows the ablation study 

of RESC and hybrid fusion module on the CarFlow dataset. 

Clearly, the fusion module improves the accuracy of object 

detection more than the RESC module.  Table 4  shows the 

ablation study of RESC and the hybrid fusion module on the 

UAVDT dataset[44].  The fusion module spends less time 

and is more efficient that the RESC module.  CSPdarknet53 

[23] is also a light backbone.  It is also true for the RESC 

module that the accuracy of a light backbone is improved 

with a larger margin than a deep one.  From Table 3 and 

Table 4, the hybrid fusion model works better than the 

RESC module in terms of both accuracy and efficiency 

under different backbones.  Important finding is that the 

proposed RHF net reduces the computational cost but also 

improves the accuracy by reducing convolutional layers and 

replacing addition by concatenation operation. The tables 

also prove the generalization of our RHF net to improve the 

accuracy of object detection under different backbones. 

Table 3. Ablation study of RESC and Hybrid Fusion Module 

on the CarFlow dataset. 

 

Table 4. Ablation study of RESC and Hybrid Fusion Module 

on the UAVDT dataset [44]. 

backbone RESC Hybrid fusion AP fps 

Darknet53 

 ✔ 62.18 28.5 

✔  61.25 28.1 

✔ ✔ 66.18 27.8 

CSPdarknet53 
 

✔ 68.75 36.4 

✔  67.61 35.2 

✔ ✔ 70.42 34.8 

VGG-16 

 ✔ 55.18 31.3 

✔  56.14 30.8 

✔ ✔ 60.13 29.8 

 

 
(a) YOLOv3_512x512 

 
(b) RHF 512x512 

Figure 4. Small Object detection results on MS COCO dataset. 

Backbone Hybrid fusion FPS APS APM APL 

Pelee-SPP 

416x416 

 15.9 34.49 16.67 12.01 

✔ 15.6 43.93 21.19 12.15 

Backbone RESC Hybrid fusion SPP Bflops FPS Test-AP50 Test-Night-AP50 

Pelee 

416x416 

✔     4.732 16.7 33.99 17.73 

✔ ✔   5.219 16.1 36.67 19.85 

  ✔ ✔ 5.889 15.6 37.69 20.93 

✔ ✔ ✔ 6.525 15.3 38.59 20.23 
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Figure 4 shows the comparisons of object detection 

between YOLO v3 and RHF on one image (with input size 

512 512) selected from MS COCO test-dev set. They 

models are a) YOLOv3, b) RHF net with the hybrid 

bottom-up fusion module. It is obvious that the last one 

receives the best detection results. 

4.3. Learning rich information with light weight backbone 

Table 5 tabulates the performances of RHF and other 

SoTA methods, which can run on Nvidia Jetson TX2 for 

real-time.  The existing methods (YOLO3, SSD, RefineDet) 

cannot perform real-time on TX2 embedded device since 

their FPS < 3.  We select the Pelee backbone to prove that 

RHF can use a lightweight backbone to learn rich 

information from RHF. From Table 5, our proposed RHF 

model outperforms the SoTA models to prove its capability 

for real-time applications on TX2 embedded device. 

Table 5. Ablation Study with SoTA backbone on Jetson TX2. 

Method Backbone Size FPS* AP AP50 AP75 APS APM APL 

YOLOv3 darknet53 416 2  55.3     

v3-tiny Tiny15 416 17 - 33.1 - - - - 

Pelee Pelee 304 14 22.4 38.3 22.9 - - - 

RHF Pelee 416 23  26.7 49.5 26.3 10.3 28 37.4 

PRN[49] Pelee 416 27 - 45 - 8.1 24.4 34.7 

 *FPS including preprocessing, model inference, and postprocessing time. 

4.4. Comparisons with SoTA Models 

To compare the efficiency and accuracy of the RHF net 

with SoTA models, the inference time is calculated for a 

single image by taking the sum of the CNN time and NMS 

(non-maximum suppression) time of 999 random images, 

and divide by 999.  Table 6 shows the comparisons with 

other SoTA methods. All the compared methods were 

evaluated on NVIDIA Titan X.  The corner-net [24] is not 

compared due to its inefficiency with a huge backbone.   

  Inherited from the nature of YOLO V3, our RHF model 

is not suitable for smaller input size such as 320320.  Thus, 

for the input size 300300 and 320320, our RHF net is 

lower than M2Det-320 and LRFNet-320.  However, our 

RHF-416 model outperforms other SoTA models under 

320320 input size for the metrics AP, AP50, AP75, APS, 

and APL.  Although the input size of RHF-416 model is 

larger than M2Det-320, its efficiency is up to 50 fps which is 

nearly 2.5 times faster than M2Det-320 with the backbone 

ResNet-101. For the input size 512512, RHF net-512 

achieved the highest AP50 than the second best performance 

by M2Det-512-ResNet101, and the second best APS of 19.0 

after M2Det 512-ResNet101. Although M2Det-512 

outperformed other methods on MS COCO [14], its model 

is complicated and time-consuming for a real-time object 

detection task.  If efficiency is considered, for the input size 

608608, the accuracy of our RHF model outperforms 

M2Det-512 with better accuracy (21.3 in APs) and double 

efficiency.    For applications such as traffic flow estimation, 

counting from drone, or smart farming to detect small 

objects, our method will be more suitable than M2Det. 

Inference time vs. APs curve is shown in Figure 5.  RHF has 

the advantage of hybrid fusion of multi-scale contextual 

features and computationally low yet feature preserving 

operations; therefore, it achieves outstanding 

speed-accuracy compared with SoTA methods. 

5. Discussion and Conclusions 

The effectiveness of the hybrid fusion module to 

improve the accuracy of small object detection is proven 

and can be generalized to different backbones. Because 

pooling is a cheaper operation than convolution, it is often 

adopted to design a light backbone for efficiency 

improvement. However, if an object is small, the pooling 

operation will also let it disappear in the last layer of feature 

pyramid.  Shift-invariance should be carefully tackled to 

achieve high detection rates based on edge computing. The 

hybrid bottom-up fusion module will be a good solution to 

improve the accuracy of small object detection.  Moreover, 

the recursive RESC module improves the contextual 

features of all scaled images (small, medium, and large).  

Experimental results prove that our RHF net is superior for 

real-time applications especially for small object detection. 

RHF-416 [Pelee]

 
Figure 5. AP50 vs. Inference Time Curve. RHF nets are tested on NVIDIA Titan X. 
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Table 6.  Comparisons on MS COCO test-dev set 

Method Backbone Input size FPS AP AP50 AP75 APS APM APL 

Faster R-CNN [3] VGGNet-16 ~1000x600 7 21.9 42.7 - - - - 

R-FCN [3] ResNet-101 ~1000x600 9 29.9 51.9 - 10.8 32.8 45 

Faster R-CNN w/ FPN [3] ResNet-101-FPN ~1000x600 6 36.2 59.1 39 18.2 39 48.2 

Cascade R-CNN ResNet-101-FPN ~1280x800 7 42.8 62.1 46.3 23.7 45.5 55.2 

Mask-RCNN ResNet-101-FPN ~1280x800 5 39.8 62.3 43.4 22.1 43.2 51.2 

SNIP DPN-98 - - 45.7 67.3 51.1 29.3 48.8 57.1 

Deformable R-FCN ResNet-101 ~1000x600 8 34.5 55 - 14 37.7 50.3 

SSD-300 [8] VGGNet-16 300x300 43 25.1 43.1 25.8 6.6 25.9 41.4 

SSD [8] ResNet-101 321x321 50 28 45.4 29.3 6.2 28.3 49.3 

YOLOv3-320 [7] DarkNet-53 320x320 45 - 51.5     

CFENet-300 [30] VGGNet-16 - - 30.2 50.5 31.3 12.7 32.7 46.6 

RefineDet-320 [29] VGGNet-16 320x320 38.7 29.4 49.2 31.3 10 32 44.4 

RefineDet-320 [29] ResNet-101 320x320 - 32 51.4 34.2 10.5 34.7 50.4 

RFBNet [48] VGGNet-16 300x300 67 30.3 49.3 31.8 11.8 31.9 45.9 

EFIP VGGNet-16 300x300 71 30 48.8 31.7 10.9 32.8 46.3 

PFPNet-R320 [13] VGGNet-16 320x320 33 31.8 52.9 33.6 12 35.5 46.1 

M2Det-320 [29] VGGNet-16 320x320 33.4 33.5 52.4 35.6 14.4 37.6 47.6 

M2Det-320  [29] ResNet-101 320x320 21.7 34.3 53.5 36.5 14.8 38.8 47.9 

LRFNet [12] VGGNet-16 300x300 77 32 51.5 33.8 12.6 34.9 47 

LRFNet [12] ResNet101 300x300 53 34.3 54.1 36.6 13.2 38.2 50.7 

RHF [Ours] DarkNet-53 320x320 61 32.3 53.4 34.8 13.8 36.5 48.9 

YOLOv3-416 [7] DarkNet-53 416x416 35 - 55.3 - - - - 

RHF-416 [Ours] Pelee 416x416 103 26.7 49.5 26.3 10.3 28 37.4 

RHF-416 [Ours] DarkNet-53 416x416 50 35.2 57.5 37.6 15.9 37.5 48.9 

YOLOv2 [9] DarkNet-19 544x544 40 21.6 44 19.2 5 22.4 35.5 

YOLOv3-608 [7] DarkNet-53 608x608 19.8 33 57.9 34.4 18.3 35.4 41.9 

SSD-512 [8] VGGNet-16 512x512 22 28.8 48.5 30.3 10.9 31.8 43.5 

SSD-512 [8] ResNet101 513x513 31.3 31.2 50.4 33.3 10.2 34.5 49.8 

DSSD ResNet101 513x513 6.4 33.2 53.3 35.2 13 35.4 51.1 

RefineDet-512 [29] VGGNet-16 512x512 22.3 33 54.5 35.5 16.3 36.3 44.3 

RefineDet-512 [29] ResNet101 512x512 - 36.4 57.5 39.5 16.6 39.9 51.4 

Rev-Dense VGGNet-16 512x512 - 31.2 52.9 32.4 15.5 32.9 43.9 

CFENet-512 [30] VGGNet-16 - - 34.8 56.3 36.7 18.5 38.4 47.4 

RFBNet [48] VGGNet-16 512x512 33 33.8 54.2 35.9 16.2 37.1 47.4 

RFBNet-E [48] VGGNet-16 512x512 30 34.4 55.7 36.4 17.6 37 47.6 

RetinaNet [17] ResNet-101-FPN ~832x500 11 34.4 55.7 36.8 14.7 37.1 47.4 

RetinaNet+AP-Loss[17] ResNet-101-FPN 512x512 11 37.4 58.6 40.5 17.3 40.8 51.9 

EFIP VGGNet-16 512x512 34 34.6 55.8 36.8 18.3 38.2 47.1 

PFPNet-S512 [13] VGGNet-16 512x512 24 33.4 54.8 35.8 16.3 36.7 46.7 

PFPNet-R512 [13] VGGNet-16 512x512 24 35.2 57.6 37.9 18.7 38.6 45.9 

M2Det-512  [29] VGGNet-16 512x512 18 37.6 56.6 40.5 18.4 43.4 51.2 

M2Det-512 [29] ResNet-101 512x512 15.8 38.8 59.4 41.7 20.5 43.9 53.4 

LRFNet [12] VGGNet-16 512x512 38 36.2 56.6 38.7 19 39.9 48.8 

LRFNet [12] ResNet-101 512x512 31 37.3 58.5 39.7 19.7 42.8 50.1 

RHF-512 [Ours] ResNet-101 512x512 29.1 37.7 59.8 40.1 19.9 42.9 51.5 

RHF-608 [Ours] DarkNet-53 608x608 32 37.1 60.3 40.0 21.3 39.9 45.5 
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