

Abstract

This paper presents a hardware prototype and a

framework for a new communication-aware model

compression for distributed on-device inference. Our

approach relies on Knowledge Distillation (KD) and

achieves orders of magnitude compression ratios on a

large pre-trained teacher model. The distributed

hardware prototype consists of multiple student models

deployed on Raspberry-Pi 3 nodes that run Wide ResNet
and VGG models on the CIFAR10 dataset for real-time

image classification. We observe significant reductions in

memory footprint (50×), energy consumption (14×),

latency (33×) and an increase in performance (12×)

without any significant accuracy loss compared to the

initial teacher model. This is an important step towards

deploying deep learning models for IoT applications.

1. Introduction

Running computer vision tasks on edge devices

requires efficient on-device inference due to the real-time

demands; this local processing has also become necessary
to avoid sending private data to the cloud. Given the

memory, power, and computation constraints of a single

edge device, even models compressed with well-known

techniques such as pruning, quantization [1] or KD [2]

need to be distributed in a smart manner among multiple

edge devices in order to minimize the inter-device

communication. Indeed, if done naively, these model

compression techniques can result in high accuracy loss

and/or significant communication increase among the

distributed devices.

To meet the tight memory and power constraints of

edge devices, we rely on a new communication-aware
model compression called Network-of-Neural Networks

(NoNN) [3]. This approach draws from KD and consists

of two major pillars: first, the activation patterns of a

neural network, called teacher, are used to build a network

of filter activations. Second, community detection

techniques are applied to this network to partition the

teacher’s knowledge into simpler functions. These

functions are used to train the individual students to

mimic each partition and hence perform the same task as

the teacher without compromising the accuracy.

Experimental results show that partitioning based on
community detection achieves orders of magnitude

reduction in the number of model parameters, memory

footprint, energy, and latency, with only a negligible

accuracy loss compared to the original teacher model.

Finally, by creating a software framework, we enable

users to select the teacher and student models for

deploying on a network of edge devices and evaluate

various power/performance trade-offs.

2. Approach

Our framework (Fig.1.) starts with an initial teacher

model that is pre-trained. All filters are extracted from the

teacher’s last convolutional layer (LCONV), and used to

create a network of filter activations. This network is then

used to distribute teacher’s knowledge into disjoint

partitions via community detection [4]. The partitions are
used to train multiple disjoint student models and

distribute teacher’s knowledge. The obtained partitions

may not have the same number of filters, hence our

framework balances the number of partitions learned by

each student so that every student learns approximately

the same number of filters in total. The student models are

carefully selected so they can be deployed on edge

devices while satisfying tight memory (e.g., 500KB),

power (e.g., 2W), and computational constraints (e.g.,

ARM Cortex-A53)and maintaining teacher’s accuracy at

image classification. The outputs of all students are
merged by a Fully Connected (FC) layer, similar to the

one used by the teacher, to make the final prediction. After

training, each student model is deployed on a single edge

device.

 Teacher partitioning

We suppose that the teacher contains several

convolutional layers and one or more FC layers for

prediction. When passing an image (𝜑) from the

validation set (val) through the teacher network, in the

LCONV, each 𝑓! filter has a certain feature map. By

computing the average value of the feature map which

corresponds to a filter, we obtain the average activity (𝑎!)

for filter 𝑓!. The higher the 𝑎! value of filter 𝑓!, the more

important the filter 𝑓! is for classifying image 𝜑. Using all

val images from a given class, we can detect which filters

matter the most for that class using 𝑎! [3].

The framework builds a network with 𝑓! filters as nodes

and each two nodes (𝑓! , 𝑓") are connected by a weighted

edge with 𝐹!" = ∑ 𝑎!#$% 𝑎"|𝑎! − 𝑎"| as the weight. This

filter activation network is partitioned using community

detection via Activation Hubs (AHs). The AHs are

created in such a manner that they are sparsely

interconnected, resulting in 𝑁 disjoint partitions [3].

A Hardware Prototype Targeting Distributed Deep Learning for On-device Inference

Allen-Jasmin Farcas1, Guihong Li1, Kartikeya Bhardwaj2, Radu Marculescu1

1Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin TX 78712
{allen.farcas, lgh, radum}@utexas.edu

 2Arm Inc

San Jose, CA 95134
kartikeya.bhardwaj@arm.com

 Training student models

Our framework currently enables users to choose the

number of desired students (𝐾), and the neural network

model for each student. Each student model needs to be

chosen (or designed by the users) to fit within a single

edge device under given constraints. To train all students

at once, we create a single neural network using the

chosen student model which is replicated 𝐾 times. All
students have the same model and are connected via a FC

layer. We train this network with a KD-based loss

function such that each student can mimic a certain

partition from the original teacher [3].

 Deploying student models on edge devices

The obtained student models are extracted from the

unified network and compiled independently for
deployment on the destination devices using the Tensor

Virtual Machine (TVM) compiler. After compilation and

deployment, a host device controls the inference process

by sending the images required to be classified, collecting

the outputs of each deployed student and making the final

prediction based on those outputs. The host can be an edge

device or a general-purpose computer.

3. Experimental setup and results

For the teacher model, we have conducted two

experiments: one with the WRN network with a depth of

40 and a widening factor of 4 (WRN40-4), and another

with VGG-19. In both cases we consider FP32 precision
and we use the framework to partition the teacher model.

As student models, we use WRN with a depth 16 and a

widening factor of 1 (WRN16-1) in the first experiment,

and VGG-11 in the second experiment. The results (see

Table I and Table II) are obtained from inferencing 10000

images from the CIFAR10 test dataset on a NoNN with

𝐾 = 2 students.

Table I. WRN experimental results

Metrics Teacher Student Improvement

Accuracy 96.78% 95.92% -0.86%

Parameters 8.9M 0.18M 49.89×

Latency [ms] 1878 150 12.44×

Energy [mJ] 3430.67 238.98 14.36×

We compare the inference process for a teacher
deployed on a RaspberryPi 3B+ (RPi) and a NoNN of two

students deployed on the same device. The number of

parameters, latency, and energy corresponding to the

Student column (in both tables) is measured on one RPi

device to emphasize the impact of the teacher and a

student model deployed on a single RPi.

Table II. VGG experimental results

Metrics Teacher Student Improvement

Accuracy 93.00% 91.47% -1.53%

Parameters 20M 9.2M 2.16×

Latency [ms] 847 414 2.04×

Energy [mJ] 436.27 366.39 1.2×

4. Conclusion

In this paper, we have presented a hardware prototype

and a software framework to compress large teacher

models for distributed power- and latency-constrained on-

device inference at the edge. The student models perform

on-device inference efficiently and deliver real-time

performance while deployed on RPi edge devices.

Our approach demonstrates significant reductions in

memory footprint (50×), energy consumption (14×),

latency (33×) and an increase in performance (12×), while
maintaining the accuracy of the initial teacher model.

Our demonstration consists of a live deployment of the

resulted compressed models on RaspberryPi 3B+ boards

with real-time on-device inference and actual

performance and power measurements.

References

[1] S. Han, H. Mao, and William J. Dally. 2015. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding.
arXiv:1510.00149.

[2] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the
knowledge in a neural network. arXiv:1503.02531

[3] K. Bhardwaj, C. Y. Lin, A. Sartor, and R. Marculescu,
“Memory- And communication-aware model
compression for distributed deep learning inference on
IoT,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s,
2019, doi: 10.1145/3358205.

[4] M. E. J. Newman. Modularity and community structure

in networks. PNAS 103, 23 (2006), 8577–8582.

Fig. 1. Proposed distributed model compression framework for disjoint edge devices

