
 

Abstract 

This paper presents a hardware prototype and a 

framework for a new communication-aware model 

compression for distributed on-device inference. Our 

approach relies on Knowledge Distillation (KD) and 

achieves orders of magnitude compression ratios on a 

large pre-trained teacher model. The distributed 

hardware prototype consists of multiple student models 

deployed on Raspberry-Pi 3 nodes that run Wide ResNet 
and VGG models on the CIFAR10 dataset for real-time 

image classification. We observe significant reductions in 

memory footprint (50×), energy consumption (14×), 

latency (33×) and an increase in performance (12×) 

without any significant accuracy loss compared to the 

initial teacher model. This is an important step towards 

deploying deep learning models for IoT applications. 

1. Introduction 

Running computer vision tasks on edge devices 

requires efficient on-device inference due to the real-time 

demands; this local processing has also become necessary 
to avoid sending private data to the cloud. Given the 

memory, power, and computation constraints of a single 

edge device, even models compressed with well-known 

techniques such as pruning, quantization [1] or KD [2] 

need to be distributed in a smart manner among multiple 

edge devices in order to minimize the inter-device 

communication. Indeed, if done naively, these model 

compression techniques can result in high accuracy loss 

and/or significant communication increase among the 

distributed devices. 

To meet the tight memory and power constraints of 

edge devices, we rely on a new communication-aware 
model compression called Network-of-Neural Networks 

(NoNN) [3]. This approach draws from KD and consists 

of two major pillars: first, the activation patterns of a 

neural network, called teacher, are used to build a network 

of filter activations. Second, community detection 

techniques are applied to this network to partition the 

teacher’s knowledge into simpler functions. These 

functions are used to train the individual students to 

mimic each partition and hence perform the same task as 

the teacher without compromising the accuracy.  

Experimental results show that partitioning based on 
community detection achieves orders of magnitude 

reduction in the number of model parameters, memory 

footprint, energy, and latency, with only a negligible 

accuracy loss compared to the original teacher model.  

Finally, by creating a software framework, we enable 

users to select the teacher and student models for 

deploying on a network of edge devices and evaluate 

various power/performance trade-offs.  

2. Approach 

Our framework (Fig.1.) starts with an initial teacher 

model that is pre-trained. All filters are extracted from the 

teacher’s last convolutional layer (LCONV), and used to 

create a network of filter activations. This network is then 

used to distribute teacher’s knowledge into disjoint 

partitions via community detection [4]. The partitions are 
used to train multiple disjoint student models and 

distribute teacher’s knowledge. The obtained partitions 

may not have the same number of filters, hence our 

framework balances the number of partitions learned by 

each student so that every student learns approximately 

the same number of filters in total. The student models are 

carefully selected so they can be deployed on edge 

devices while satisfying tight memory (e.g., 500KB), 

power (e.g., 2W), and computational constraints (e.g., 

ARM Cortex-A53)and maintaining teacher’s accuracy at 

image classification. The outputs of all students are 
merged by a Fully Connected (FC) layer, similar to the 

one used by the teacher, to make the final prediction. After 

training, each student model is deployed on a single edge 

device.  

 Teacher partitioning 

We suppose that the teacher contains several 

convolutional layers and one or more FC layers for 

prediction. When passing an image (𝜑) from the 

validation set (val) through the teacher network, in the 

LCONV, each 𝑓! filter has a certain feature map. By 

computing the average value of the feature map which 

corresponds to a filter, we obtain the average activity (𝑎!) 

for filter 𝑓!. The higher the  𝑎! value of filter 𝑓!, the more 

important the filter 𝑓! is for classifying image 𝜑. Using all 

val images from a given class, we can detect which filters 

matter the most for that class using 𝑎! [3].  

The framework builds a network with 𝑓! filters as nodes 

and each two nodes (𝑓! , 𝑓") are connected by a weighted 

edge with 𝐹!" = ∑ 𝑎!#$% 𝑎"|𝑎! − 𝑎"| as the weight. This 

filter activation network is partitioned using community 

detection via Activation Hubs (AHs). The AHs are 

created in such a manner that they are sparsely 

interconnected, resulting in 𝑁 disjoint partitions [3].  
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 Training student models 

Our framework currently enables users to choose the 

number of desired students (𝐾), and the neural network 

model for each student. Each student model needs to be 

chosen (or designed by the users) to fit within a single 

edge device under given constraints. To train all students 

at once, we create a single neural network using the 

chosen student model which is replicated 𝐾 times. All 
students have the same model and are connected via a FC 

layer. We train this network with a KD-based loss 

function such that each student can mimic a certain 

partition from the original teacher [3].  

 Deploying student models on edge devices 

The obtained student models are extracted from the 

unified network and compiled independently for 
deployment on the destination devices using the Tensor 

Virtual Machine (TVM) compiler. After compilation and 

deployment, a host device controls the inference process 

by sending the images required to be classified, collecting 

the outputs of each deployed student and making the final 

prediction based on those outputs. The host can be an edge 

device or a general-purpose computer. 

3. Experimental setup and results 

For the teacher model, we have conducted two 

experiments: one with the WRN network with a depth of 

40 and a widening factor of 4 (WRN40-4), and another 

with VGG-19. In both cases we consider FP32 precision 
and we use the framework to partition the teacher model. 

As student models, we use WRN with a depth 16 and a 

widening factor of 1 (WRN16-1) in the first experiment, 

and VGG-11 in the second experiment. The results (see 

Table I and Table II) are obtained from inferencing 10000 

images from the CIFAR10 test dataset on a NoNN with 

𝐾 = 2  students. 

 

Table I. WRN experimental results 

Metrics Teacher Student Improvement 

Accuracy 96.78% 95.92% -0.86% 

Parameters 8.9M 0.18M 49.89× 

Latency [ms] 1878 150 12.44× 

Energy [mJ] 3430.67 238.98 14.36× 

 

We compare the inference process for a teacher 
deployed on a RaspberryPi 3B+ (RPi) and a NoNN of two 

students deployed on the same device. The number of 

parameters, latency, and energy corresponding to the 

Student column (in both tables) is measured on one RPi 

device to emphasize the impact of the teacher and a 

student model deployed on a single RPi. 

 

Table II. VGG experimental results 

Metrics Teacher Student Improvement 

Accuracy 93.00% 91.47% -1.53% 

Parameters 20M 9.2M 2.16× 

Latency [ms] 847 414 2.04× 

Energy [mJ] 436.27 366.39 1.2× 

4. Conclusion 

In this paper, we have presented a hardware prototype 

and a software framework to compress large teacher 

models for distributed power- and latency-constrained on-

device inference at the edge. The student models perform 

on-device inference efficiently and deliver real-time 

performance while deployed on RPi edge devices.  

Our approach demonstrates significant reductions in 

memory footprint (50×), energy consumption (14×), 

latency (33×) and an increase in performance (12×), while 
maintaining the accuracy of the initial teacher model. 

Our demonstration consists of a live deployment of the 

resulted compressed models on RaspberryPi 3B+ boards 

with real-time on-device inference and actual 

performance and power measurements.  
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Fig. 1. Proposed distributed model compression framework for disjoint edge devices 


