
Enabling Incremental Knowledge Transfer for Object Detection at the Edge

Mohammad Farhadi

Arizona State university

mfarhadi@asu.edu

Mehdi Ghasemi

Arizona State university

mghasem1@asu.edu

Sarma Vrudhula

Arizona State university

svrudhul@asu.edu

Yezhou Yang

Arizona State university

yz.yang@asu.edu

Abstract

Object detection using deep neural networks (DNNs) in-

volves a huge amount of computation which impedes its im-

plementation on resource/energy-limited user-end devices.

The reason for the success of DNNs is due to having knowl-

edge over all different domains of observed environments.

However, we need a limited knowledge of the observed en-

vironment at inference time which can be learned using a

shallow neural network (SHNN). In this paper, a system-

level design is proposed to improve the energy consump-

tion of object detection on the user-end device. An SHNN

is deployed on the user-end device to detect objects in the

observing environment. Also, a knowledge transfer mecha-

nism is implemented to update the SHNN model using the

DNN knowledge when there is a change in the object do-

main. DNN knowledge can be obtained from a powerful

edge device connected to the user-end device through LAN

or Wi-Fi. Experiments demonstrate that the energy con-

sumption of the user-end device and the inference time can

be improved by 78% and 40% compared with running the

deep model on the user-end device.

1. Introduction

The Internet of Things (IoT) refers to a world in which

almost any thing is instrumented with sensors, computers

and communication devices. These embedded systems will

be utilized in a wide range of domains including surveil-

lance, retail, healthcare, transportation, industrial robotics

and many more. The emergence of IoT is taking place

alongside a radical change in how the captured data is

processed, namely, with the use of deep neural networks

(DNNs). They have become the dominant algorithmic

framework for extracting valuable information from mas-

sive amounts of disparate data for the purpose of prediction,

classification and decision making.

Transition
Shallow 

model 

Knowledge

Shallow 

model

Knowledge

(Updated)Deep Model 

Knowledge

Figure 1. The limited knowledge of shallow model can be adapted

to the new environment using the deep model knowledge.

DNNs are computationally intensive algorithms that in-

volve several layers of nodes that perform billions of

multiply-accumulate operations on very large dimensional

data sets. Thus, DNNs have to be executed on high per-

formance, large capacity cloud servers. Unfortunately, this

means that the massive amounts of data generated by the

IoT devices need to be transferred to the cloud, which will

soon make this approach infeasible due to the limited band-

width, the unacceptably large latency, and the potential for

compromising the security.

The preferred solution is to have some or all the data

processed by a user-end device, which is the first recipi-

ent of the data (e.g. a smartphone [1], or a smart surveil-

lance camera [2]). However, the limited computation and

storage capabilities and/or energy capacity of user-end de-

vices precludes them from executing complex DNN algo-

rithms [3, 4]. Edge computing is aimed at addressing this

problem by having a part or all of the computation per-

formed on a more powerful local computer called an edge

device that is connected to the user-end device via a local

area network (LAN) or Wi-Fi connection.

In this paper, we present a new approach to improve the

execution of DNN algorithms in an edge computing envi-



ronment. The proposed system targets complex DNN al-

gorithms (e.g., RetinaNet [5], Faster-RCNN [6]) designed

for object detection in digital images and videos in differ-

ent domains (Figure 1). Object detection arises in practi-

cally every computer vision task and now plays a central

role in nearly every one of the applications domains men-

tioned above. The goal of this work is to demonstrate how

two devices – a lower performance user-end device and a

much higher performance edge device can cooperate in the

execution of computationally intensive DNN algorithms to

achieve substantial improvement in energy consumption of

the user-end device while achieving nearly the same quality

of results as would be if the algorithms were executed solely

on the more powerful device.

The proposed approach is based on a two-level hierarchy

of models – a Shallow neural network (SHNN) (the student)

that runs on the user-end device, and a DNN (the oracle)

that runs on the more powerful edge device. The edge de-

vice can also execute the SHNN. The use of the SHNN ex-

ploits an important characteristic of images, namely, that in

any given image over a period of time, the diversity of ob-

jects is quite limited [7], and therefore, a DNN may not be

necessary and a smaller, shallower model will suffice. On

the other hand, when changes do occur, they must be de-

tected, and the shallow model must be updated.

As shown in Figure 1, our approach detects such

changes, activates the DNN as required, which in turn trans-

fers the new knowledge (the encoding of the ground truth

in the new weights) from the edge device to the user-end

device to update the shallow model. All of this is done

while performing inference, i.e., at run-time. The knowl-

edge transferred includes the weights in the decoder layers

(layers that detect the objects using the extracted features

from previous layers). This transfer enables us to improve

the inference time and energy consumption while having a

tolerable accuracy loss compared to the deep model.

We demonstrate these ideas by implementing the pro-

posed approach on a pair of devices where the user-end de-

vice is an NVIDIA Jetson Nano development kit and the

edge device is a Dell workstation with NVIDIA Titan Xp

GPU. The experiments show that the proposed method can

achieve the desired accuracy with significantly lower infer-

ence time. Moreover, the total energy consumption of the

user-end device was reduced by 78% when compared to

running the DNN entirely on the user-end device. More-

over, the results show that the ratio of object detection ac-

curacy to the energy consumption is improved significantly

using the proposed approach.

1.1. Contributions

The main contributions of this paper can be summarized

as follows:

• We demonstrate a novel framework for transferring

knowledge between two devices, one executing a

DNN, and the other executing an SHNN. This ap-

proach substantially advances edge computing for per-

forming very complex and computationally intensive

applications.

• We present an extensive exploration of various ways in

which the knowledge transfer can take place, and eval-

uate them in terms of specific, well-defined metrics.

• The quality of the detection results depends on when

the DNN should be activated for possible knowledge

transfer. Toward this, we present a novel key frame se-

lection mechanism that significantly improves the effi-

ciency of the knowledge transfer.

• The proposed framework for incremental knowledge

transfer in object detection is made open-source and

will be released for public distribution on Github.

The rest of this paper is organized as follows. Section 2

discusses the background on object detection methods and

the relevant metrics for the evaluation of the detection accu-

racy. It also provides an overview of the related work. Sec-

tion 3 explains the proposed system framework. In Section

4, the setup of experiments and the results are discussed.

Finally, Section 5 concludes the paper.

2. Background and Related Work

In this section, the background on the object detection

methods and the metrics for evaluating their accuracy are

described. Different categories of related work are de-

scribed and the drawbacks of each group are discussed.

2.1. Background

Object detection methods: Existing methods for object

detection using CNNs can be classified as either two-stage

or one-stage approaches. In two-stage methods such as

FasterRCNN [6], R-FCN [8], and AdaScale [9] classifica-

tion and localization are implemented using two separate

steps involving classification and region proposal. The one-

stage approaches (such as Yolo [10], SSD [11], and Reti-

naNet [5]) classify and localize objects in one step. One-

stage detection models are generally faster while the accu-

racy of two-stage models is higher. However, at a smaller

intersection of the ground-truth and the predicted object (in-

tersection of union = 0.5), one-stage models can achieve

nearly the same accuracy of the two-stage methods. In

this paper we use single stage models, since they are bet-

ter suited for embedded devices with limited computation

resources.

Metrics for evaluation of detection accuracy: There are

three main validation metrics in object detection: Recall,

Precision, and F1 score [12].



Recall: This is the number of correctly detected objects di-

vided by the total number of objects in the scene. Recall is

crucial in safety-critical systems where missing an object in

the scene could be catastrophic.

Precision: This is the total number of correctly detected

objects divided by the total number of detected objects. This

is useful for evaluating the systematic errors of detection.

F1 score: This is a measure of overall detection accuracy

and is defined as 2× Precision×Recall

Precision+Recall
.

2.2. Related Work

2.2.1 Implementation of object detection on cloud

Neurosurgeon [13] and JointDNN [14] are two recent ex-

amples of performing image classification collaboratively

between an user-end device and a cloud server. However,

they do not consider object detection methods, which are

a superset of image classification methods. Glimpse [15]

performs object detection on mobile devices using a cloud

server. When the network delay exceeds a certain thresh-

old, their approach uses tracking to estimate the location of

objects based on an active cache of frames.

MobiEye [1] is another cloud-based object detection sys-

tem for mobile devices implemented in a multi-threaded

asynchronous manner. The first thread sends the key frames

to the cloud for object detection. The second thread per-

forms the object tracking based on the result of processed

key frames using optical flow network. The response time

of object detection for key frames is dependent on the net-

work delay. Therefore, when the network delay is high, the

newly observed objects in the scene may be missed.

2.2.2 Domain adaptation

Domain adaptation refers to training a model for a specific

domain of observation. There is a substantial body of work

on domain adaptation in object classification and detection

methods [16–18]. These methods have been presented to

deal with challenges such as low quality images, and large

variance in the background. This variation can result in

a domain change in the training, validation, and test sets.

However, existing methods do not consider sudden changes

in the scene when performing inference at run-time.

2.2.3 Knowledge transfer

Knowledge transfer (a.k.a knowledge distillation) [7, 19]

has been widely used to improve the accuracy of object de-

tection systems. This method transfers the knowledge of

a deeper model (oracle) to a lighter model (student) with

fewer parameters. If the shallower model can gain this

knowledge, it will have the same accuracy as the deeper

model while using fewer resources. However, the student

model would not adapt to this knowledge since it has fewer

parameters but it can adapt partially.

Mullapudi et al. [19] proposed an image segmentation

method where the shallow model is trained periodically at

fixed intervals. The selection of fixed interval may not be ef-

ficient. Farhadi et al. [7] have proposed a systematic proce-

dure using Long Short-Term Memory (LSTM) to determine

the intervals at which the training of shallow model should

be done. However, running the LSTM would be expensive

on resource-confined user-end devices.

In this paper, a knowledge transfer framework is

proposed in edge computing environment for energy-

constrained user-end devices. This framework is explored

in different ways using real-world direct measurements.

3. System Framework

3.1. Knowledge Transfer

In this section, the idea of online knowledge transfer in

the edge computing domain is described. Moreover, an effi-

cient method is proposed to select the frames that should be

sent to the edge device for re-training the shallow model.

In most vision datasets, there are a variety of domains

that the model needs to learn. However, in real-world ap-

plications such as surveillance cameras, we are confronted

with a specific domain and with limited types of objects. Al-

though the scene can change, the changes are typically slow.

Here, the oracle knowledge over this temporal domain can

be used to adapt the student model to the observing envi-

ronment (which has been called temporal knowledge distil-

lation [19]). This approach can improve the accuracy and

response time.

Although methods of knowledge transfer can improve

the performance significantly, their implementation poses

several challenges: 1) models may lose their generality and

may not be able to detect objects seen for the first time;

2) training the student model for each and every incoming

frame incurs high computation cost; 3) training a student

model on the embedded device can affect other simultane-

ously running tasks, whereas training over the network in-

curs delay for adaptation. We address these challenges in

the proposed approach.

3.2. Main Architecture

Our method of knowledge transfer between a shallow

and deep model extends the approaches described in [7,19]

to energy-constrained embedded systems. Figure 2 shows

an overview of the proposed architecture which consists of

three main parts: 1) the student model which is a shallow

CNN model; 2) the oracle model which has a deep structure

that can reach the state-of-the-art accuracy in detection; and

3) the key frame selection method which selects the epochs

at which student adaptation occurs.



Student Oracle

Figure 2. An overview of knowledge transfer method: The main thread of execution on the user-end device runs a shallow student model to

detect objects. To keep the desired accuracy, a key frame selection module decides to retrain the student model based on the oracle model.

The user-end device observes a scene and detects objects

in the scene. Meanwhile, it adapts itself to the observing en-

vironment to improve the overall accuracy. In the following,

each of these modules is described. Note that the presence

of the oracle model in the user-end device is for evaluation

purposes in our approach.

3.2.1 Student

This is a shallow model with a limited number of param-

eters requiring much less computation than a deep model.

The student can learn only a limited amount of knowledge

due to fewer parameters. In this paper, the student has a

similar structure to Tiny-Yolo v3 [10] with some modifica-

tion to the decoder part. The student model (see Figure 2)

consists of three parts: 1) a feature extractor, 2) a general

decoder, and 3) an adaptive decoder. The feature extractor,

which has the same structure as the base model (Tiny-Yolo)

is trained on a conventional object detection dataset. The

general decoder (same structure as base model) detects ob-

jects using the extracted features and is trained along with

a feature extractor during the training stage. Finally, the

adaptive decoder is optimized during inference time using

the oracle knowledge. Another stack of convolutions has

been added to the adaptive decoder to improve the detec-

tion accuracy of small objects (Figure 2).

3.2.2 Oracle

This is a model with a larger number of parameters and a

deeper structure and as a result can reach the state-of-the-

art accuracy over the target dataset (called oracle model).

This model will be used to extract knowledge over the tem-

poral domain. The knowledge will be used for adapting the

student model to the observing environment. Here, Yolo v3

is used as the oracle model due to the similarity of structure

to that of Tiny-Yolo and its lower latency compared with

two-stage object detection methods. This makes the opti-

mization procedure more efficient at inference time.

3.2.3 Optimizer (weight update)

To transfer knowledge from the oracle to the student model,

Adam gradient descent method [20] is used. First, the dis-

tance between the student and oracle model needs to be cal-

culated. The student and oracle both have three output ma-

trices with the same size. By calculating the L2 distance of

student and oracle outputs (
∑

‖TS
i
− TO

i
‖22 , i = [1, 2, 3]),

the distance of two models is calculated. Next, using this

distance as the loss value, the optimizer updates the weights

of adaptive decoder in the student model. After adaptation,

the weights of running student model will be replaced by

the new weights.

3.2.4 Key frame selection

It is important to know when we need more knowledge

while observing the environment. Training over all incom-

ing frames will be expensive while training over a number

of frames is needed to maintain accuracy. Mullapudi et al.

[19] proposed a static interval key frame selection that is se-

lected by the user at the beginning. To reach the desired ac-

curacy, the interval should be small which will increase the

inference time, energy consumption, and hardware utiliza-

tion. Farhadi et al. [7] proposed a combination of a uniform

selector and an LSTM module to select key frames. This

method achieves higher performance compared to Mulla-

pudi et al. [19]. However, running the proposed LSTM



module on a resource-constrained device would be costly.

In our proposed approach, Kalman filtering [21] is used

to track changes on the scene. If there is a significant change

on the scene compared to the last adaptation, the frame is a

good candidate for re-training. Also, frames are selected

using a binomial selector described in equation 1:

I ∈ {FALSE, TRUE}

I = Motion(FS , FL) ∧ IR, IR ∼ B(2, Pt),

Pt =

{

max((Pt−1 − 0.05), 0.05) ∆L < σ,

min(2Pt−1, 1.0) ∆L > σ,

FS : Observed frame, FL : Last key frame,

(1)

where I denotes the final decision of the selector indicat-

ing whether or not to re-train. The IR is sampled from the

binomial distribution. The probability of selection (Pt) is

changed based on knowledge transfer loss. If ∆L (i.e. the

difference between current loss and previous training loss),

improves more than σ, the probability factor will be dou-

bled to increase frames for knowledge transfer. Otherwise,

Pt will be decreased to select fewer frames for training. At

least 5% of frames are selected as a sample to avoid miss-

ing the scene changes. The value of σ is a hyper parameter

which is obtained after several rounds of experiments. This

value can be changed based on the type of loss function. In

this paper, the value of σ is chosen to be σ = 0.5.

Moreover, we will not select any other frame for adap-

tation while we are processing a key frame. This approach

makes the detection system more adaptable to the newest

observed objects by avoiding the queuing of frames.

3.2.5 Knowledge source

The student module can be updated using local or remote

knowledge. As shown in Figure 2, the detection system

has its own Oracle (local Oracle) to update the weights and

adapt to the environment. The local Oracle is both opti-

mizer and oracle model. Also, the user-end device can re-

quest a network oracle (edge) for a deeper knowledge and

optimization. The edge has a clone of student model and

updates this clone and sends it back to the user-end device.

This approach is not on-time due to network latency. Sec-

tion 5 includes a detailed evaluation of these trade-offs.

3.2.6 Multi-threading

To minimize the inter-effect of these sub-modules, each

module is running on a separate thread. Although these

modules are running independently, they may affect each

other due to limited resources on the device. For instance,

the oracle module can use most of the available CUDA

cores while we are running the student model and cause an

increase in inference time.

4. Experimental Results

In this section, the experimental setup and the results of

applying our approach are described.

4.1. Setup

Hardware Setup: The user-end device is NVIDIA Jetson

Nano developer kit [22] which is the first recipient of cam-

era frames. This kit is equipped with a quad-core ARM

A57 CPU operating at 1.43 GHz and a 4GB 64-bit LPDDR4

RAM. Moreover, it has a 128-core Maxwell GPU. The edge

device is a Dell workstation with an Intel Xeon W-2125

CPU operating at 4.0 GHz having 32GB of RAM and an

NVIDIA Titan Xp GPU.

Both Local Area Connection (LAN) and Wi-Fi were

tested as the communication medium between devices

(tested in a network with a WAN (wide-area network) back-

bone). The bandwidth of Wi-Fi and LAN connections were

approximately 13 and 100 Mb/s respectively. To measure

the power consumption of the user-end device, Monsoon

HV power monitor was used (Figure 3).

Dataset: To verify the efficiency of the proposed approach,

two types of videos from fixed and moving cameras were

selected. The fixed camera case was from the surveillance

videos in the UCF dataset [23]. The moving camera case

was from the car crash dataset [24]. The initial weights of

student and oracle model were obtained by training on the

Microsoft COCO dataset [25].

Evaluation Metrics: The proposed approach to train on the

edge device over a network was evaluated in terms of accu-

racy and performance metrics. The F1 and Recall scores

are representative metrics for the accuracy of the detection

method.

In our experiments, the output of deep model was as-

sumed to be the ground-truth and the proposed approaches

were compared with the knowledge of deep model. More-

over, the average inference time and training time for all

the processed frames was measured. Additionally, the to-

tal energy consumption of the user-end device processing

the whole video was compared. This energy consumption

is attributed to different factors including video decoding,

Figure 3. Experimental Setup.



Table 1. Comparison of different approaches. Local training

and network training both use the proposed key frame selection

method using full precision data. The energy column is the aver-

age energy consumption for each frame. Overall score is the ratio

of F1 score to energy.

Metrics

Energy

(J)

Inference

Time (s)

F1

Score

Overall

Score

Shallow Model 1.06 0.036 0.489 0.46

Deep Model 4.55 0.063 1 0.22

Local Training 1.83 0.046 0.753 0.41

Network

Training (Wi-Fi)
1.25 0.037 0.731 0.58

Network

Training (LAN)
0.98 0.038 0.745 0.76

inference, non-maximum suppression (NMS) post process-

ing, and network communication. In order to evaluate the

overall efficiency of our approach, both in terms of accu-

racy and energy consumption, the overall score is used as

the ratio of F1 score to energy consumption [26, 27].

Test Scenarios: The test scenarios include three cases:

1. Network Training (NT): the weights are updated on

the edge device through either Wi-Fi or LAN connec-

tions. The input data is a tensor of size 416× 416× 3
which needs to be transmitted from the user-end device

to the edge device. Moreover, the weights of decoder

(explained in Figure 2) will be sent from the edge to

the user-end device.

2. Local Training (LT): The weights are updated locally

on the user-end device. In this approach, the calcula-

tion of loss function to update the weights is also done

on the user-end device.

3. No Training: The weights are not updated at all and

the inference is done using the shallow model.

The aforementioned scenarios were tested using full preci-

sion and half precision weight and data values on the videos

of both fixed and moving cameras. The efficiency of key

frame selection (KFS) method was compared with the case

in which all the frames were selected as the key frame (w/o

KFS).

4.2. Experimental Results

Table I shows the comparison of LT and NT versus run-

ning the deep or shallow model on the user-end device for

the fixed camera video. In case of NT using LAN, the

energy consumption and inference time were reduced by

around 78% and 40% compared with running the whole

deep model on the user-end device while the F1 score was

reduced only by ≈ 25%. However, as shown in [7], the ac-

curacy of student model using knowledge transfer remains

almost the same as the deep model in Youtube video dataset

[28]. On the other hand, running the shallow model on the

user-end device resulted in unacceptable accuracy (F1 score

= 0.489). Note that training the shallow model locally led to

additional 87% energy consumption. The overall efficiency

of the approaches was evaluated using the overall score (i.e.

the ratio of F1 score to energy). The overall score of net-

work training (LAN) leads to 1.65x and 3.45x improvement

compared with running the shallow and deep model on the

user-end device. The reason for getting better overall score

in LAN compared with Wi-Fi is due to the lower communi-

cation delays in the network. Still, the network training us-

ing Wi-Fi can gain better overall score compared with other

approaches.

The variation of F1 score was also measured (shown in

Figure 4). Both NT and LT perform significantly better

than the case in which no incremental training was done

(both fixed and moving camera videos). Moreover, higher

F1 score was achieved in the case of fixed camera videos.

It demonstrates that the adaptation is more effective in fixed

camera videos due to fewer changes in the scene. In the case

of fixed camera, NT outperforms LT since training latency

is lower which leads to higher achievable accuracy.

The presence of low spikes in some parts of Figure 4 sug-

gests that there is are significant scene changes in the video

at those epochs. On the other hand, the high spike indicates

the epochs that the detection system was able to adapt to

the environment. Due to different re-training latency val-

ues, a shift in the spikes among different scenarios can be

observed.

Figure 5 (a) shows the average Recall for the different

scenarios mentioned earlier. Recall in the case of LAN con-

nection was better than Wi-Fi. This is due to the fact that

the data transmission latency of LAN connection was lower

than Wi-Fi and the student model was updated more fre-

quently. On the other hand, the accuracy of NT and LT are

close even when using the low speed wireless connection

since the training latency is the same. Moreover, training

over the network using half precision data reduces the com-

munication time for sending the data and weight values sig-

nificantly while having a negligible effect on the accuracy.

Note that the values of F1 score followed the same trend as

with Recall.

Figure 5 (b) shows the average training time of all pro-

cessed frames. Network training using a LAN connection

has the lowest training time while training using the Wi-

Fi has the highest among all cases. Using half precision

data reduces the training time significantly specifically in

NT using Wi-Fi connection. Even using half precision data,

LT was still having lower training time than the NT (Wi-Fi)

since the training time locally using half precision incurs

lower computation.

The total energy consumption of the user-end device for



Network Training No Training Local Training

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

F
1

 S
c
o

re

Epoch (200 frames) - Fixed Camera

Scene change

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Epoch (200 frames) – Moving Camera 

Model

Adaptation

Figure 4. F1 score variation. In the case of fixed camera, the network training (NT) using Wi-Fi connection even has a better F1 score

in comparison with the local training (LT). Both NT and LT operate on half precision data. High spike indicates that the model has been

adapted to the environment while the low spike shows the scene change.

N L N N L N N

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

R
e
c
a
ll

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

In
fe

re
n
c
e
 T

im
e
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

T
ra

in
in

g
 T

im
e
 (

s
)

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

8.00E+04

9.00E+04

Moving Camera Fixed Camera Moving Camera Fixed Camera

Full Precision Half Precision

E
n
e
rg

y 
C

o
n
s
u
m

p
ti
o
n
 (

J
)

(a) (b)

(c) (d)

No Training LT + KFS NT(Wi-Fi) + KFS NT(LAN) + KFS LT w/o KFS
NT(Wi-Fi) w/o

KFS

NT(LAN) w/o

KFS

Figure 5. Comparison of (a) Recall, (b) Average training time, (c) Total energy consumption of all frames, (d) Average inference time, for

fixed and moving camera videos using Wi-Fi and LAN connections. The efficiency of key frame selection method (KFS) has been also

compared with the case in which all the frames are trained (w/o KFS).

different scenarios is compared in Figure 5 (c). The lowest

energy consumption was achieved using NT with LAN con-

nection. This is due to the fact that the transfer of weights

to the edge device was done faster and the user-end device

was not involved in the training procedure. Although the

training time for NT (Wi-Fi) was highest, the energy con-

sumption is close to NT(LAN) case (NT (LAN) achieves

higher accuracy as mentioned before). It can be also seen

that LT leads to higher energy consumption compared with

NT. There are two reasons for this observation: 1) The high

computation cost of running the oracle model locally; 2) In-

crease of inference time due to interference of local training

with the online inference.

Figure 5 (d) shows the average inference time of all

frames. The effect of local training can be again observed in

the higher inference time compared with the network train-

ing. NT(Wi-Fi) leads to lower inference time compared

with NT(LAN). The reason is due to higher accuracy ob-



tained in NT(LAN) scenario. Note that the post processing

on the detected objects (NMS) took longer time for the sce-

narios with higher accuracy which led to higher inference

time.

The efficiency of key frame selection method was also

evaluated in the experiments. It can be observed in Fig-

ure 5 (a) that NT (LAN)+KFS performs closely in terms

of Recall metric compared with the case where the training

happens at all video frames (NT (LAN) w/o KFS). More-

over, the energy consumption and the inference time in the

case of LT w/o KFS is significantly higher in comparison

with LT+KFS since the re-training should happen for all the

frames in LT w/o KFS.

4.3. Further Discussion

The experimental results gave us some insights on how

to design the system for the implementation of online

knowledge transfer. The takeaways can be summarized as

below:

• Local training: The energy consumption of this

method is higher compared to other approaches. On

the other hand, the training time is more predictable in

comparison with network training using Wi-Fi. This

is due to the fact that the communication time using

Wi-Fi follows a stochastic behavior.

• Network training: This approach can lead to higher

accuracy/energy ratio on average. Network training

using LAN connection is as predictable as local train-

ing since the LAN connection is more stable compared

with Wi-Fi.

• Loss Function: The used loss function in this paper is

based on the Euclidean distance of student and oracle

model. However, the calculation of this loss function is

computationally intensive on the CPU of user-end de-

vice. Therefore, local training can be more expensive

in terms of energy consumption and inference time.

• Frame selection: The frame selection strategy selects

more frames to train at the beginning of the environ-

ment observation. The number of selected frames is

decreased throughout the observation of the environ-

ment. This observation was more vivid in fixed camera

videos.

• Potential solution: Based on these observations, a

combination of network and local training is suggested

where the initial frame training can be done on the

edge device. For the rest of the frames, a decision mak-

ing policy can determine whether the training should

be done locally or on the edge device. The decision

making policy can be based on the stability of the com-

munication media. Moreover, the number of frames

to be trained affects the decision making policy. For

instance, when the number of frames to be trained is

higher, the network training is a better option.

5. Conclusion

In conclusion, we designed and implemented a frame-

work for incremental knowledge transfer in edge comput-

ing environment. The parameters of a shallow model run-

ning on the user-end device are updated during inference

at some key frames to achieve the close accuracy as using a

deep model. We demonstrated the proposed approach in the

real-world scenario. Our framework consisting of a shallow

and a deep model resulted in 78% energy reduction when

compared to running the deep model alone. The experi-

ments also revealed that the latency of communication must

be accounted for when deciding to do the model updates.

Acknowledgment: The National Science Foundation un-

der the Robust Intelligence Program (#1750082) and

I/UCRC Center for Embedded Systems (#1361926), the

IoT Innovation (I-square) fund provided by ASU Fulton

Schools of Engineering are gratefully acknowledged.

References

[1] J. Mao, Q. Yang, A. Li, H. Li, and Y. Chen, “Mobi-

eye: An efficient cloud-based video detection system

for real-time mobile applications,” in Proceedings of

the 56th Annual Design Automation Conference 2019,

2019, pp. 1–6.

[2] Z. Xiong, Z. Yao, Y. Ma, and X. Wu, “Vikingdet:

A real-time person and face detector for surveillance

cameras,” in 2019 16th IEEE International Confer-

ence on Advanced Video and Signal Based Surveil-

lance (AVSS). IEEE, 2019, pp. 1–7.

[3] M. Farhadi, M. Ghasemi, and Y. Yang, “A novel de-

sign of adaptive and hierarchical convolutional neu-

ral networks using partial reconfiguration on fpga,”

in 2019 IEEE High Performance Extreme Computing

Conference (HPEC). IEEE, 2019, pp. 1–7.

[4] S. Han, H. Shen, M. Philipose, S. Agarwal,

A. Wolman, and A. Krishnamurthy, “Mcdnn: An

approximation-based execution framework for deep

stream processing under resource constraints,” in Pro-

ceedings of the 14th Annual International Conference

on Mobile Systems, Applications, and Services, 2016,

pp. 123–136.

[5] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,

“Focal loss for dense object detection,” in Proceedings

of the IEEE international conference on computer vi-

sion, 2017, pp. 2980–2988.



[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:

Towards real-time object detection with region pro-

posal networks,” in Advances in neural information

processing systems, 2015, pp. 91–99.

[7] M. F. Bajestani and Y. Yang, “Tkd: Temporal knowl-

edge distillation for active perception,” in The IEEE

Winter Conference on Applications of Computer Vi-

sion, 2020, pp. 953–962.

[8] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detec-

tion via region-based fully convolutional networks,”

in Advances in neural information processing systems,

2016, pp. 379–387.

[9] T.-W. Chin, R. Ding, and D. Marculescu, “Adascale:

Towards real-time video object detection using adap-

tive scaling,” arXiv preprint arXiv:1902.02910, 2019.

[10] J. Redmon and A. Farhadi, “Yolov3: An incremen-

tal improvement,” arXiv preprint arXiv:1804.02767,

2018.

[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,

C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox

detector,” in European conference on computer vision.

Springer, 2016, pp. 21–37.

[12] D. M. Powers, “Evaluation: from precision, recall and

f-measure to roc, informedness, markedness and cor-

relation,” 2011.

[13] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge,

J. Mars, and L. Tang, “Neurosurgeon: Collaborative

intelligence between the cloud and mobile edge,” in

ACM SIGARCH Computer Architecture News, vol. 45,

no. 1. ACM, 2017, pp. 615–629.

[14] A. E. Eshratifar, M. S. Abrishami, and M. Pedram,

“Jointdnn: an efficient training and inference en-

gine for intelligent mobile cloud computing services,”

arXiv preprint arXiv:1801.08618, 2018.

[15] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and

H. Balakrishnan, “Glimpse: Continuous, real-time ob-

ject recognition on mobile devices,” in Proceedings of

the 13th ACM Conference on Embedded Networked

Sensor Systems. ACM, 2015, pp. 155–168.

[16] H. Lu, L. Zhang, Z. Cao, W. Wei, K. Xian, C. Shen,

and A. van den Hengel, “When unsupervised domain

adaptation meets tensor representations,” in Proceed-

ings of the IEEE International Conference on Com-

puter Vision, 2017, pp. 599–608.

[17] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool,

“Domain adaptive faster r-cnn for object detection in

the wild,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp.

3339–3348.

[18] D. Dai and L. Van Gool, “Dark model adaptation:

Semantic image segmentation from daytime to night-

time,” in 2018 21st International Conference on Intel-

ligent Transportation Systems (ITSC). IEEE, 2018,

pp. 3819–3824.

[19] R. T. Mullapudi, S. Chen, K. Zhang, D. Ramanan, and

K. Fatahalian, “Online model distillation for efficient

video inference,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision, 2019, pp.

3573–3582.

[20] D. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[21] R. Kalman, “A new approach to linear filtering and

prediction problems,” Journal of Basic Engineering,

vol. 82, no. 1, pp. 35–45, 1960.

[22] “Jetson nano developer kit (online),”

https://developer.nvidia.com/embedded/jetson-

nano-developer-kit, 2019, accessed: 2019-10-12.

[23] W. Sultani, C. Chen, and M. Shah, “Real-world

anomaly detection in surveillance videos,” in Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 6479–6488.

[24] F.-H. Chan, Y.-T. Chen, Y. Xiang, and M. Sun, “Antic-

ipating accidents in dashcam videos,” in Asian Confer-

ence on Computer Vision. Springer, 2016, pp. 136–

153.

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft

coco: Common objects in context,” in European con-

ference on computer vision. Springer, 2014, pp. 740–

755.

[26] “2018 system design contest,” http://www.cse.cuhk.

edu.hk/∼byu/2018-DAC-SDC/index.html.

[27] S. Alyamkin, M. Ardi, A. Brighton, A. C. Berg,

Y. Chen, H.-P. Cheng, B. Chen, Z. Fan, C. Feng, B. Fu

et al., “2018 low-power image recognition challenge,”

arXiv preprint arXiv:1810.01732, 2018.

[28] A. Prest, C. Leistner, J. Civera, C. Schmid, and

V. Ferrari, “Learning object class detectors from

weakly annotated video,” in Computer Vision and Pat-

tern Recognition (CVPR), 2012 IEEE Conference on.

IEEE, 2012, pp. 3282–3289.


