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Abstract

We present a detailed technical insight into a commercial

vision-based sensor for monitoring residents in elderly care

facilities and alerting caretakers in case of dangerous situ-

ations such as falls or residents not returning to their beds

during nighttime. We focus on aspects that enable deep-

learning-based object classification in realtime on low-end

ARM-based hardware, which is prerequisite for a solution

that is performant yet affordable, low-power, and unobtru-

sive. To this end, we introduce an efficient vision pipeline

that maps the input depth data to concise virtual top-views.

These views are then processed by a set of convolutional

neural networks, with a scheduler selecting the most appro-

priate one based on the current operating conditions and

available hardware resources. In order to overcome the

challenge of acquiring large amounts of training data in this

privacy-critical environment, we pretrain these networks on

a large set of synthetic depth data. These concepts are gen-

eral and applicable to similar vision tasks.

1. Introduction

Due to the ongoing demographic change in developed

countries, there is a rising demand for solutions that can

support caretakers in elderly care facilities. Solutions that

alert caretakers in case of relevant events such as frail peo-

ple getting up from their beds ensure that residents receive

help as quickly as possible while also reducing the need for

continuous checks by the caretakers [10].

In this paper, we present a detailed technical overview

of a commercial product we have developed for this pur-

pose. In contrast to more established solutions such as panic

buttons or pressure mats [10], our system is based on com-

puter vision and requires no user intervention or mainte-

nance once installed on a wall or ceiling in the room to be

monitored. It combines the functionality of these solutions,

namely fall detection and getup detection, with additional

features such as alerting caretakers if residents do not return

to their bed at night. The system analyzes data from a depth

sensor for improved privacy over color cameras and reliable

monitoring regardless of the lighting conditions, including

at night. Configuration and monitoring is done using a web-

platform, and alerts can be sent by various means, such as

preexisting alerting infrastructure or text messages.

Given the purpose of our system, reliable event detec-

tion is crucial as e.g. missing a fall can have serious health

implications. This requires state-of-the-art computer vision

methods, which calls for deep-learning-based solutions [4].

However, such solutions are computationally expensive and

require large datasets for training. Both aspects can prevent

the use of deep learning in commercial vision systems due

to resource constraints, and because acquiring large datasets

for commercial purposes is labor-intensive and expensive,

particularly in privacy-critical environments.

This paper presents design considerations that have al-

lowed us to overcome both these problems and have enabled

us to deploy a deep-learning-based computer vision pipeline

for realtime analysis on a low-end ARM-based single-board

computer, namely the Raspberry Pi 3. This is a major and

stable platform that is readily available, inexpensive, small,

and has a low power consumption, enabling small, unobtru-

sive, and affordable solutions that integrate this platform.

However, the platform is slow even by ARM CPU stan-

dards, imposing tight restrictions on the algorithms used.

The computer and depth sensor are integrated in a small

custom casing that is shown in Figure 1.

We demonstrate empirically that practical deep learn-

ing for realtime applications is possible on this platform by

combining concise top-view representations of objects with

efficient neural network architectures and resource-based

network scheduling. Furthermore, we present a two-stage

approach to network training that overcomes the lack of

large amounts of training data by pretraining on synthetic

depth samples. These design aspects are general and can be

applied to other vision problems and hardware platforms.

This paper is structured as follows. Section 2 reviews the
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Figure 1. The custom casing (width: 25 cm).

pertinent literature on efficient neural networks, synthetic

depth data, and related solutions for elderly care facilities.

An overview of the main computational steps is presented in

Section 3. Section 4 presents the object classification step,

which is the focus of this paper, in more detail. Section 5

covers data acquisition, Section 6 presents the experiments

and results, and Section 7 concludes the paper.

2. Related work

Efficient neural network architectures. Efficiency in

deep learning is often ignored in favor of further perfor-

mance improvements. GoogLeNet [19] was one of the

first architectures that focus on both aspects. It has since

been improved several times and combined with the popu-

lar ResNet architecture [18, 4].

Architectures that are efficient enough to run on low-end

hardware have been presented only recently, for instance

MobileNet [6] and ShuffleNet [21]. These architectures uti-

lize efficient forms of convolutions, exploiting that these

operations can be factorized. MobileNet utilizes pairs of

depthwise and pointwise convolutions, whereas ShuffleNet

is built upon units that combine a depthwise convolution

layer with two pointwise convolution layers, and a layer that

shuffles layers in groups. These units include a shortcut path

for improved information flow, similarly to [4]. MobileNet

v2 [15] adopts similar units albeit without channel shuffling.

ShuffleNet v2 improves the original units and is more effec-

tive than MobileNet v2 [9]. The network architectures we

utilize are based on this architecture.

Another approach for improving efficiency is quantiza-

tion. This involves performing calculations in low-precision

floating point or integer arithmetic if possible, which can

lead to significant speed improvements depending on the

capabilities of the target hardware [7]. Pruning unimportant

parts of trained models is another option [5].

Synthetic depth data. A seminal work on synthetic

depth data is [16], which demonstrates the potential of ma-

chine learning on large synthetic depth datasets. We follow

a similar approach but utilize deep learning for classifica-

tion instead of random forests, and finetune our models on

a smaller realistic dataset for improved performance. [1]

and [13] also utilize synthetic depth data, for fall detection

and hand pose estimation, respectively. There are only few

public datasets, with the most comprehensive one we are

aware of being SURREAL [20]. SUNCG is another pop-

ular example, however the dataset appears to be no longer

available due to copyright issues.

Active and assisted living. Research on technologies

for supporting elderly people seemingly focus on fall detec-

tion. Depth data are popular for this purpose. An example

is [14], which presents an efficient motion detection algo-

rithm that we adopt. The authors employ virtual top-views

[3], from which they compute basic features for classifica-

tion using a random forest. We also employ such top-views

but process them like images using powerful convolutional

neural networks. [1] also detects falls via motion detection

and random forest classification but the method is not view-

based. One of the first such works was [2], which employs

HU features and SVM-based classification. [11] reviews

older color-based methods.

Commercial solutions for elderly care. There are var-

ious technical solutions available on the market that aim to

support caretakers in elderly care facilities. Panic buttons

are a popular example, however they require a worn device

and user intervention. Most passive products are relatively

simple mechanical solutions such as floor or bed mats that

react to pressure. Vision-based products that provide ad-

ditional features and require no user intervention have en-

tered the market only recently. There are currently less than

five companies that provide such solutions. Our product has

been on the European market since 2018.

3. System overview

All computational steps are optimized for depth data. In

addition to the aforementioned advantages, depth data en-

able efficient 3D scene reconstruction, which we utilize for

data conversion to virtual top-views that can be processed

effectively by convolutional neural networks.

3.1. Computational steps

Figure 2 lists the main computational steps in our sys-

tem. The input depth map from the sensor is first processed

using an efficient motion detection algorithm optimized for

depth data. We adapted the algorithm presented in [14] for

this purpose, replacing the original sensor noise model to

reflect the properties of our depth sensor.

This follows object segmentation. For efficiency, we uti-

lize a binary top-view representation of the scene that en-

codes the location and geometry of all moving objects is a

concise way. This representation is obtained by converting
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Figure 2. The main computational steps in our system.

all motion pixels to top-view coordinates as detailed in Sec-

tion 4.1. On this basis, occupied coordinates are assigned

to tracks based on the position, velocity, and geometry of

all currently tracked objects. Occupied coordinates that are

left unassigned are subject to connected component analy-

sis, and the resulting components spawn new tracks.

The next step, and the focus of this paper, is object clas-

sification. This entails mapping each segmented object to

a virtual top-view representation that can be classified ef-

fectively using convolutional neural networks. Section 4

describes this step in detail.

The remaining steps are object tracking, which involves

updating the location, velocity, and geometrical properties

of all tracked objects, as well as event detection. Events

are detected via temporal analysis of all tracked persons,

considering both location and state classes predicted by the

classifier (e.g. upright person or person on floor). Both

stages assume a relatively constant framerate of around 7.5
frames per second. We found this target framerate to be a

good compromise in terms of measurement frequency vs.

measurement accuracy, given the available computational

resources. More specifically, this framerate allows for reli-

able tracking and robustness to temporary classification er-

rors due to occlusions or inaccurate motion detection.

3.2. Resource consumption

We set an average CPU load limit of 60% overall during

normal operation when determining resource budgets. This

ensures long-term system stability, limits power consump-

tion and heat production, and leaves sufficient headroom for

temporary background tasks and short load spikes. Around

80% of the corresponding CPU cycles are available to the

computational steps described in this paper.

The computational step we found most important to the

overall performance is object classification. We thus assign

the majority of available resources to this stage, as convo-

lutional neural networks scale well in this regard [4, 15, 9].

More specifically, we assign around 50% of these resources

to the neural networks. Motion detection and segmenta-

tion may consume around 20% resources each on average

in practice, with the rest being required by the tracking and

event detection stages. We note that these are soft limits that

may be exceeded temporarily.

4. Object classification

The object classification stage takes the current depth

map and a label map that encodes which pixels belong

to which segmented object, and outputs a vector of class

scores for each object. This is illustrated in Figure 3, which

highlights the main steps involved in this process.

Top-view conversion

Scheduler

Class scores

Framerate history

Figure 3. The proposed object classification pipeline.

The combination of top-view analysis, efficient neural

network architectures, and a scheduler that selects the opti-

mal network given the currently available resources allows

us to perform effective deep-learning-based object classifi-

cation in realtime on low-end hardware.

4.1. Topview conversion

For top-view conversion, all pixels that belong to any

object are mapped to camera coordinates, which is trivial

as the depth map pixels encode distances from the sensor.

These coordinates are then mapped to a world coordinate

system whose (x, y) plane coincides with the floor plane.



The extrinsic camera parameters required in this step are es-

timated automatically during system initialization. They are

obtained by detecting the floor plane via RANSAC-based

plane fitting, similarly to [14]. This conversion to world

coordinates makes analysis invariant to the sensor position

and orientation, facilitating system installation.1

For each object, the corresponding point cloud is then

converted to two top-view representations. For this pur-

pose, the x and y coordinates of each point are first divided

by a factor λ that determines the resolution of the resulting

views, and then rounded to integers (ix, iy). We set λ = 5
cm, which preserves a sufficient amount of spatial informa-

tion while resulting in views that are small enough to pro-

cess quickly. This process generally maps multiple points

to the same top-view coordinates (ix, iy).
We generate two top-views, a height-map and an

occupancy-map [3], by merging such points in two differ-

ent ways. For the former, we store the maximum z coor-

dinates, which encode distances from the floor. Height-

maps thus encode object geometry in a concise way. For

occupancy-maps, we count the number of points that map

to each (ix, iy). The result is weighted based on the dis-

tance of (ix, iy) from the camera, as the number of image

pixels per unit area decreases quadratically with distance.

Occupancy-maps thus indicate the object density and repre-

sent information that is complementary to height-maps. We

next refine both top-views similarly to [3], smoothing and

then thresholding them based on occupancy to remove noise

due to motion detection errors.

For classification, we treat both views as image chan-

nels, stacking them to obtain a single two-channel image.

We classify the views of all objects in a single batch as this

is more efficient than classifying each view individually, as

shown in Section 6.2. In order to obtain views of a consis-

tent size, which is required for batch processing, we cen-

ter each view based on the centroid location according to

the occupancy data and then extract a center-crop of size

40 × 40, padding with zeros if necessary. At λ = 5 cm

this ensures that objects up to an extent of 2 by 2 meters

are fully captured, which includes most people regardless

of pose and most movable indoor objects.

4.2. Classifier scheduling

Classification utilizes multiple neural network classifiers

that vary in terms of speed and accuracy, with slower clas-

sifiers being more accurate. The job of the classifier sched-

uler is to select the slowest and thus most accurate classifier

possible considering the available time budget and the cur-

rent batch size b. The time budget is derived from the pre-

defined resource consumption targets. For this purpose, the

scheduler maintains a so-called framerate history, a lookup

1This conversion is also required for object segmentation. For effi-

ciency, conversion is carried out once and the results are shared.

table that maps from b the average time it takes each classi-

fier to classify batches of size b. This lookup table is loaded

from a template at startup and adapted by the scheduler over

time based on continuous classifier speed measurements.

We note that this approach is generally applicable when-

ever the available computational resources vary over time,

and is not tied to specific network architectures.

4.3. Network architectures

Our network architectures are based on ShuffleNet v2, a

state-of-the-art architecture that achieves high performance

while being efficient and optimized for ARM platforms [9].

We adapt this architecture as follows. First, we remove the

max-pooling layer to preserve spatial information initially

as our inputs have size 40 × 40 whereas the original archi-

tecture was designed for size 224×224. To achieve the effi-

ciency required for realtime analysis, we reduce the number

of feature maps produced by the convolutional layers signif-

icantly. This results in narrow versions of the original Shuf-

fleNet v2 architecture, which we call NSNets. We use three

versions of this architecture that represent optimal trade-

offs between performance and target speed at a given batch

size, as detailed in Section 6.2. These are named NSNet-S

(slow), NSNet-M (medium), and NSNet-F (fast).

Table 1. Architectural differences between our NSNet variants and

ShuffleNet v2. The values represent the number of feature maps

apart from the max-pooling layer, where they denote the stride.

Layer NSNet-S NSNet-M NSNet-F ShuffleNet

Conv1 24 16 16 24

Pool - - - 2

Stage2 48 32 16 48

Stage3 72 64 24 96

Stage4 144 96 32 192

Conv5 512 512 512 1024

Params 172k 143k 34k 358k

Table 1 summarizes the differences between these

NSNet variants and compares them to the original Shuf-

fleNet v2 architecture with complexity 0.5, the smallest of-

ficial version [9]. At the given input size, NSNet-S has

around half the number of parameters of ShuffleNet v2 de-

spite the less aggressive pooling.

5. Training data acquisition

While large amounts of training data are required for op-

timal model performance in deep learning, there are no pub-

lic datasets available that reflect the task at hand (let alone

ones with commercial licenses). Acquiring large amounts

of data that reflect this task is particularly challenging, as

this would require recording people in their homes as well

as their caretakers, which is problematic with respect to pri-

vacy and data protection rules.



To overcome this problem, we have instead adopted a

two-tier strategy for data acquisition and training that in-

volves pretraining on synthetic depth data followed by fine-

tuning on a smaller set of real samples collected by our sys-

tems in case of detected events.

5.1. Synthetic data for pretraining

Generating a synthetic depth data sample involves five

main steps, which are illustrated in Figure 4.

Apply pose Pose DB

Create person model

Arrange scene Asset DB

Render depth map

Simulate sensor noise

Figure 4. Main steps of our synthetic data rendering pipeline.

First, a commercial 3D modeling software is used to au-

tomatically generate a realistic 3D model of a person. This

includes randomizing properties such as gender, height,

weight, age, body tone, and facial expression, such that per-

sons vary widely in appearance.

Second, a random pose is sampled from our pose

database that comprises thousands of realistic body poses,

and applied to the person model. These poses were obtained

via motion capturing of actors that were simulating various

relevant activities and actions such as walking, sitting, lying

on a bed, and falling on the floor.

The person model is positioned randomly inside an

empty room, which is then filled with objects from our asset

database that consists of hundreds of 3D models. The object

selection and arrangement is random but considers the body

pose and location to ensure that the resulting scene is real-

istic. For instance, if the label associated with the sampled

person pose is sitting, a suitable sitting accommodation is

selected from the database and positioned in the scene ac-

cordingly. This is illustrated in Figure 5.

After the scene has been arranged, a virtual camera is

positioned at a random position and orientation, and a depth

map of the scene is rendered. In addition, a label map is

generated that can be used to extract individual objects.

The rendered depth map lacks sensor noise and other er-

rors, which is unrealistic. In the final step, we thus simu-

late such sensor errors using the method presented in [12],

which we adapted to better reflect the error characteristics

of the depth sensor model we use.

Figure 5. Example depth maps from our synthetic dataset, color-

coded for visualization purposes.

This pipeline has allowed us to generate tens of thou-

sands of depth maps depicting synthetic yet realistic scenes.

Two of these depth maps are illustrated in Figure 5.

5.2. Event data for finetuning

After pretraining, our models are finetuned on a realis-

tic but smaller dataset of top-views. These top-views are

sent to our servers in an anonymized and encrypted form

whenever an event is detected by our systems (e.g. if a per-

son falls down on the floor). Figure 6 shows such samples,

highlighting their level of abstraction. This makes identify-

ing persons impossible, ensuring the user’s privacy.

Figure 6. Visualizations of example depth maps from our realistic

dataset (red: height data, green: occupancy data).

Employees assign class labels to these samples based on

a visual inspection and anonymized information that is also

available to the customers on the web-platform. Customers

who do not want to participate can opt-out of data acquisi-

tion at any time. We emphasize that there is no continuous

data recording or transmission; samples are generated only

in case of detected events. The number of samples per sen-

sor varies from less than one per week to few samples per

day, depending on the operating conditions.

We utilize samples with labels upright person, sitting

person, resting person, squatting person, person on floor,

person in other pose, and object. The resulting dataset con-

sists of about 21000 samples of people in different poses as

well as various kinds of objects. The dataset is challeng-

ing as the subjects are often captured only partially due to

occlusions or inaccurate motion detection. The classes are

imbalanced, for instance almost 40% of all samples are la-

beled as object while around 5% are squatting persons.



6. Experiments

We compare our NSNet network architectures to popular

alternatives, namely ResNet-18 [4] and ShuffleNet v2 [9]

at complexity α = 1 (standard) and α = 0.5 (the fastest

official variant). The former architecture is included as a

reference, as ResNet is arguably the standard architecture

if resource limitations are not an issue. ShuffleNet v2 is

the architecture NSNets derive from. We adapt the ResNet

architecture to 40 × 40 sized inputs by replacing the initial

7 × 7 convolution at stride 2 with a 3 × 3 convolution at

stride 1 and removing the subsequent max-pooling layer.

This preserves spatial resolution initially. For ShuffleNet v2

we remove the first max-pooling layer for the same reason.

6.1. Network training

We first pretrain each network from scratch on our syn-

thetic dataset, and then finetune it on the smaller real

dataset. For parameter optimization we minimize the cross-

entropy loss using the improved version of Adam [8] and

the one-cycle policy for adaptive learning rates [17]. In both

iterations, we split the datasets into training and validation

sets for hyperparameter optimization, and train until the val-

idation accuracy saturates. To account for imbalanced class

distributions, we compute stratified splits and employ over-

sampling of the training set. For training data augmentation

we utilize a combination of random affine transformations,

random crops, and horizontal flipping.

6.2. Inference speed

We first compare the inference speed of all architectures

on the target hardware, a Raspberry Pi 3B, using an opti-

mized build of TensorFlow 2.1. To facilitate comparisons,

we benchmark solely network inference speeds on an oth-

erwise idle system, not the whole computational pipeline.

We do so at different batch sizes, which usually vary be-

tween 1 and 5 in practice depending on how many objects

are tracked. At each batch size, we run the prediction 100

times and report median prediction framerates on this basis.

Figure 7 summarizes the results. Apart from ResNet, all

networks tested run at over 15 frames per second (fps) when

processing single samples. The framerates decrease slower

than linearly at larger batch sizes, mainly due to the load

being split across the four CPU cores available.

Based on these results and considering our target fram-

erate of 7.5 fps, it may appear that even the comparatively

complex ShuffleNet v2 architecture with α = 1.0 is fast

enough. However, this is not the case as (i) the CPU cores

are not at idle in practice and (ii) due to the resource con-

sumption limits covered in Section 3.2. For these reasons,

networks must score around 30 fps according to Figure 7 to

fulfill our requirements on efficiency.

Our NSNet variants achieve this for batch sizes up to 2,

4, and 6, respectively. Scheduling acts accordingly and by

default assigns batches with size 1 or 2 to NSNet-S, those

with size 3 or 4 to NSNet-M, and larger ones to NSNet-F.
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Figure 7. Speed of different network architectures on the target

hardware as a function of batch size, in frames per second. S is

ShuffleNet v2 without max-pooling at complexity α.

We note that the level of optimization of deep learning

libraries and versions varies, particularly on ARM. The ca-

pabilities of ARM SOCs also varies widely. For instance,

[9] report a single-sample speed of 57 fps for ShuffleNet v2

at α = 0.5 with larger images (but with max-pooling) on a

more powerful Qualcomm Snapdragon 810 platform.

6.3. Classification accuracy

Figure 8 compares the classification performances and

relates them to the single-sample inference speeds in order

to highlight speed vs. accuracy tradeoffs.

NSNet-S performs comparably to ShuffleNet v2 at α =
0.5 while being slightly more efficient. NSNet-M is around

2% less accurate than NSNet-S while being 25% faster.

NSNet-F scales virtually identically with respect to NSNet-

M, with the single-sample framerate being 25% higher and

the accuracy being 2% lower. These accuracy gains may

seem small but result in significant improvements in event

detection performance, as these gains are on challenging

samples that may cause missed events or false alarms.

The speed vs. accuracy curve of NSNets is comparable

to ShuffleNet v2 and MobileNet v2 on ImageNet in simi-

lar accuracy regions [9, 15]; about twice the computational

budget is required for around 5% increased accuracy. Shuf-

fleNet v2 at α = 1.0 and ResNet-18 outperform our NSNets

as expected but are too inefficient for our application.

7. Conclusion

We have presented a technical overview of a commer-

cial vision-based system for monitoring residents of elderly

care facilities, with a focus on effective object classification

on low-power hardware. We have discussed the key design
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of all network architectures compared.

choices that enable deep-learning-based object classifica-

tion in depth data in realtime, namely view-based analysis,

efficient network architectures, as well as resource-based

scheduling in order to optimize the tradeoff between classi-

fication accuracy and resource consumption. These design

choices are general and can be adapted to overcome similar

resource bottlenecks in other vision applications. Further-

more, we have presented our method of two-stage network

training using a combination of synthetic and realistic data

in order to overcome challenges in dataset acquisition.
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