
CSPNet: A New Backbone that can Enhance Learning Capability of CNN

Chien-Yao Wang1, Hong-Yuan Mark Liao1,2, Yueh-Hua Wu1,3, Ping-Yang Chen4, Jun-Wei Hsieh5,

and I-Hau Yeh6

1Institute of Information Science, Academia Sinica, Taiwan
2Department of Computer Science and Information Engineering, Providence University, Taiwan

3Department of Computer Science and Information Engineering, National Taiwan University, Taiwan
4Department of Computer Science, National Chiao Tung University, Taiwan

5College of Artificial Intelligence and Green Energy, National Chiao Tung University, Taiwan
6Elan Microelectronics Corporation, Taiwan

kinyiu@iis.sinica.edu.tw, liao@iis.sinica.edu.tw, kriswu@iis.sinica.edu.tw

pingyang.cs08g@nctu.edu.tw, jwhsieh@nctu.edu.tw, and ihyeh@emc.com.tw

Abstract

Neural networks have enabled state-of-the-art ap-

proaches to achieve incredible results on computer vision

tasks such as object detection. However, such success

greatly relies on costly computation resources, which hin-

ders people with cheap devices from appreciating the ad-

vanced technology. In this paper, we propose Cross Stage

Partial Network (CSPNet) to mitigate the problem that pre-

vious works require heavy inference computations from the

network architecture perspective. We attribute the problem

to the duplicate gradient information within network opti-

mization. The proposed networks respect the variability of

the gradients by integrating feature maps from the begin-

ning and the end of a network stage, which, in our exper-

iments, reduces computations by 20% with equivalent or

even superior accuracy on the ImageNet dataset, and signif-

icantly outperforms state-of-the-art approaches in terms of

AP50 on the MS COCO object detection dataset. The CSP-

Net is easy to implement and general enough to cope with

architectures based on ResNet, ResNeXt, and DenseNet.

1. Introduction

Neural networks have been shown to be especially pow-

erful when it gets deeper [8, 37, 11] and wider [38]. How-

ever, extending the architecture of neural networks usually

brings up a lot more computations, which makes computa-

tionally heavy tasks such as object detection unaffordable

for most people. Light-weight computing has gradually re-

ceived stronger attention since real-world applications usu-

ally require short inference time on small devices, which

poses a serious challenge for computer vision algorithms.

Although some approaches were designed exclusively for

Figure 1: Proposed CSPNet can be applied on ResNet [8],

ResNeXt [37], DenseNet [11], etc. It not only reduce computa-

tion cost and memory usage of these networks, but also benefit on

inference speed and accuracy.

mobile CPU [10, 30, 9, 32, 41, 23], the depth-wise convo-

lution they adopted is usually not compatible with indus-

trial IC design such as Application-Specific Integrated Cir-

cuit (ASIC) for edge-computing systems. In this work, we

investigate the computational burden in state-of-the-art ap-

1

Figure 2: Illustrations of (a) DenseNet and (b) our proposed Cross Stage Partial DenseNet (CSPDenseNet). CSPNet separates feature map

of the base layer into two part, one part will go through a dense block and a transition layer; the other one part is then combined with

transmitted feature map to the next stage.

proaches such as ResNet, ResNeXt, and DenseNet. We fur-

ther develop computationally efficient components that en-

able the mentioned networks to be deployed on both CPUs

and mobile GPUs without sacrificing the performance.

In this study, we introduce Cross Stage Partial Network

(CSPNet). The main purpose of designing CSPNet is to en-

able this architecture to achieve a richer gradient combina-

tion while reducing the amount of computation. This aim is

achieved by partitioning feature map of the base layer into

two parts and then merging them through a proposed cross-

stage hierarchy. Our main concept is to make the gradient

flow propagate through different network paths by splitting

the gradient flow. In this way, we have confirmed that the

propagated gradient information can have a large correla-

tion difference by switching concatenation and transition

steps. In addition, CSPNet can greatly reduce the amount

of computation, and improve inference speed as well as ac-

curacy, as illustrated in Fig 1. The proposed CSPNet-based

object detector deals with the following three problems:

1) Strengthening learning ability of a CNN The accu-

racy of existing CNN is greatly degraded after lightweight-

ening, so we hope to strengthen CNN’s learning ability,

so that it can maintain sufficient accuracy while being

lightweightening. The proposed CSPNet can be easily ap-

plied to ResNet, ResNeXt, and DenseNet. After applying

CSPNet on the above mentioned networks, the computation

effort can be reduced from 10% to 20%, but it outperforms

ResNet [8], ResNeXt [37], DenseNet [11], HarDNet [2],

Elastic [34], and Res2Net [5], in terms of accuracy, in con-

ducting image classification task on ImageNet [3].

2) Removing computational bottlenecks Too high a

computational bottleneck will result in more cycles to com-

plete the inference process, or some arithmetic units will

often idle. Therefore, we hope we can evenly distribute the

amount of computation at each layer in CNN so that we can

effectively upgrade the utilization rate of each computation

unit and thus reduce unnecessary energy consumption. It is

noted that the proposed CSPNet makes the computational

bottlenecks of PeleeNet [35] cut into half. Moreover, in the

MS COCO [17] dataset-based object detection experiments,

our proposed model can effectively reduce 80% computa-

tional bottleneck when tested on YOLOv3-based models.

3) Reducing memory costs The wafer fabrication cost of

Dynamic Random-Access Memory (DRAM) is very expen-

sive, and it also takes up a lot of space. If one can effectively

reduce the memory cost, he/she will greatly reduce the cost

of ASIC. In addition, a small area wafer can be used in a

variety of edge computing devices. We adopt cross-channel

pooling [6] to compress the feature maps during the feature

pyramid generating process. In this way, the proposed CSP-

Net with the proposed detector can cut down 75% memory

usage on PeleeNet when generating feature pyramids.

Since CSPNet is able to promote the learning capabil-

ity of a CNN, we thus use smaller models to achieve 50%

COCO AP50 at 109 fps on GTX 1080ti. Since CSPNet can

effectively cut down a significant amount of memory traf-

fic, our proposed method can achieve 40% COCO AP50 at

52 fps on Intel Core i9-9900K. In addition, since CSPNet

can significantly lower down the computational bottleneck

and Exact Fusion Model (EFM) can effectively cut down

the required memory bandwidth, our proposed method can

achieve 42% COCO AP50 at 49 fps on Nvidia Jetson TX2.

2. Related work

CNN architectures design. In ResNeXt [37], Xie et al.

first demonstrate that cardinality can be more effective than

the dimensions of width and depth. DenseNet [11] can sig-

nificantly reduce the number of parameters and computa-

tions due to the strategy of adopting a large number of reuse

features. And it concatenates the output features of all pre-

ceding layers as the next input, which can be considered

as the way to maximize cardinality. SparseNet [44] adjusts

dense connection to exponentially spaced connection can

effectively improve parameter utilization and thus result in

better outcomes. Wang et al. further explain why high cardi-

nality and sparse connection can improve the learning abil-

ity of the network by the concept of gradient combination

and developed the partial ResNet (PRN) [33]. For improv-

ing the inference speed of CNN, Ma et al. [23] introduce

four guidelines to be followed and design ShuffleNet-v2.

Chao et al. [2] proposed a low memory traffic CNN called

Harmonic DenseNet (HarDNet) and a metric Convolutional

Input/Output (CIO) which is an approximation of DRAM

traffic proportional to the real DRAM traffic measurement.

Real-time object detector. The most famous two real-

time object detectors are YOLOv3 [28] and SSD [20].

Based on SSD, LRF [36] and RFBNet [18] can achieve

state-of-the-art real-time object detection performance on

GPU. Recently, anchor-free based object detector [4, 43,

13, 14, 40] has become main-stream object detection sys-

tem. Two object detectors of this sort are CenterNet [43]

and CornerNet-Lite [14], and they both perform very well

in terms of efficiency and efficacy. For real-time object

detection on CPU or mobile GPU, SSD-based Pelee [35],

YOLOv3-based PRN [33], and Light-Head RCNN [16]-

based ThunderNet [25] all receive excellent performance on

object detection.

3. Method

3.1. Cross Stage Partial Network

Cross Stage Partial Network. The mainstream CNN

architectures, such as ResNet [8], ResNeXt [37], DenseNet

[11], their output is usually a linear or non-linear combina-

tion of the outputs of intermediate layers. Therefore, the

output of a k-layer CNN can be expressed as follows:

(1)

where F is the mapping function from input x0 to target

y, which is also the model of the entire CNN. As for Hk,

it is the operation function of the kth layer of the CNN.

Usually, Hk is composed of a set of convolutional layers

and a non-linear activation function. If we use ResNet and

DenseNet as examples, they can be represented by Equation

2 and Equation 3 respectively as follows:

(2)

(3)

In the above two equations, R and D respectively rep-

resent the computation operators of the residual layer and

dense layer, and these operators often composed of 2∼3

convolutional layers.

From the above two equations, whether it is a residual

layer or a dense layer, the input of each convolutional layer

that composes them receives the outputs from all the previ-

ous layers. Under these circumstances, the length of gradi-

ent path can be minimized and makes gradient flow propa-

gation more efficient in the back propagation process. How-

ever, we also know that this architecture design will make

the kth layer pass the gradient to all k−1, k−2, ..., 1 layers

and use it to update the weights, which will cause repeated

learning redundant information.

Recently, some studies have tried to use the input of

screened Hk(.) to improve learning ability and parame-

ter utilization. For example, SparseNet [44] uses expo-

nentially spaced connection to make Hk directly related to

Hk−1, Hk−2, Hk−4, ..., Hk−2i , ... only. ShuffleNetV2 [23]

use split channels to make Hk directly related to only half

of Hk−1 channels, and its equation can be expressed as

S([Hk(xk−1[1 : c/2]), xk−1[(c/2 + 1) : c]]), where S rep-

resents the shuffle operation, and xk−1[1 : c/2] represents

the first to the c/2 channels of xk−1. As for the PyramidNet

[7] and PRN [33], they all use feature maps with unequal

number of channels to build ResNet to acheive the effect of

gradient shunting.

The state-of-the-art methods put their emphasis on opti-

mizing the Hi function at each layer, and we propose that

CSPNet directly optimizes the F function as follows:

(4)

where x0 is split into two parts along channel and it can be

represented as x0 = [x
0
′ , x

0
′′]. T is the transition function

used to truncate the gradient flows of H1, H2, ..., Hk, and

M is the transition function used to mix the two segmented

parts. Next, we will show examples of how to integrate

CSPNet into DenseNet and explain how to solve the prob-

lem of learning duplicate information in CNN.

DenseNet. Figure 2 (a) shows the detailed structure of

one-stage of the DenseNet proposed by Huang et al. [11].

Each stage of a DenseNet contains a dense block and a tran-

sition layer, and each dense block is composed of k dense

layers. The output of the ith dense layer will be concate-

nated with the input of the ith dense layer, and the concate-

nated outcome will become the input of the (i+ 1)th dense

layer. The equations showing the above-mentioned mecha-

nism can be expressed as:

(5)

where ∗ represents the convolution operator, and [x0, x1, ...]
means to concatenate x0, x1, ..., and wi and xi are the

weights and output of the ith dense layer, respectively.

If one makes use of a backpropagation to update weights,

the equations of weight updating can be written as:

(6)

where fi is the function of weight updating of ith dense

layer, and gi represents the gradient propagated to the ith

dense layer. We can find that large amount of gradient in-

formation are reused for updating weights of different dense

layers. This will result in different dense layers repeatedly

learn copied gradient information.

Cross Stage Partial DenseNet. The architecture of one-

stage of the proposed CSPDenseNet is shown in Figure 2

(b). A stage of CSPDenseNet is composed of a partial dense

block and a partial transition layer. In a partial dense block,

the feature maps of the base layer in a stage are split into two

parts through channel x0 = [x
0
′ , x

0
′′]. Between x

0
′ and

x
0
′′ , the former is directly linked to the end of the stage, and

the latter will go through a dense block. All steps involved

in a partial transition layer are as follows: First, the output

of dense layers, [x
0
′′ , x1, ..., xk], will undergo a transition

layer. Second, the output of this transition layer, xT , will be

concatenated with x
0
′ and undergo another transition layer,

and then generate output xU . The equations of feed-forward

pass and weight updating of CSPDenseNet are shown in

Equations 7 and 8, respectively.

(7)

(8)

We can see that the gradients coming from the dense lay-

ers are separately integrated. On the other hand, the feature

map x
′

0
that did not go through the dense layers is also sep-

arately integrated. As to the gradient information for up-

dating weights, both sides do not contain duplicate gradient

information that belongs to other sides.

Overall speaking, the proposed CSPDenseNet preserves

the advantages of DenseNet’s feature reuse characteristics,

but at the same time prevents an excessively amount of du-

plicate gradient information by truncating the gradient flow.

This idea is realized by designing a hierarchical feature fu-

sion strategy and used in a partial transition layer.

Partial Dense Block. The advantages of designing par-

tial dense blocks are: 1.) increase gradient path: Through

the split and merge strategy, the number of gradient paths

can be doubled. Because of the cross-stage strategy, one can

alleviate the disadvantages caused by using explicit feature

map copy for concatenation; 2.) balance computation of

each layer: usually, the channel number in the base layer of

a DenseNet is much larger than the growth rate. Since the

base layer channels involved in the dense layer operation in

a partial dense block account for only half of the original

number, it can effectively solve nearly half of the computa-

tional bottleneck; and 3.) reduce memory traffic: Assume

the base feature map size of a dense block in a DenseNet

is w × h × c, the growth rate is d, and there are in to-

tal m dense layers. Then, the CIO of that dense block is

(c×m) + ((m2 +m)× d)/2, and the CIO of partial dense

block is ((c×m) + (m2 +m)× d)/2. While m and d are

usually far smaller than c, a partial dense block is able to

save at most half of the memory traffic of a network.

Figure 3: Different kind of feature fusion strategies. (a) single

path DenseNet, (b) proposed CSPDenseNet: transition → con-

catenation → transition, (c) concatenation → transition, and (d)

transition → concatenation.

Figure 4: Effect of truncating gradient flow for maximizing differ-

ence of gradient combination.

Partial Transition Layer. The purpose of designing

partial transition layers is to maximize the difference of

gradient combination. The partial transition layer is a hi-

erarchical feature fusion mechanism, which uses the strat-

egy of truncating the gradient flow to prevent distinct layers

from learning duplicate gradient information. Here we de-

sign two variations of CSPDenseNet to show how this sort

of gradient flow truncating affects the learning ability of a

network. Figure 3 (c) and Figure 3 (d) show two different

fusion strategies. CSP (fusion first) means to concatenate

the feature maps generated by two parts, and then do tran-

sition operation. If this strategy is adopted, a large amount

of gradient information will be reused. As to the CSP (fu-

sion last) strategy, the output from the dense block will go

through the transition layer and then do concatenation with

the feature map coming from part 1. If one goes with the

CSP (fusion last) strategy, the gradient information will not

be reused since the gradient flow is truncated. If we use the

four architectures shown in 3 to perform image classifica-

tion, the corresponding results are shown in Figure 4. It can

be seen that if one adopts the CSP (fusion last) strategy to

perform image classification, the computation cost is sig-

nificantly dropped, but the top-1 accuracy only drop 0.1%.

On the other hand, the CSP (fusion first) strategy does help

the significant drop in computation cost, but the top-1 accu-

racy significantly drops 1.5%. By using the split and merge

strategy across stages, we are able to effectively reduce the

possibility of duplication during the information integration

process. From the results shown in Figure 4, it is obvious

that if one can effectively reduce the repeated gradient in-

formation, the learning ability of a network will be greatly

improved.

Figure 5: Applying CSPNet to ResNe(X)t.

Apply CSPNet to Other Architectures. CSPNet can

also be applied to ResNet and ResNeXt, the architectures

are shown in Figure 5. Since only half of the feature chan-

nels are going through Res(X)Blocks, there is no need to in-

troduce the bottleneck layer anymore. This makes the the-

oretical lower bound of the Memory Access Cost (MAC)

when the FLoating-point OPerations (FLOPs) is fixed.

3.2. Exact Fusion Model

Looking Exactly to predict perfectly. We propose

EFM that captures an appropriate receptive field for each

anchor, which enhances the accuracy of the one-stage ob-

ject detector. For segmentation tasks, since pixel-level la-

bels usually do not contain global information, it is usually

more preferable to consider larger patches for better infor-

mation retrieval [21]. However, for tasks like image classi-

fication and object detection, some critical information can

be obscure when observed from image-level and bounding

box-level labels. Li et al. [15] found that CNN can be of-

ten distracted when it learns from image-level labels and

concluded that it is one of the main reasons that two-stage

object detectors outperform one-stage object detectors.

Aggregate Feature Pyramid. The proposed EFM is

able to better aggregate the initial feature pyramid. The

EFM is based on YOLOv3 [28], which assigns exactly

one bounding-box prior to each ground truth object. Each

ground truth bounding box corresponds to one anchor box

that surpasses the threshold IoU. If the size of an anchor

box is equivalent to the receptive field of the grid cell, then

for the grid cells of the sth scale, the corresponding bound-

ing box will be lower bounded by the (s − 1)th scale and

upper bounded by the (s + 1)th scale. Therefore, the EFM

assembles features from the three scales.

Balance Computation. Since the concatenated feature

maps from the feature pyramid are enormous, it introduces

a great amount of memory and computation cost. To alle-

viate the problem, we incorporate the Maxout technique to

compress the feature maps.

4. Experiments

We use ImageNet image classification dataset [3] to ver-

ify proposed CSPNet. And use the MS COCO object detec-

tion dataset [17] to verify the proposed CSPNet and EFM.

4.1. Implementation Details

ImageNet. In ImageNet image classification experi-

ments, all hyper-parameters such as training steps, learn-

ing rate schedule, optimizer, data augmentation, etc., we

all follow the settings defined in Redmon et al. [28]. For

ResNet-based models and ResNeXt-based models, we set

8,000,000 training steps. As to DenseNet-based models, we

set 1,600,000 training steps. We set the initial learning rate

0.1 and adopt the polynomial decay learning rate scheduling

strategy. The momentum and weight decay are respectively

set as 0.9 and 0.005. All architectures use a single GPU to

train universally in the batch size of 128. Finally, we use

the validation set of ILSVRC 2012 to validate our method.

MS COCO. In MS COCO object detection experiments,

all hyper-parameters also follow the settings defined in Red-

mon et al. [28]. Altogether we did 500,000 training steps.

We adopt the step decay learning rate scheduling strategy

and multiply with a factor 0.1 at the 400,000 steps and the

450,000 steps, respectively. The momentum and weight de-

cay are respectively set as 0.9 and 0.0005. All architectures

use a single GPU to execute multi-scale training in the batch

size of 64. Finally, the COCO test-dev set is adopted to ver-

ify our method.

4.2. Ablation Experiments

Ablation study of CSPNet on ImageNet. In the ab-

lation experiments conducted on the CSPNet, we adopt

PeleeNet [35] as the baseline, and the ImageNet is used

to verify the performance of the CSPNet. We use differ-

ent partial ratios γ and feature fusion strategies for ablation

study. Table 1 shows the results of ablation study on CSP-

Net. As to CSP (fusion first) and CSP (fusion last), they are

proposed to validate the benefits of a partial transition.

From the experimental results of CSP (fusion last), the

partial transition layer designed to reduce the learning of

redundant information can achieve very good performance.

For example, when the computation is cut down by 21%,

the accuracy only degrades by 0.1%. One thing to be noted

is that when γ = 0.25, the computation is cut down by

11%, but the accuracy is increased by 0.1%. Compared to

the baseline PeleeNet, the proposed CSPPeleeNet achieves

the best performance, it can cut down 13% computation,

but at the same time upgrade the accuracy by 0.2%. If we

adjust the partial ratio to γ = 0.25, we are able to upgrade

the accuracy by 0.8% and cut down 3% computation.

Figure 6: Different feature pyramid fusion strategies. (a) Feature Pyramid Network (FPN): fuse features from current scale and previous
scale. (b) Global Fusion Model (GFM): fuse features of all scales. (c) Exact Fusion Model (EFM): fuse features depand on anchor size.

Table 1: Ablation study of CSPNet on ImageNet.

Model

two-way

dense
partial
dense

trans.
partial
trans.

Top-1 BFLOPs

PeleeNet [35] - X X 70.7 1.017

0.75 68.4 0.649
CSP (fusion �rst) 0.5 X X 69.2 0.755

0.25 70.0 0.861

0.75 69.2 0.716
CSP (fusion last) 0.5 X X 70.6 0.804

0.25 70.8 0.902

0.75 70.4 0.800
CSPPeleeNet 0.5 X X 70.9 0.888

0.25 71.5 0.986

Ablation study of EFM on MS COCO. Next, we con-
duct an ablation study of EFM and compare three different
feature fusion strategies shown in Figure6. We choose PRN
[33] and ThunderNet [25] to make comparison. PRN and
ThunderNet with Context Enhancement Module (CEM)
and Spatial Attention Module (SAM) are FPN and GFM
architectures, respectively. We also design a GFM to com-
pare with the proposed EFM. Moreover, GIoU [29], SPP,
and SAM are also applied to EFM. All experiment results
listed in Table2 adopt CSPPeleeNet as the backbone.

Table 2: Ablation study of EFM on MS COCO.

Head
global
fusion

exact
fusion

atten. BFLOPs FPS AP AP50 AP75

PRN [33] 3.590 169 23.1 44.5 22.0
PRN-3l [33] 4.586 151 23.7 46.0 22.2

CEM [25] X 4.049 148 23.8 45.4 22.6
CEM (SAM) [25] X X 4.165 144 24.1 46.0 23.1
GFM X 4.605 134 24.3 46.2 23.3

EFM X 4.868 132 26.4 48.6 26.3
EFM (GIoU [29]) X 4.868 132 27.1 45.9 28.2
EFM (SAM) X X 5.068 129 26.849.0 26.7
EFM (SPP) X 4.863 128 26.2 48.5 25.7

As re�ected in the experiment results, the proposed EFM
is 2 fps slower than GFM, but its AP50 is signi�cantly up-
graded by 2.4%. The GIoU can upgrade AP by 0.7%, but
the AP50 is signi�cantly degraded by 2.7%. For edge com-
puting, what really matters is the number and locations of
the objects. Therefore, we will not use GIoU training in the
subsequent models. SAM can get a better frame rate and AP
than SPP, so we use EFM (SAM) as the �nal architecture.

4.3. ImageNet Image Classi�cation

We apply the CSPNet to ResNet-10 [8], ResNeXt-50
[37], DenseNet-201 [11], PeleeNet [35], and DenseNet-
201-Elastic [34] and compare with state-of-the-art methods.
The experimental results are shown in Table3.

Table 3: Compare with state-of-the-art methods on ImageNet.

Model #Parameter BFLOPs Top-1 Top-5

PeleeNet [35] 2.79M 1.017 70.7% 90.0%
CSPPeleeNet 2.83M 0.888(-13%) 70.9% 90.2%
SparsePeleeNet [44] 2.39M 0.904 69.6% 89.3%

Darknet Reference [26] 7.31M 0.96 61.1% 83.0%
CSPDenseNet Reference 3.48M 0.886 65.7% 86.6%
CSPPeleeNet Reference 4.10M 1.103 68.9% 88.7%

ResNet-10 [8] 5.24M 2.273 63.5% 85.0%
CSPResNet-10 2.73M 1.905(-16%) 65.3% 86.5%

ResNeXt-50 [37] 22.19M 10.11 77.8%94.2%
CSPResNeXt-50 20.50M 7.93(-22%) 77.9% 94.0%
HarDNet-138s [2] 35.5M 13.4 77.8% -
DenseNet-264 [11] 27.21M 11.03 77.8% 93.9%
ResNet-152 [8] 60.2M 22.6 77.8% 93.6%

DenseNet-201 [11] 20.01M 8.63 77.4% 93.7%
CSPDenseNet-201 23.07M 8.47(-2%) 77.7% 93.6%

DenseNet-201-Elastic [34] 19.48M 8.77 77.9% 94.0%
CSPDenseNet-201-Elastic 20.17M 7.13(-19%) 77.9% 94.0%

Res2NeXt-50 (10 crop) [5] 24.27M 8.4� 10 78.2% 93.9%
CSPResNeXt-50(10 crop) 20.50M 7.9� 10 78.2% 94.3%

It is con�rmed by experimental results that no matter it
is which architecture, when the concept of CSPNet is intro-
duced, the computational load is reduced and the accuracy
is either remain unchanged or upgraded, especially useful
for the improvement of lightweight models. For example,
compared to ResNet-10, CSPResNet-10 can improve accu-
racy by 1.8%. As to PeleeNet and DenseNet-201-Elastic,
CSPPeleeNet and CSPDenseNet-201-Elastic can respec-
tively cut down 13% and 19% computation, and either up-
grade a little bit or maintain the accuracy. As to the case of
ResNeXt-50, CSPResNeXt-50 can cut down 22% compu-
tation and upgrade top-1 accuracy to 77.9%.

Proposed CSPResNeXt-50 is also compared with
ResNet-152 [8], DenseNet-264 [11], and HarDNet-138s
[2], regardless of #parameter, BFLOPs, and top-1 accuracy,
CSPResNeXt-50 all achieve the best result. As to the 10-
crop test, CSPResNeXt-50 outperforms Res2NeXt-50 [5].

