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Abstract

Facial Expression Recognition (FER) has demonstrated

remarkable progress due to the advancement of deep Con-

volutional Neural Networks (CNNs). FER’s goal as a visual

recognition problem is to learn a mapping from the facial

embedding space to a set of fixed expression categories us-

ing a supervised learning algorithm. Softmax loss as the

de facto standard in practice fails to learn discriminative

features for efficient learning. Center loss and its variants

as promising solutions increase deep feature discriminabil-

ity in the embedding space and enable efficient learning.

They fundamentally aim to maximize intra-class similarity

and inter-class separation in the embedding space. How-

ever, center loss and its variants ignore the underlying ex-

treme class imbalance in challenging wild FER datasets.

As a result, they lead to a separation bias toward major-

ity classes and leave minority classes overlapped in the

embedding space. In this paper, we propose a novel Dis-

criminant Distribution-Agnostic loss (DDA loss) to optimize

the embedding space for extreme class imbalance scenar-

ios. Specifically, DDA loss enforces inter-class separation

of deep features for both majority and minority classes. Any

CNN model can be trained with the DDA loss to yield well

separated deep feature clusters in the embedding space. We

conduct experiments on two popular large-scale wild FER

datasets (RAF-DB and AffectNet) to show the discrimina-

tive power of the proposed loss function.

1. Introduction

Facial Expression Recognition (FER) has demonstrated

substantial breakthrough results due to an explosion of re-

search in computer vision tasks using Deep Neural Net-

works (DNNs). When the only piece of available informa-

tion is a face, facial expressions are an essential visual chan-

nel to detect emotions. However, it is worthwhile to note
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Figure 1. Top row: Illustration of the general pipeline for FER

using a CNN model: CNN features are pooled in the embedding

space and a loss function maps the deep features to expression la-

bels. Bottom row: Example 2-D deep features in the embedding

space learned by: (a) Center loss. (b) Discriminant Distribution-

Agnostic (DDA) loss. DDA loss pushes the features of a class

away from other class centers and pulls them toward their corre-

sponding class centers to create compact and well separated fea-

ture clusters for both majority and minority classes.

that when additional contextual information is available,

its analysis can be added to achieve more accurate emo-

tion recognition [24]. Emotion recognition has been widely

used in many aspects of modern society, such as healthcare,

autonomous driving and driver safety, human-computer in-

teraction, and education. The emergence of Convolutional

Neural Networks (CNNs) [11] as a dominant deep learning

technique offers an advanced tool for researchers to over-

come the complications with large-scale FER datasets ac-

quired in real-world scenarios [26, 14].

While ubiquitous raw large-scale datasets have advanced

research in FER, two major obstacles hinder the learning

performance of deep CNNs applied in this setting: 1) Large

intra-class variation and inter-class similarity, and 2) ex-

treme class imbalance. Due to the in-the-wild attribute,



large-scale facial expression datasets acquired in an uncon-

strained environment inherently populate expression cate-

gories with significant variations in pose, gender, age, de-

mography, image quality, and illumination. Additionally,

facial expression categorization exhibits an intrinsic imbal-

ance, a prevalent issue in many real-world data [7]. Com-

monly, categories such as fear and disgust are minority

classes due to lack of representative data. Other expres-

sions such as neutral, happy, sad, surprise, and angry are

majority classes, which are represented with fair amount of

data. The data complexity, along with extremely skewed

class distribution, can severely degrade the performance of

recognition models with deep CNNs.

Extracting discriminative facial features in the embed-

ding space is a critical step towards solving the aforemen-

tioned issues. However, the widely used softmax loss is

insufficient for delivering discriminant features for classi-

fication [20], [19]. Our work is motivated by Wen et al.

[31], who pioneered center loss as a metric learning ap-

proach to yield discriminative deep features by clustering

features in the embedding space. Empirically, as illustrated

in Fig. 1 (a), when a CNN model is supervised by cen-

ter loss in a wild dataset setting, minority classes tend to

have overlapping feature clusters. Therefore, recognition

performance for minority classes is sub-optimal when deep

features learned by center loss are mapped to expression la-

bels. Due to the inherent complex attributes of a wild FER

dataset, optimal recognition of facial expressions requires

designing new algorithms to translate raw data into an effi-

cient representation for learning algorithms.

To learn discriminative features for FER in the wild,

we propose a novel loss function, called Discriminant

Distribution-Agnostic loss (DDA loss) to regulate deep fea-

tures in the embedding space, where extreme class imbal-

ance exits. The CNN models are trained under the joint

supervision of softmax loss, center loss, and the proposed

DDA loss. As shown in Fig. 1 (b), DDA loss creates dis-

tinctly segregated feature clusters and properly separates

both majority and minority classes. Intuitively, DDA loss

pushes the features of one class away from the centers of

other classes and pulls them toward their corresponding

class center. The discriminant deep features learned us-

ing the supervision of the DDA loss are compact and opti-

mally separated in a d-dimensional embedding space. Con-

sequently, the mapping from the embedding space to the

label space is more efficient.

Our main contributions are summarized below:

1. We propose a novel loss function called Discriminant

Distribution-Agnostic loss (DDA loss) to regulate the

distribution of deep features in a d-dimensional em-

bedding space. The proposed DDA loss implicitly

maximizes the inter-class separation and minimizes

intra-class variations of deep features for both majority

and minority classes in extreme class imbalance sce-

narios. Deep CNNs trained with joint supervision of

softmax loss, center loss, and DDA loss yield highly

discriminant deep features for wild FER applications.

2. We show that DDA loss can be trained using the stan-

dard Stochastic Gradient Descent (SGD) algorithm

and can therefore be promptly applied to any state-of-

the-art network architectures with minimal interven-

tion.

3. We conduct extensive experiments on a synthesized

wild dataset and two popular large-scale wild FER

datasets (AffectNet [26] and RAF-DB [14]) to demon-

strate the improved recognition results with the pro-

posed method.

2. Related Work

In this section, we review the related work on Facial Ex-

pression Recognition (FER) from two aspects: 1) FER us-

ing discriminative loss functions and 2) FER in the wild.

2.1. FER Using Discriminative Loss Functions

Metric learning has been adopted in many FER works to

enhance the discrimination power of softmax loss. Identity-

Aware CNN (IACNN) [25] utilizes an expression-sensitive

contrastive loss on sample pairs to pull deep features with

the same expression together and separate those with differ-

ent expressions. Liu et al. [21] employ (N+M)-tuplet cluster

loss on sample triplets to form clusters of deep features with

the same expression and separate them from each other.

However, these methods exhibit a slow convergence as the

number of pairs and triplets grow in a quadratic and cu-

bic way, respectively. Instead of sample mining, center loss

[31] introduces an additional objective function coupled

with softmax loss to create a compact representation of deep

features by minimizing the distance between deep features

to their corresponding class center. Locality-Preserving loss

(LP-loss) [13], inspired by center loss, enforces intra-class

compactness by locally clustering deep features using the

k-nearest neighbor algorithm. Island Loss [2] introduces an

additional objective function to center loss to maximize the

cosine distance between the learned class centers. Sepa-

rate loss [15] develops an intra-class loss and an inter-class

loss to maximize the cosine similarity between deep fea-

tures and their corresponding class center and minimize the

cosine similarity between learned centers. Li et al. [18] de-

sign a multi-scale CNN to pool multiple feature vectors into

a single feature embedding using the attention mechanism.

Pooled features are classified using a regularized variant of

center loss with a built-in margin.

2.2. FER in the Wild

FER in real-world settings requires large-scale uncon-

strained image datasets. Unlike lab-controlled datasets such



as CK+ [22], MMI [27], and JAFFE [23], wild FER datasets

such as AffectNet [26] and RAF-DB [14] have been shown

to yield more accurate models for real-world FER. Here, we

review recent FER methods that tackle the wild setting.
Patch-based Attention-CNN (pA-CNN) [16] and global-

local based Attention-CNN (gA-CNN) [17] integrate facial

patch/region importance using an attention mechanism to

recognize facial expressions in wild datasets (AffectNet and

RAF-DB). Zhao et al. [33] propose Feature Selection Net-

work (FSN) that employs a feature selection mechanism to

automatically mask out the features with small influence

for the subsequent layers in the network. FSN is evalu-

ated on RAF-DB and FER2013 [5]. Florea et al. [3] de-

velop Annealed Label Transform (ALT) algorithm to trans-

fer a learner’s knowledge on a labeled dataset (RAF-DB and

FER+ [1]) to an unlabeled dataset (MegaFace [10]). By

increasing the acquired pseudo label confidence, the orig-

inal learner’s performance in expression recognition is in-

creased. Lee et al. [12] embed an attention mechanism in

a Context-Aware Emotion Recognition Network (CAER-

Net) to seek important visual clues in a video scene and

combine them with facial features to recognize emotions

in a TV show setting. Zeng et al. [32] propose an In-

consistent Pseudo Annotations to Latent Truth (IPA2LT)

FER framework for RAF-DB and AffectNet. IPA2LT trains

a Latent Truth Net (LT-Net) to discover latent true labels

from inconsistency between pseudo-labels generated with

a trained model and manual labels by maximizing the log-

likelihood of inconsistent annotations. Georgescu et al. [4]

combine deep features learned by three CNNs and the hand-

crafted bag-of-visual-words (BOVW) features to boost the

recognition performance on FER2013, FER+, and Affect-

Net. Siqueira et al. [29] propose a method called Ensemble

with Shared Representation (ESR) to share the middle con-

volutional layers among an ensemble of CNNs to recognize

facial expressions on FER+ and AffectNet.

3. Proposed Method

In this section, we first review necessary preliminaries.

We then introduce the proposed Discriminant Distribution-

Agnostic loss (DDA loss). Finally, we discuss DDA loss

optimization and derive its corresponding gradients in back-

propgation for Stochastic Gradient Descent (SGD) opti-

mization.

3.1. Preliminaries

Given a training batch of m samples for a K-class im-

age classification problem, let xi ∈ R
d be the output d-

dimensional deep feature of the i-th sample belonging to

the yi-th class, where yi ∈ {1, ...,K}. The conventional

softmax loss combines the last fully-connected layer, the

softmax function, and the cross-entropy loss to measure the

prediction error of the classifier. The last fully connected

layer takes xi and transforms it into a raw score vector (i.e.,

logits) zi = [zi1, zi2, ..., ziK ]T ∈ R
K×1 through a linear

transformation as follows:

zi = WTxi +B (1)

where W = [w1, w2, ..., wK ] ∈ R
d×K and B =

[b1, b2, ..., bK ] ∈ R
K×1 are the class weights and bias

parameters for the last fully-connected layer, respectively.

Each wj is a d-dimensional vector and each bj is a scalar

where j ∈ {1, ...,K}. A probability distribution p(y =
j|xi) = e

zij
∑

K
j=1

e
zij

is then calculated over all classes using

the softmax function. Finally, the cross-entropy computes

the discrepancy between prediction and ground-truth to for-

mulate the softmax loss function LS as follows:

LS = −
1

m

m∑

i=1

K∑

j=1

yi log p(y = j|xi)

= −
1

m

m∑

i=1

log
e
wT

yi
xi+byi

∑K
j=1

ew
T
j xi+bj

(2)

where m is the total number of samples in a mini-batch. The

softmax loss function is minimized by SGD to optimize the

network parameters for a better classification. It also makes

the learned features separated in an angular fashion in the

embedding space since it calculates the vector dot product

of w · x to minimize the angle between the deep feature xi

and its corresponding class weight wyi
[20].

Center loss is jointly optimized with softmax loss to min-

imize the intra-class variations by minimizing the distance

of the deep features to their corresponding class center in a

d-dimensional embedding space. The center loss objective

function penalizes the Euclidean distance between the deep

feature vector of each sample xi ∈ R
d and its correspond-

ing class center cyi
∈ R

d as follows:

LC =
1

2m

m∑

i=1

‖xi − cyi
‖
2

2
(3)

where yi is the class that xi belongs to. Its joint optimiza-

tion with softmax loss LS is given as follows:

L = LS + λLC (4)

where λ controls the contribution of LC to the total loss

L. Individually, softmax loss LS induces inter-class angu-

lar separation [30] and center loss LC minimizes intra-class

Euclidean distances to create compact clusters of features in

the embedding space. The softmax loss in Eq. 2 is a special

case of center loss with λ = 0.



3.2. Discriminant Distribution­Agnostic Loss

Training under the joint supervision of softmax loss and

center loss creates compact clusters of deep features sep-

arated in an angular fashion. The softmax loss formula-

tion incorporates all class weights to emphasize the angu-

lar separation of the deep feature xi and class weights W .

However, it has been proven to be unsuitable for a class

imbalance setting [6]. On the other hand, center loss only

penalizes the distance between a deep feature and its cor-

responding class center and disregards the contribution of

other class centers. In an extreme class imbalance scenario,

data points from minority classes and their corresponding

class centers are minimally sampled in a training batch. The

minimal learning impact from minority classes during mini-

batch SGD optimization develops a bias towards majority

classes. Thus, the efficiency of a learning algorithm super-

vised by center loss highly relies on the distribution of data

among classes. Notably, in a wild setting, center loss de-

livers a sub-optimal classification performance for minority

classes.
To circumvent this shortcoming, we aim to properly sep-

arate clustered deep feature vectors for both minority and

majority classes in the embedding space. We argue that the

Euclidean distance between the deep feature and all class

centers should impact the forward propagation for a single

sample to mitigate the bias toward majority classes as evi-

denced in center loss. To this end, we propose Discriminant

Distribution-Agnostic loss (DDA loss) LDDA as follows:

LDDA = −
1

2m

m∑

i=1

Nk∑

k=1

yik log pC(xi ∈ Ck|k)

= −
1

2m

m∑

i=1

log
e
−‖xi−cyi‖

2

2

∑Nk

k=1
e−‖xi−ck‖

2

2

(5)

where Nk is the number of classes, yik = 1 if xi belongs

to the k-th class and 0 otherwise, and Ck is the cluster for

the k-th class in the embedding space. DDA loss estimates

the probability of a deep feature xi belonging to cluster

k with its corresponding center ck using a softmax func-

tion. Minimizing LDDA is equivalent to maximizing the

log-likelihood of the estimated probability pC(xi ∈ Ck|k)
over a batch of m samples. Compared to softmax loss in

Eq. 2, which emphasizes the angular similarity, DDA loss

separates the class features based on the Euclidean distance

metric, which correlates with the feature vector’s magni-

tude. Considering the magnitude difference between the

learned features of a minority class and a majority class in

a class imbalance setting is crucial in achieving intra-class

compactness and inter-class separation.
Unlike center loss, DDA loss implicitly pushes the deep

feature xi away from any clusters Ck with k 6= yi and pulls

itself towards its cluster Ck with k = yi in the embedding

space with a single formulation. Intuitively, LDDA consid-

ers the contribution from all majority and minority classes

to update network parameters to achieve intra-class com-

pactness and inter-class separability. The proposed DDA

loss is distribution-agnostic and mitigates the bias towards

majority classes.
DDA loss is jointly optimized with softmax loss and cen-

ter loss to compose the total loss L by:

L = LS + λLC + γLDDA (6)

where the hyper-parameter γ controls the contribution of

LDDA to the total lossL and enables us to conduct quantita-

tive analysis. The center loss defined in Eq. 4 is considered

as a special case of this joint optimization when γ = 0.

3.3. Optimization

The proposed DDA loss is differentiable and can be opti-

mized with the standard Stochastic Gradient Descent (SGD)

algorithm. We study the SGD backpropagation optimiza-

tion and the contribution of LDDA gradients to the total loss

L. The joint optimization of LDDA with softmax loss and

center loss contributes to their gradients with respect to the

deep feature xi and centers ck, respectively.
To simplify the derivative equations, we introduce the

following intermediate notation:

pCi
=

edi

∑Nk

k=1
edk

(7)

where dk = −‖xi − ck‖
2

2
. The gradient of DDA loss with

respect to features xi are computed according to the chain

rule as follows:

∂LDDA

∂xi

=
∂LDDA

∂dj
×

∂dj

∂xi

= −
1

2m
×

1

pCi

∂pCi

∂dj
× (−2)(xi − cyi

)

=
1

m
(δij − pCj

)(xi − cyi
)

(8)

where the Kronecker delta function is defined as δij = 1 for

i = j and 0 otherwise.
Class centers are randomly initialized according to the

He method [8]. We update the centers as follows:

ck = ck − α∆c∗k (9)

where ∆c∗k is the combination of an average strategy (∆ck)

proposed in [31] and the gradients of DDA loss with respect

to centers ck as in:

∆c∗k = ∆ck +
∂LDDA

∂ck

=

∑m
i=1

δyik · (ck − xi)

1 +
∑m

i=1
δyik

+
1

m

m∑

i=1

(δij − pCj
)(cyi

− xi)

(10)



Algorithm 1 summarizes the major steps for training an

end-to-end deep CNN model using DDA loss.

Algorithm 1 Training a supervised deep learning algorithm

(e.g., CNN) using DDA loss.

Input: Mini-batch features {xi|i = 1, 2, ...,m} extracted

from a CNN model; Initialized parameters θC for con-

volutional filters in CNN; Initialized parameters W =
{wj |j = 1, 2, ..., Nk} for the last FC layer and C =
{ck|k = 1, 2, ..., Nk} for center loss and DDA loss;

Hyper-parameters α, γ, λ, and learning rate µ; The

number of iterations t← 0.

Output: Updated parameters θC , W , and C.

1: while not converged do

2: Compute the total joint loss:

Lt = Lt
S + λLt

C + γLt
DDA.

3: Compute the gradients:

ĝt ←
1

m

∑m
i=1

∂Lt
S

∂xt
i

+ λ
∂Lt

C

∂xt
i

+ γ
∂Lt

DDA

∂xt
i

.

4: Compute ∆c∗k by Eq. 10.

5: t← t+ 1.

6: Update wj for each j: wt+1

j = wt
j − µ

∂Lt
S

∂wt
j

.

7: Update ck for each k: ct+1

k = ctk − α∆ct∗k .

8: Update the CNN model parameters θC :

θt+1

C = θtC − µtĝt
9: end while

4. Experiments

We conduct extensive experiments to evaluate the per-

formance of the proposed loss function and other state-

of-the-art methods. We visually and quantitatively vali-

date the superior performance of the proposed Discriminant

Distribution-Aware loss (DDA loss) compared to the base-

line loss functions, namely, softmax loss and center loss,

on a wild toy dataset. We then evaluate the proposed DDA

loss on two widely used wild FER datasets against the base-

line loss functions and recent state-of-the-art methods that

tackle the wild setting.

4.1. Wild MNIST Experiments

We present a toy experiment on the Wild MNIST (W-

MNIST) dataset with ten classes, a subset of the MNIST

dataset [11], to study the proposed method more intuitively.

W-MNIST is comprised of randomly sampled image data

(single hand-written digits) from the standard MNIST train-

ing set. To mimic the characteristics of a wild FER dataset,

we drastically decrease the number of training data points in

W-MNIST for a few categories by sampling only a few data

points from MNIST. The distribution of data in W-MNIST

is summarized in Fig. 2 (a). We illustrate two-dimensional

(2-D) deep features learned by softmax loss and center loss

in Fig. 2 (b) and (c), respectively, and the 2-D deep features

Method λ / γ Accuracy (%)

softmax loss - 96.78

center loss [31] 0.01 / - 97.12

DDA loss 0.01 / 1.0 97.17

DDA loss 0.01 / 3.0 97.17

DDA loss 0.01 / 5.0 97.15

DDA loss 0.01 / 7.0 97.34

Table 1. Classification accuracy on the MNIST testing set by train-

ing the LeNets++ model with different losses on the W-MNIST

training set.

learned by the proposed DDA loss with different γ values

in Fig. 2 (d)-(f).

To display deep features on a 2-D plot, we use the CNN

model LeNets++ [31] with six stacked convolutional lay-

ers and one fully-connected layer with two neurons. We

train LeNets++ on the W-MNIST dataset using the standard

stochastic gradient descent (SGD) with a momentum of 0.9

and a weight decay of 5 × 10−4 for 100 epochs. We use a

batch size of 128 and set the initial learning rate as 0.001

with a decay factor of 1.25 every 20 epochs. We do not

use any data augmentation on W-MNIST. We empirically

set the hyper-parameter λ for center loss as 0.01 and exper-

iment with different γ values for DDA loss.

As illustrated in Fig. 2, the deep features learned by

center loss are more discriminative compared to the deep

features learned by softmax loss. However, inter-class dis-

tances are optimized with a bias toward the majority classes

in the embedding space. Consequently, minority classes

are over-lapped, or their inter-class distances relative to ma-

jority classes are not optimized. On the other hand, DDA

loss occupies the embedding space with compact and well-

separated feature clusters for both majority and minority

classes. As we increase the hyper-parameter γ, feature clus-

ters tend to disperse further away from other clusters. Vi-

sualization of 2-D deep features verifies that the proposed

DDA loss yields more discriminative features in a wild

dataset setting since it achieves optimal inter-class separa-

tion and intra-class compactness for all classes.

To quantitatively evaluate the performance of the pro-

posed DDA loss and the baseline loss functions, we train

LeNets++ on the W-MNIST training set and test its recog-

nition performance on the MNIST testing set. Table 1 sum-

marizes the classification accuracy of the proposed DDA

loss and two baseline loss functions (softmax loss and cen-

ter loss) on the MNIST testing set. It clearly shows that the

proposed DDA loss with γ = 7.0 outperforms both softmax

loss and center loss by achieving an accuracy of 97.34%.

4.2. Wild FER Experiments

Real-world Affective Face Data-Base (RAF-DB) [14]

and AffectNet [26] are the two largest and widely used

wild Facial Expression Recognition (FER) datasets. RAF-
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Figure 2. A wild toy experiment of training LeNets++ on the W-MNIST training set using different loss functions. (a) Distribution of data

for the W-MNIST training set. Illustration of the distribution of 2-D deep features learned via: (b) Softmax loss, (c) Center loss, (d)-(f)

DDA loss with different γ values.

DB contains 12,271 training images and 3,068 testing im-

ages aligned and annotated with six basic expressions (i.e.,

happy, sad, surprise, anger, disgust, and fear) and neu-

tral expression using crowd-sourcing techniques. AffectNet

contains 280,000 training images and 3,500 testing images

manually annotated with six basic expressions and neutral

expression. Both datasets comprise of facial images in real

world with various gender, age, demography, image quality,

and illumination attributes. We first present the details of

our implementations in terms of architecture, training, and

hyper-parameters. We then analyze the recognition perfor-

mance on both RAF-DB and AffectNet datasets and study

the effect of hyper-parameter γ. Finally, we discuss our re-

sults and the limitations of the proposed method.

4.2.1 Implementation details

We fit ResNet-18 [9], a standard convolutional network, to

both RAF-DB and AffectNet as the backbone architecture.

We train and optimize ResNet-18 using SGD with an ini-

tial learning rate of 0.01, a momentum of 0.9, and a weight

decay of 5 × 10−4. We train ResNet-18 initialized with

ImageNet weights on RAF-DB for 60 epochs with a batch

size of 64 and decay the learning rate by a factor of 10 ev-

ery 20 epochs. For AffectNet, we train ResNet-18 from

scratch for 20 epochs with a batch size of 128 and decay

the learning rate by a factor of 10 every five epochs. For

both datasets, we augment the input images on-the-fly by

extracting random crops (one central, and one for each cor-

ner and their horizontal flip). At test time, we use the central

crop of the input image. Crops of size 90 (given images of

size 100) and 224 (given images of size 256) are extracted

from RAF-DB and AffectNet, respectively. Our models are

trained using PyTorch deep learning framework [28] on a

2080Ti GPU with 11GBs of V-RAM.

4.2.2 Recognition Performance

Table 2 and Table 3 compare the expression recognition per-

formance of the proposed DDA loss, the two baseline loss

functions, and recent methods on RAF-DB and AffectNet,

respectively. Since RAF-DB’s testing set is imbalanced, we

report both the standard accuracy and the average accuracy,

which is the average of the main diagonal values in the con-

fusion matrix. We empirically set the hyper-parameters for

center loss as λ = 0.01 and α = 0.5. To ensure a fair

comparison, we use the same hyper-parameters in the pro-

posed DDA loss. The proposed DDA loss, best optimized

with γ = 5.0 outperforms other methods on RAF-DB by

achieving the recognition accuracy of 86.99% and an aver-



Method Acc. (%) Avg. Acc. (%)

FSN [33] 81.10 72.46

PA-CNN [16] 83.27 -

DLP-CNN [13] 84.13 74.20

ALT [3] 84.50 76.50

GA-CNN [17] 85.07 -

SEP-LOSS [3] 86.38 77.25

IPA2LT [32] 86.77 -

softmax loss 85.56 77.28

center loss [31]

(λ = 0.01)
86.25 77.81

DDA loss

(λ = 0.01, γ = 5.0)
86.90 79.71

Table 2. Expression recognition performance of different methods

on RAF-DB in terms of standard accuracy and average accuracy.

Method Accuracy (%)

PA-CNN [16] 55.33

IPA2LT [32] 57.31

GA-CNN [17] 58.78

SEP-LOSS [15] 58.89

softmax loss 61.46

center loss [31](λ = 0.01) 61.69

DDA loss (λ = 0.01, γ = 4.0) 62.34

Table 3. Expression recognition performance of different methods

on AffectNet in terms of accuracy.
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Figure 3. The effect of hyper-parameter γ for DDA loss on (top):

The average recognition accuracy of RAF-DB and (bottom): The

recognition accuracy of AffectNet.

age recognition accuracy of 79.71%. Similarly, DDA loss,

best optimized with γ = 4.0, outperforms other methods on

AffectNet by achieving the recognition accuracy of 62.34%.

4.2.3 The Effect of Hyper-parameter γ

Fig. 3 shows the effect of using different γ values for the

proposed DDA loss on the FER performance for wild FER

datasets. The contribution of DDA loss to the total loss is

controlled by γ. Large γ values make the total loss focus

more on DDA loss, and small γ values make the total loss

focus more on softmax loss and center loss. Specifically,

for large γ values, features either do not separate or do not

exhibit compactness in the embedding space. Small γ val-

ues cannot separate the feature clusters efficiently to cir-

cumvent the issue with the learned features supervised by

center loss. Our experiments on two datasets empirically

show that softmax loss converges slower and cannot effi-

ciently separate features in angular fashion when increas-

ing the γ value to increase the contribution of DDA loss

LDDA in Eq. 6. Furthermore, the center loss objective func-

tion puts less emphasis on penalizing the distance between

features and their corresponding class centers and achieves

less intra-class compactness. Hence, the recognition rate

starts to degrade after the peak performance with γ = 5.0
for RAF-DB and γ = 4.0 for AffectNet. Our experiments

show that γ values larger than 10.0 will disrupt the balance

between the three terms in the total loss L in Eq. 6 and

significantly degrade the recognition rates.

4.2.4 Discussion

Although our method boosts the recognition performance

when comparing with the two baseline methods, the results

are not uniformly positive. For example, the proposed DDA

loss tends to outperform center loss for RAF-DB dataset

(Fig. 3 (a)). However, the performance of the proposed

method quickly drops below center loss when γ > 4.0 for

AffectNet dataset (Fig. 3 (b)). This behavior is mainly be-

cause DDA loss requires to be jointly optimized with cen-

ter loss to maintain intra-class compactness. Furthermore,

the relative size of majority classes to minority classes in

AffectNet is significantly higher than the one in RAF-DB.

Consequently, majority classes lose their intra-class struc-

ture and the recognition performance drops for all classes

when the contribution of DDA loss increases.
We present the confusion matrices obtained by employ-

ing two baseline methods and the proposed method with

DDA loss on RAF-DB and AffectNet in Fig. 4. It is

clear that center loss boosts the recognition rates for most

of the majority classes but degrades the recognition rates

for minority classes. On the other hand, DDA loss boosts

the recognition rates for minority classes and maintains the

comparable recognition rates for majority classes. Specifi-

cally, we observe that the proposed method either maintains

or boosts the recognition rates for majority classes except

neutral and surprise for AffectNet. In Fig. 5, we pro-

vide sample correctly classified and misclassified images

from RAF-DB and AffectNet predicted by our best mod-

els trained with DDA loss. Because AffectNet is much

larger than RAF-DB, the human annotations are less accu-

rate. This is a prevailing issue for large-scale datasets when

resources are low and annotation can be subjective, which

leads to more noisy ground-truth labels in AffectNet. Con-
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Figure 4. Confusion matrices for the recognition accuracy of: top row: RAF-DB, and bottom row: AffectNet using baseline methods and

the proposed method. † Minority classes.

sequently, our models yield correct predictions that might

contradict with the ground-turth labels.

5. Conclusions

We propose Discriminant Distribution-Agnostic loss

(DDA loss) for Facial Expression Recognition (FER) in the

wild settings. DDA loss implicitly pushes deep features of

a class away from other classes and pulls them toward their

corresponding class centers in the embedding space. Super-

vised jointly by softmax loss and center loss, DDA loss effi-

ciently distributes feature clusters of both majority and mi-

nority classes in the embedding space where extremely im-

balanced distribution of data exists. DDA loss can be opti-

mized with the standard Stochastic Gradient Descent (SGD)

algorithm and can be readily employed by any Convolu-

tional Neural Network (CNN) to yield highly discrimina-

tive features that are efficient under wild scenarios. Experi-

ments with a synthesized Wild MNIST (W-MNIST) dataset

and two widely used wild FER datasets, RAF-DB and Af-

fectNet, demonstrate the superior performance of DDA loss

compared to other state-of-the-art methods.
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