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Abstract

Understanding the sentiments evoked by advertisements

is crucial in serving them appropriately to consumers. Ad-

vertisements often use images to evoke sentiments. An

image can convey multiple sentiments of different nature.

Automatically predicting these multiple sentiments can help

serve better advertisements to consumers, especially in an

online scenario at scale. In this paper, we present a neural

network model based on graph convolution to predict such

sentiments, which exploits the semantic relationship among

the sentiment labels. We use it to predict multiple sentiment

labels using an annotated dataset of 30, 340 image-based

advertisements. We also find a distance metric that best

represents the distribution of sentiments in the dataset and

utilizes it in a loss function that separates applicable senti-

ments from the non-applicable ones. We report an improve-

ment in mean average precision and overall F1 score over

a multi-modal multi-task state-of-the-art model.

1. Introduction

As the adage goes, a picture is worth a thousand words.

Numerous companies worldwide profit from selling such

thousand words in form of an image advertisement. It is

reported that 70.9% of Google’s revenue is generated from

selling advertisements [2]. Over 1, 700 banner advertise-

ments are served to an average consumer per month, but not

more than 50% of them are shown interest by the beholder

[13]. This huge gap between the amount of advertisement

content available and the efficiency of it being served might

be due to lack of a way to automatically understand the ad-

vertisement’s visual rhetoric [5] at this scale. The persuas-

iveness of an advertisement can be made efficient by under-

standing the topic of the ad, but may not be effective un-

less the emotion conveyed by the advertisement is also un-

derstood. Sometimes, not understanding the emotion might

end up distancing the consumer. An example would be an

advertisement that evokes joy but the context in which the

Figure 1: An example of an advertisement conveying

‘shocked’ as well as ‘calm’ sentiments at the same time.

advertisement is served is that of a funeral. Such a mis-

match also has the potential to damage a brand’s image in

the market.

Inferring emotion from an image is not a trivial task.

There have been efforts to understand the emotion from the

image, one notable attempt being the DeepSentiBank [1].

It is a model trained on the images collected from web that

are tagged with multiple sentiments. The reported detectors

performance on natural images is notable. Hussain et al.

[5] extended DeepSentiBank to advertisement images and

found that DeepSentiBank performed poorly in terms of ac-

curacy. They observed that a detector trained on natural

images could not be generalized to advertisement images.

Besides DeepsentiBank, Vedula et al. [14] developed an

advertisement recommendation system using sentiments in

multimedia content. Madhok et al. [9] extended the work

to advertisement topics, and constructed a unified frame-

work to understand advertisements jointly with sentiments.

Zhang et al. [17] proposed a novel deep multi-modal multi-

task framework to integrate multiple modalities to achieve



effective topic and sentiment prediction simultaneously for

advertisement understanding. In this paper, we compare

and use the results by Zhang et al. [17] (referred to as the

M&M model) as benchmark for sentiment prediction.

In this paper, we try to address certain aspects missing

from the previously proposed sentiment prediction frame-

works. As observed by Peng et al. [12], an image can in-

voke emotional ambivalence in a viewer. For instance, in

Figure 1, the ad conveys both ‘shocked’ as well as ‘calm’

emotion at the same time. We observed this phenomena

in the advertisement dataset used by Hussain et al. [5],

where one image was tagged by 3.77 sentiments on an av-

erage. In a general setting to solve the advertisement sen-

timent understanding problem, pair-wise semantic relation

between the sentiment labels (for example, the semantic re-

lation between ‘shocked’ and ‘calm’ in context of the ad-

vertisement image in Figure 1) has been typically ignored.

In this paper, we use graph convolution over convolutional

neural networks to capture such pair-wise semantics. We

also try to learn pair-wise relations in the context of visual

information extracted from the ad. Such a method was tried

by Li et al. [7] in a different setting such as multi-label

classification with semantically different labels. But to the

best of our knowledge, this is the first time where the se-

mantic relation between sentiments is being exploited in the

context of an advertisement. Zhang et al. [17] considered

graph convolution neural networks, but have not learnt the

semantic relation in context of the advertisements.

Our contributions in this paper are: (1) We analyze the

data in an unsupervised manner to find out the distance met-

ric that best fits the sentiment semantics in advertisements,

(2) We discuss the loss function based on the proposed met-

ric to exploit semantic relation between sentiment labels.

(3) We discuss an architecture based on graph convolution

to exploit semantic relation between labels and perform a

joint semantic learning within the advertisement context. In

addition, we conduct experiments on three datasets derived

from the dataset used by Zhang et al. [17] and report a per-

formance improvement in prediction of sentiments. We also

compare the loss function based on standard distance metric

with the proposed metric and show a performance improve-

ment. Finally, we present the results of an ablation study on

the architecture and report their individual contributions.

2. Dataset

The dataset given by Hussain et al. [5] contains 64, 140
advertisement images annotated with topics, sentiments,

and action reason pairs. Out of which only 30, 340 are an-

notated with sentiments. Some examples of advertisements

are shown in Figure 2 where each advertisement is annot-

ated with at least one representative sentiment. Besides,

the dataset also groups together semantically close senti-

ments to a representative sentiment as shown in Figure 2 for

Figure 2: Advertisement examples from the dataset annot-

ated with representative sentiments and the corresponding

semantically related sentiments as labels.

ease of annotation. For example, the sentiment ‘calm’ also

stands for ‘soothed’, ‘peaceful’, ‘comforted’, ‘satisfied’ and

‘cozy’. Each advertisement in the dataset is annotated by at

least 3 raters and at most 5 raters [5]. We present the count

of advertisements against each representative sentiment la-

bel or the sentiment label distribution in Figure 3.

2.1. Label distribution analysis

The noticeable fact from the Figure 3 is, sentiment la-

bel distribution is heavily skewed towards certain labels (in

particular, ‘creative’), which would cause a sentiment la-

bel bias during training of the learning model we propose

to employ. This is probably also due to the fact that some

annotators interpreted the ‘creative’ label as the advertise-

ment characteristic rather than the sentiment conveyed by it.

Therefore, we proposed an undersampling strategy to solve

this problem without reducing the samples in the dataset.

The details are described later in the Experiments section.

2.2. Label space analysis

Advertisements in the dataset given by Hussain et al. [5]

have been annotated with 115 sentiments. Out of these,

30 sentiments are representative and the rest are semantic-

ally related to the representative sentiments. Our proposed

idea is to analyse the sentiment label space of the data-

set to find the best distance metric that can represent all

115 sentiment labels such that they are semantically close

to the representative sentiment label distribution shown in

Figure 4 (a). The standard distance metric used in hinge

rank loss is l2 − norm [3]. To formulate the loss func-

tion to best fit our data, we used unsupervised techniques

to analyse the sentiment label space. Firstly, we employed

agglomerative clustering [11] with number of clusters be-



Figure 3: Sentiment label distribution over the entire advertisement dataset.

(a) (b) (c)

(d) (e) (f)

Figure 4: The x-axis for the top three plots is representative sentiments, and x-axis for the bottom three plots is the number

of clusters. Plots (a), (b) and (c) show the ground truth, l2 − norm and max − norm sentiment distributions in the dataset

respectively. Similarly, plots (d), (e) and (f) show the data perplexity for ground truth, l2 − norm and max − norm

respectively.

ing 30 and linkage set to average. Using this clustering,

we clustered the word embedding for the 115 sentiment la-

bels with 15 widely used distance metrics. We observed

that max − norm distance metric best fitted this purpose

based on two parameters, namely, sentiment label distribu-

tion and data perplexity. The ideal case for first parameter is

the sentiment label distribution shown in Figure 4 (a), where

the sentiment label clusters are semantically perfect, as they



are manually clustered by humans.

In the top plots of Figure 4, we can observe the difference

between original sentiment label distribution (a) from the

distribution achieved using l2−norm (b), and the distribu-

tion clustered with max−norm (c). Though max−norm

clusters were semantically weaker compared to original dis-

tribution, we considered them to be good as the cluster

formation is much closer to the original.

The second parameter, data perplexity, is the image

count annotated with more than one sentiment which are

semantically different. The ideal scenario for the second

parameter is that the number of images per cluster must be

close to the dataset’s image count per cluster shown in Fig-

ure 4 (d). We observed that max − norm′s first, second,

third, and fourth peaks are closer to original peaks than that

of l2−norm′s. From this, we chose max−norm to formu-

late the loss function in our model proposed in the following

section.

2.2.1 Word embeddings

We used word embedding vectors for each sentiment for

clustering them. Word embedding vectors are word repres-

entations in continuous vector space, in which semantically

similar words fall near each other and dissimilar words fall

apart. The skip-gram model proposed in [10] is a widely

used and efficient semantic vector representation. In our

implementation, we used word2vec with skip-gram model

of 300 dimensional word embeddings. Word embeddings

for all 115 labels were derived from the Google news cor-

pus.

3. Model architecture

In this section, we provide motivation to use Graph Con-

volution Network (GCN) along with the formulation of a

loss function. We also provide the details of training and

inference with the proposed architecture and loss function.

The proposed model archictecture is depicted in Figure 5.

3.1. Graph convolution network (GCN)

We employed Graph Convolution Networks [15] to ex-

ploit the semantic relations between the sentiments of the

advertisements. We also used the model to learn these se-

mantic relations in the context of visual advertisements. A

graph convolution neural network is a kind of neural net-

work which operates on graphs. Given a graph G = (V,E)
where, V represents the vertices and E represents the edges,

A ∈ R
n×n is an adjacency matrix where, aij denotes the

edge weight between nodes. For every node in the graph,

their exists a corresponding d-dimensional feature vector

xi ∈ R
d, and the inputs to the nodes V can be represented

as matrix X ∈ R
n×d where, n is number of nodes and d

is the feature dimension of a each node. Graph convolution

for one layer can be represented as

G = A ·X ·W (1)

where W ∈ R
d×m is the weight matrix of this specific layer

and m can be configured based on our usage.

3.2. Visual context in label space semantics

As shown in the architecture in Figure 5, we first learnt to

project the d -dimensional feature vector extracted from the

convolutional neural network [4] into the sentiment label

word embeddings to contextualize each sentiment with the

advertisement. The pair-wise similarity between the con-

textualized sentiments was computed to learn the semantic

relation between each sentiment in context of the advert-

isement. Given an advertisement image I , a feature vector

f was extracted from convolution neural networks where,

f ∈ R
d. Extracted feature vector f was learnt to optimally

project into embedding matrix E ∈ R
n×k where n is the

number of sentiment labels and k is the word embedding

dimension to generate a contextualized input to the graph.

Equation 2 represents our interpretation mathematically as

X =
∑

i

E:,i +(Ti · f) (2)

where, T ∈ R
k×d is the projection matrix learnt during

backpropagation and X ∈ R
n×k matrix representation of

nodes in the graph. Besides the input representation X, ad-

jacency matrix A was configured to learn the edge relation

of the graph G. We opted to capture pairwise similarity

between the nodes to learn the semantics of the sentiments

in the context of an advertisement. Equation 3 mathematic-

ally represents the computation of adjacency matrix.

A = XT ·U ·VT ·X (3)

where, U ∈ R
k×k and V ∈ R

k×k are weights matrices

learnt during backpropagation. The edges of the graph G

were normalized using softmax over each row of the adja-

cency matrix A before computing graph convolution using

Equation 1. The resultant matrix G ∈ R
n×m was used in

the loss function that we formulated as described in the next

section.

3.3. Loss function

After the graph convolution computation, the resultant

graph G was utilized to compute the loss of the overall sys-

tem. Based on the conclusions on distance metric detailed

in Section 2.2, we employed hinge rank [11] loss with minor

modifications in terms of norm and margin m, as shown in

Equation 4.

L =
∑

j

max(0,
1

| pi |

∑

i

|| G · pi ||∞ − || G · nj ||∞)

(4)



Figure 5: Architecture of the proposed model.

The loss function can be interpreted as the average norm

of the resultant graph multiplied with all positive labels that

act as a threshold to penalize the violation caused by negat-

ive labels. To explain further, if the max − norm || · ||∞
of the resultant graph G and specific negative sentiment la-

bel from the set was less than average max − norm of the

resultant graph G and positive sentiment labels, the sys-

tem was penalized by the amount of violation. The total

violation for the negative labels for an advertisement was

summed up and backpropagated. Note that the mechanics

of the loss function is exactly same as proposed in [8], but

it has been adapted to this specific sentiment label space

detailed earlier in Section 2.2.

3.4. Training and inference

We used annotations of each advertisement in the dataset

as positive sentiment labels and regarded the rest of the sen-

timents in the sentiment label space as negative sentiment

labels. The matrix p in Equation 4 contains the word em-

beddings for positive sentiment labels. Similarly, the matrix

n contains word embeddings for negative sentiment labels.

During training, we provided an extracted feature vec-

tor from resnet − 152 for each advertisement image as an

input to the model giving a matrix G in Equation 1 at the

output. We used G in the loss function (Equation 4) to train

the model end-to-end. We also employed G to rank the

sentiment label set during inference. We initialized the em-

bedding matrix E in the model with word embeddings of

sentiment labels for the training and inference processes. In

addition, we also investigated the effect of randomly initial-

izing the embedding matrix versus initializing it with word

embeddings in an ablation study discussed later in the pa-

per. We trained the model for 500 epochs with a batch size

of 64 and experimented with multiple hyper-parameters to

get the best results from the model.

During inference, we matrix-multiplied the model’s out-

put for each advertisement image with the sentiment label

set S. S contains column matrices of word embeddings for

all 115 sentiments labels. We calculated the distance from

the origin for every sentiment label. By sorting the resultant

set of distances in an ascending order, we obtained labels

which were closest to the origin. The top-k of these labels

were considered as predictions for an advertisement image,

k being the number of sentiment labels of an advertisement.

We used 70% data for training, 20% for validation and 10%

for model’s testing.

4. Experiments

In this section, we present various experiments conduc-

ted with the loss functions formulated using different dis-

tance metrics and compare the overall sentiment prediction

results with the existing benchmark [17]. We mentioned

earlier in Section 2.1 that the skewed distribution of annot-

ated sentiments in favour of a single label (‘creative’) can

influence the prediction results adversely. In this section,

we propose four experiments to counter this and present

the effect of different distributions of the ‘creative’ label on

overall model performance. Furthermore, we evaluate indi-

vidual modules in the model along with their effectiveness

in contributing to the overall model performance.



4.1. Evaluation protocol

We employed two metrics to evaluate and compare the

performance of our model with the model proposed by

Zhang et al. [17]. During inference, we compared the

top-k predictions against ground truth sentiment set Si of

an advertisement image in the dataset. Each sentiment

was weighted, and averaged ratio between the correct pre-

dictions and cardinality of the ordered prediction set Ŝi
across all images was calculated to measure mean average

precision (mAP ). Similarly, recall was calculated as the

ratio of correct predictions and | Si |. To compute weighted

average of precision and recall, we employed F1 score,

a harmonic mean of precision and recall. We extensively

used mAP and overall F1 score while evaluating the res-

ults of our experiments.

4.2. Implementation details

We center-cropped the advertisements in the dataset to

1 : 1 ratio and resized them to input dimension of the feature

extractor as proposed by He et al. [4]. We applied random

horizontal flip transformation and individual channel nor-

malization on all the advertisements in the dataset. We used

the neurons in the last fully connected layer of resnet−152
[4] as extracted feature representations of advertisement im-

ages. We used Google news pre-trained word embeddings

to initialize the embedding matrix in the model. We used

Adaptive Momentum Estimator (ADAM) optimizer [6] to

train our network. The model implementation was done us-

ing PyTorch.

As explained in to Section 2.1, the distribution of the

‘creative’ sentiment label was highly skewed. To examine

the effect of an undersampling strategy to counter this, we

designed the following two experiments:

• Experiment 1: We used the whole dataset with no un-

dersampling strategy.

• Experiment 2: Firstly, we found the mean of the

distribution and undersampled all the labels randomly

which are above two times the mean, which gave us

a more uniform distribution. By doing this, the fre-

quency of the most common sentiment label, i.e. ‘cre-

ative’, was reduced to 40% of its original frequency in

the dataset. We repeated the experiment 5 times since

we had randomly undersampled the ‘creative’ labels,

and reported the average prediction performance in the

results.

To understand the advantage of the embedded semantics

space (embedding matrix) in our model for predicting un-

seen labels, we performed the following two experiments:

• Experiment 3: We removed the ‘creative’ label com-

pletely from the training and validation datasets. We

Method mAP Overall F1

GCN [17] 0.223 0.339

M&M [17] 0.292 0.453

Our experiment 1 0.327 0.466

Our experiment 2 0.332 0.470

Our experiment 3 0.325 0.421

Our experiment 4 0.310 0.446

Improvement over GCN 49% 39%

Improvement over M&M 14% 4%

Table 1: Comparison of sentiment prediction by our model

to the state-of-the-art [17]

also removed the three corresponding sentiment labels

(‘creative’, ‘inventive’, ‘productive’) from the embed-

ding matrix. We trained the model on this dataset and

tested the same on the original test dataset containing

the ‘creative’ label.

• Experiment 4: This was similar to experiment 3. The

only difference was that we kept the embeddings of the

three corresponding sentiment labels (‘creative’, ‘in-

ventive’, ‘productive’) in the embedding matrix.

The test dataset for all the above experiments was kept

the same.

5. Results and discussion

The evaluation of our model using max−norm as a dis-

tance metric in the loss function for the aforementioned four

experiments is summarized in Table 1. Our best results are

obtained with undersampling the ‘creative’ label, i.e. with

experiment 2, which is an improvement of 14% in mAP

and of 4% in overall F1 score over the benchmark [17].

5.1. Effect of undersampling of noisy labels

As seen in the Table 1, the mAP and F1score for exper-

iment 2 improved over experiment 1. As discussed earlier,

this improvement was after removing 60% of the ‘creative’

labels. On examining the F1 score for prediction of the

‘creative’ label for experiment 1 (0.785) and 2 (0.774), we

did not observe much drop in the same. This shows that re-

moving creative labels did not affect the score of the same.

However, the improvement in the overall F1 score from

experiment 1 to 2 indicates that there was an improvement

in the F1 score of other labels. A possible explanation is

that the ‘creative’ and its semantically related labels served

as noise for some of the other labels, and thus the removal

of the noisy label helped in improving the scores of some

of the other labels. To understand what type of labels were

getting affected by the creative label, we plotted a graph of



Figure 6: Effect of undersampling of ‘creative’ label on prediction of labels.

label frequency (in training data) against the % improve-

ment in F1 score of the respective label from experiment 1

to 2 as seen in Figure 6. More importantly, we observed that

less frequent labels, such as ‘proud’, ‘grateful’ and ‘pess-

imistic’, were getting affected by the ‘creative’ label more

than the high frequency labels, such as ‘active’, ‘eager’ and

‘alert’. Some labels such as ‘proud’ and ‘grateful’ had a

positive effect, whereas, labels such as ‘pessimistic’ had a

negative effect. However, labels having positive effect were

more in number and intensity than labels having negative

effect, leading to an overall improvement in the F1 score.

Similar observations were made for mAP . We also ob-

served that the effect of the ‘creative’ label in terms of %

change in F1 score and mAP for a given label was not

in correlation with the semantic similarity of that label to

‘creative’.

5.2. Effect of using semantic embedding space

We observed that the F1 score for the prediction of

the ‘creative’ label reduced drastically from experiment 1

to 3 (from 0.785 to 0.483), whereas for experiment 4 the

drop was comparatively very less (from 0.785 to 0.705).

The overall F1 score dropped from 0.466 of experiment 1

(where all creative labels were retained) to 0.421 for exper-

iment 3, whereas to 0.446 for experiment 4. This indicates

that, for labels which are completely unseen in the training

data, but embedded in the semantic space, the performance

is better than when the labels are not embedded in the se-

mantic space. Thus, the semantic embedding space is facil-

itating the learning of unseen labels.

In case of the ‘creative’ label, when removed from the

training data, but included in the semantic space, shows

some drop in the results of the label. In such a scenario,

the ‘creative’ label learnt by its semantic embedding (as a

part of the semantic space) does not incorporate any noise

in the label annotation. As indicated in the earlier sections,

the noise could be due to the fact that some annotators in-

terpreted the ‘creative’ label as the advertisement charac-

teristic rather than the sentiment conveyed by it. Thus, the

drop in the performance can be because of the noisy test

labels, which have not been predicted as ‘creative’ by the

model.

5.3. The effect of distance metric in loss function

We used the standard l2 − norm based loss function

and recorded mAP and overall F1 score over 500 epochs.

Later, we extended the same to the proposed loss function

using max − norm. We plotted the mAP and F1 score

at each epoch as shown in Figure 7. From these, it is em-

pirically evident that the distance metric proposed for loss

function in Section 2.2 contributes significantly to the over-

all model performance, as it consistently outperformed the

one based on the standard l2 − norm. Figure 8 reports

the percentage performance improvement in mAP and F1
score while using max−norm over l2−norm. The error

is an important parameter in terms of model’s convergence

rate. Figure 9 shows the error in the model for l2 − norm

and max − norm. We observed that max − norm out-

performed l2− norm in all the measurements. From these

observations, we concluded that the loss function based on



Figure 7: Comparison between the performance of max −
norm and l2 − norm in terms of mAP and overall F1
score.

Figure 8: Overall improvement in max − norm′s mAP

and F1 score over l2− norm.

max − norm generalized better than that formulated with

l2− norm.

5.4. Ablation study

We attempted to understand the effect of adjacency mat-

rix on the overall model performance. We unplugged the

adjacency matrix A from the discussed architecture, and

recorded the mAP and overall F1 score for the first 5
epochs. Though the difference is not noticeable initially,

as the training progressed, we found the model to perform

better with adjacency matrix at higher epochs. Secondly,

we attempted to find the effect of random initialization of

embedding matrix E as proposed by Li et al. [7] vis-a-

vis initializing E with word embeddings. We found that

initializing E with the embedding matrix showed 3.64%
improvement in mAP and 7% improvement in F1 score

initially. This noticeable improvement gradually decreased

Figure 9: Training and validation error between standard

metric and max− norm.

with epochs though never converged to zero. So, based on

all these observations, we concluded that it is better to ini-

tialize E with word embeddings.

6. Conclusion and future work

In this paper, we analysed sentiment label data for ad-

vertisements in an unsupervised manner, and proposed a

distance metric for the loss function based on the analysis.

We reported an improvement over the state-of-the-art res-

ults reported by Zhang et al. [17] in predicting sentiments

owing to the use of a graph convolutional model along with

word embeddings. We discussed the effectiveness of graph

convolution in exploiting pair-wise semantic relation in the

sentiment labels. We also conducted experiments on data-

sets derived based on the distribution of the ‘creative’ senti-

ment, and reported the contribution of the same to the over-

all prediction performance. We believe that extending the

sentiment labels to a larger space with semantic relation-

ships using word embeddings may find utility in annotat-

ing advertisement with correct multiple emotions. We also

showed, with limited experimentation, that semantic em-

bedding of unseen labels in our model even in the absence

of training data, can help in prediction of these labels.

As future work, we plan to apply our work on unseen

labels to practical use-cases using zero-shot learning as pre-

scribed by Xian et al. [16]. We also would like to examine

the validity of ‘creative’ sentiment annotation, and come up

with an improved dataset derived from the one used in this

paper.
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