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Abstract

Automatic understanding of facial behavior is hampered

by factors such as occlusion, illumination, non-frontal head

pose, low image resolution, or limitations in labeled train-

ing data. The EmotioNet 2020 Challenge addresses these

issues through a competition on recognizing facial action

units on in-the-wild data. We propose to combine multi-task

and self-training to make best use of the small manually /

fully labeled and the large weakly / partially labeled train-

ing datasets provided by the challenge organizers. With our

approach (and without using additional data) we achieve

the second place in the 2020 challenge – with a perfor-

mance gap of only 0.05% to the challenge winner and of

5.9% to the third place. On the 2018 challenge evaluation

data our method outperforms all other known results.

1. Introduction

The challenge was run on the EmotioNet database [2],

which comprises (1) a training set of about 944k samples,

which were automatically labeled with 12 facial Action

Units (AUs), (2) an optimization set (opt set) of about 25k

samples, which were manually labeled with 23 AUs – the

same AUs that appear in the test set (listed in Section 3) –,

and (3) a validation and a test set of about 107k and 218k

images respectively, which were manually labeled with the

23 AUs and used to evaluate the approaches of the challenge

participants. Each participant had five submissions on the

validation and one submission on the test set. The used per-

formance measure, called final ranking score, is the mean

of the accuracy and the F1-score.

Our approach for recognizing AUs involves two ideas

that are novel in this context: (1) Multi-task learning,

which here means using two output neurons per AU, one

for each of the training subsets. Even if labels of two train-
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Figure 1. Example images of the EmotioNet dataset. Left: Align-

ment for expression AUs. Right: Alignment for pose AUs.

ing subsets have the same intended meaning, like a specific

AU, there may be labeling biases or differences in labeling

quality, especially if some data have been labeled by an al-

gorithm. Using multi-task learning may help to better cope

with these issues and still benefit from all available data. (2)

Self-training [9] means that a teacher model is trained on a

labeled dataset and used to predict pseudo-labels on a larger

unlabeled (or in our case weakly / partially labeled) dataset.

Afterwards, a student model is trained using both datasets

(with manual labels and pseudo-labels). Introducing noise

in the training of the student model (e.g. by data augmen-

tation and dropout) facilitates to learn beyond the teacher’s

knowledge [9].

2. Methods

Preprocessing: We use the face detection, landmark lo-

calization, and head pose estimation of OpenFace [1] (fol-

lowing suggestions of [8]). To reduce the number of faces

not detected (for which we output AU absence in the chal-

lenge evaluation), we additionally run RetinaFace [4] and

the landmark localization of Bulat and Tzimiropoulos [3]

on the images for which OpenFace failed. We then apply

the OpenFace face registration approach, which is based on

a stable subset of 68 landmarks, without masking out con-

text. We use two different “zooms” as illustrated in Fig. 1:

The one with more facial details is used for the expression
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AUs, the other with more context is used for the head pose

AUs (which are defined relatively to the body, not the cam-

era view). Both have the resolution 240×240, but are fed

into two distinct CNN models.

As we will see in the experiments, the manually labeled

optimization dataset is a better source for supervised learn-

ing than the larger but automatically (weakly) and incom-

pletely labeled training set. Thus, and to get more validation

attempts for selecting and tuning models, we split the opt

set: 20% of the images are used as a validation set (called

opt-val set) and the remaining 80% are used as training data

(called opt-train set).

Convolutional Neural Network (CNN) Architectures:

We use three architectures: (1) a self designed straight for-

ward CNN which we call OwnNet, (2) MobileNetV3 (large)

[5], and (3) EfficientNet-B0 [6]. With all networks we use an

input resolution of 224×224×3. OwnNet-w has a variable

width factor w and seven 2D convolution layers (Conv),

each followed by batch normalization and ReLU. The first

Conv has 4w output channels. After each Conv until the

fifth, we apply a 3×3 max-pooling with stride 2 and double

the output channels of the next Conv. The last two Conv

have 128w output channels and are followed by global av-

erage pooling. In all networks we use a dropout of 0.5 in

front of the final dense output layer, which is activated with

the sigmoid function. For the head pose networks (AU 51-

56) we additionally feed the three head orientation angles

from OpenPose (or the mean pose to fill missing values)

into a dense layer (1024 neurons, ReLU) and concatenate

its outputs with the CNN outputs before the final dense

layer. MobileNetV3 and EfficientNet-B0 models are fine-

tuned starting from the pretrained model provided in the

TensorFlow SLIM and TPU repositories, respectively. The

OwnNet models are trained from scratch using the default

Xavier initialization.

Training: We only train multi-label CNNs, basically with

17 AU labels / output neurons for the expression CNNs and

6 for the pose CNNs. However, in what we call multi-task in

the following, we have one output per AU and dataset, e.g.

we have one output for AU 1 of the opt-train set and one

for AU 1 of the training set if we train with both datasets.

For prediction we always use the outputs trained with the

opt-train set, which is more accurately labeled, but follow-

ing the multi-task idea, the performance can benefit from

adding the huge 944k samples training set because it helps

to learn better features. With a batch of N samples and a

CNN with M outputs the loss is calculated as:

L(y, ŷ) =

N∑

n=1

M∑

m=1

λm · wm(yn,m) · l(yn,m, ŷn,m), (1)

with y being the target label, ŷ the prediction, λm a label-

specific weight, and l(y, ŷ) the binary cross-entropy. The

λm-values are tuned to adjust the training speed of the dif-

ferent AUs in order to avoid that some AUs are already

overfitting while others are still underfitted. For each la-

bel there is a class-dependent weighting function wm(y),
which zeros the loss for missing labels (unknown class) and

reduces the negative impact of the class imbalance, which

is common in AU recognition [7]. For this purpose, wm(y)
weights down the majority class samples and weights up the

minority class samples following the imbalancing damp-

ing idea of [7] (with α = 0.5 for the expression AUs and

α = 0.7 for the pose AUs). All weights are normalized to

not increase the average gradient length. The loss is opti-

mized with stochastic gradient descent. We use a batch size

of 16 and assemble the batches by equally sampling from

the datasets used for training. We apply early stopping with

a fixed number of epochs (OwnNet 500k, MobileNetV3

150k, EfficientNet-B0 300k) and start with a learning rate

of 0.1 (expression CNN) / 0.01 (pose CNN), reducing it by a

factor of 0.33 after half and three quarters of the iterations.

For data augmentation we use random cropping, horizon-

tal flipping, brightness and contrast adjustments, cutout, as

well as occasional downscaling and grayscale conversion.

Additionally, label smoothing (0.2) and weight decay (4e-

6) are used.

Self-Training: Inspired by [9] we use self-training to ben-

efit from the large 944k weakly / partly labeled training set:

We first train a model on the fully labeled opt-train set and

apply it to predict pseudo-labels on the training set. Af-

terwards we train a second model using both, the opt-train

set (with manual labels) and the training set (with pseudo-

labels). This way, the first model acts as a teacher and the

second as a student. In a second iteration, the student model

can be used to update the pseudo-labels and train a second

generation student model.

Ensemble: To improve results further we combine the

predictions of several well-performing student models in

heterogeneous ensembles. The models differ regarding the

pseudo-labels used for training and the CNN architectures.

We fuse the predictions by calculating the mean of the mod-

els’ output scores before rounding the resulting scores for

the final decision.

3. Experiments

Image Alignment: To analyze the impact of more de-

tails vs more context, we trained one common OwnNet8

model for all 23 AUs with the close-up view alignment and

one with the more-context view (left and right in Fig. 1).

The expression AUs performed better with the close-up



Figure 2. Per-AU final ranking scores on the opt-val set: OpenFace-Baseline and OwnNet8-Baseline (see text), the best teacher model T.1

(only trained on optimization set), the best student model A.2, and the fusion model A+B (mean score of all A and B models).

# Model Score

T.0 OwnNet3 teacher (opt-train only) 0.7531

-

�

OwnNet8 student 0.7647

-

�

EfficientNet-B0 student 0.7661

T.1 OwnNet8 teacher (opt-train only) 0.7637

B.1

�

MobileNetV3 student 0.7680

A.1

�

EfficientNet-B0 student 0.7699

-

�

EfficientNet-B0 student 0.7694

-

�

MobileNetV3 student 0.7671

-

�

OwnNet8 student 0.7666

- MobileNetV3 teacher (opt-train only) 0.7518

T.2 MobileNetV3 teacher (opt-train and training set) 0.7603

-

�

MobileNetV3 student 0.7623

-

�

EfficientNet-B0 student 0.7666

B.2

�

EfficientNet-B0 student 0.7674

A.2

�

OwnNet8 student 0.7706

-

�

OwnNet8 student (no multi-task) 0.7634

- EfficientNet-B0 teacher (opt-train only) 0.7602

T.3 EfficientNet-B0 teacher (opt-train and training set) 0.7609

A.3

�

OwnNet8 student 0.7684

B.3
�

MobileNetV3 student 0.7680

- Fusion A (mean score of A.1, A.2, A.3) 0.7767

- Fusion B (mean score of B.1, B.2, B.3) 0.7754

- Fusion A+B (mean score of all A and B) 0.7800

Table 1. Final ranking scores on the opt-val set. Indentation and

arrows show the teacher-student relation. T.* are identifiers of the

teacher models, A.* of the best student models in the category, B.*

of the second best student models. All student models have been

trained on the opt-train set (with manual labels) and the train-

ing set (with pseudo-labels generated by the teacher model) with

multi-task learning (if not denoted differently).

view (mean: 0.784 vs 0.772) and the head pose AUs with

the more-context view (mean: 0.554 vs 0.528). Thus, we

trained two CNNs in the following as mentioned in Sec. 2:

one with with close-up view images for expression AUs and

one with more-context view for pose AUs.

Multi-Task Self-Training: Table 1 shows validation re-

sults obtained on the opt-val set. Some early teacher models

(OwnNet T.0 and T.1) were trained on the opt-train set only,

without using the 944k samples of the official training set.

After using multi-task learning for the student models, we

also trained teacher models with multi-task learning (using

the opt-train set and the training set with the labels provided

by [2]). These performed better than the respective teacher

models trained on only the opt-train set (compare T.2 and

T.3 with the respective line above). All student models out-

perform their respective teacher models, except the second

generation student models learning from the pseudo-labels

provided by the first generation student A.1. So the self-

training generally improves the results at least for the first

iteration. Comparing A.2 with the row below, which has

been trained without multi-task using the same output neu-

rons for the pseudo-labels of the 944k training set and the

manually labeled opt-train set, we see that multi-task learn-

ing is beneficial in combination with self-training, as the

pseudo-labels are still less accurate than the manual labels.

Ensemble: The last three rows of Table 1 list the results

of combining the outputs of several models. All individual

models are outperformed by the three tested ensembles. The

fusion of all A and B models performs best.

Per-AU comparison: The challenge task was to recog-

nize 23 Action Units (AUs). Fig. 2 shows the per-AU

results of several models, including two baselines: The

OpenFace-Baseline tests the expression AU output as pro-

vided by OpenFace [1]. The pose AUs (51-56) were pre-

dicted with an RBF-SVM trained on the head orientation

angles provided by OpenFace. The OwnNet8-Baseline is

similar to T.1, but trained with the 944k training set and the

labels automatically created by [2] (instead of the smaller

opt-train set with manual labels). The comparison (1) of

OpenFace with the others shows the benefit of our CNN

approach compared to OpenFace’s classical approach con-

sisting of feature extraction (HOG + landmarks / head pose)

followed by SVM; (2) of OwnNet8-Baseline with T.1 shows

that training with less but high quality labels in this case

is better than relying only on many more but weakly la-

beled samples; and (3) of T.1 and A.2 shows that especially

the head pose AUs (51-56) significantly benefit from self-

training. Fusion A+B consistently improves results com-

pared to A.2, but the benefits differ significantly between

AUs.

EmotioNet Challenge Results: Table 2 summarizes the

final ranking scores obtained on the official EmotioNet

2020 and 2018 Challenge validation and test sets. For our

final submission, we retrained all student models involved



Challenge 2020 Challenge 2018

Model / Participant Val. Set Test Set Val. Set Test Set

Our models

- Teacher T.0 0.7143 - 0.7754 -

- Teacher T.1 0.7213 - 0.7828 -

- Student A.1 0.7324 - 0.7873 -

- Fusion A+B 0.7448 - 0.8011 -

- Fusion A+B* 0.7452 0.7301 0.8014 0.7734

Competitors 2020

- TAL 0.7460 0.7306 - 0.7722

- UCAS-NTU 0.6363 0.6711 - 0.7377

- UCAS-alibaba - 0.6053 - 0.6428

Best results 2018

- PingAn-GammaLab - - 0.7855 0.7553

- VisionLabs - - 0.6788 0.6718

- MIT - - 0.5995 0.6711

- Univ. of Washington - - 0.6645 0.6300

Table 2. Final ranking scores obtained on the validation and test

set of the EmotioNet 2020 Challenge (and its 2018 predecessor):

Our results, results of the best 2020 competitors, and of the best

2018 challenge participants.

Challenge 2020 Challenge 2018

Participant Accuracy F1 Accuracy F1

TAL 0.9147 0.5465 0.9499 0.5945

Univ. of Magdeburg 0.9124 0.5478 0.9458 0.6009

UCAS-NTU 0.9013 0.4410 0.9485 0.5268

PingAn-GammaLab - - 0.9446 0.5659

VisionLabs - - 0.9207 0.4229

MIT - - 0.9298 0.4125

Table 3. Accuracies and F1-scores of the best participants on the

test set of the EmotioNet 2020 and 2018 Challenges. We (Univ. of

Magdeburg) perform better in F1, TAL is better in accuracy.

in the A+B fusion with the whole opt set instead of the opt-

train subset to benefit from 5k additional manually labeled

samples. This model is denoted “Fusion A+B*” in Table 2.

The table also includes our prior validation attempts and the

best results of the other challenge participants. Our “Fu-

sion A+B*” model achieved the second place in the 2020

challenge, with a test performance that is only 0.05% worse

than the winner (TAL) but 5.9% better than the third place

(NCAS-NTU). On the 2018 challenge data (12 AUs; with-

out AU 10, 15, 18, 24, 28, and 51-56), we outperform

all other known results, including the 2018 challenge win-

ner (PingAn-GammaLab) and the 2020 challenge winner

(TAL). Table 3 compares the mean accuracies and F1 per-

formances of the best 2020 and 2018 challenge participants.

4. Conclusion

In this paper we described our approach for facial Ac-

tion Unit (AU) recognition in the wild, which uses: (1) self-

training, (2) multi-task learning, (3) an heterogeneous en-

semble involving three CNN architectures, (4) a weighted

loss for handling data imbalance, and (5) a more-detail

face alignment for expression AUs and a more-context face

alignment for head pose AUs. With this approach we

reached the second place in the EmotioNet 2020 Challenge

(with only a small margin of 0.05% to the winner), with-

out using additional training data next to EmotioNet dataset

provided by the challenge organizers. Further, we achieved

the best result reported so far on the EmotioNet 2018 Chal-

lenge data.

Several experiments showed that self-training can im-

prove AU recognition if a large amount of unlabeled data is

available. This is promising for future works, since acquir-

ing FACS labels is expensive and unlabeled data is avail-

able virtually indefinitely. We can also recommend to apply

multi-task learning if multiple datasets are combined and

the datasets’ AU labels differ regarding their quality.
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