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Abstract

In this paper, we tackle a fully unsupervised super-

resolution problem, i.e., neither paired images nor ground

truth HR images. We assume that low resolution (LR) im-

ages are relatively easy to collect compared to high resolu-

tion (HR) images. By allowing multiple LR images, we build

a set of pseudo pairs by denoising and downsampling LR

images and cast the original unsupervised problem into a

supervised learning problem but in one level lower. Though

this line of study is easy to think of and thus should have

been investigated prior to any complicated unsupervised

methods, surprisingly, there are currently none. Even more,

we show that this simple method outperforms the state-of-

the-art unsupervised method with a dramatically shorter la-

tency at runtime, and significantly reduces the gap to the

HR supervised models. We submitted our method in NTIRE

2020 super-resolution challenge and won 1st in PSNR, 2nd

in SSIM, and 13th in LPIPS. This simple method should be

used as the baseline to beat in the future, especially when

multiple LR images are allowed during the training phase.

However, even in the zero-shot condition, we argue that this

method can serve as a useful baseline to see the gap be-

tween supervised and unsupervised frameworks.

1. Introduction

Single image super-resolution (SISR) is a longstanding

task in computer vision area, which focuses on recovering

a high-resolution (HR) image from a single low-resolution

(LR) image. Since this task has to solve a one-to-many map-

ping problem, building an effective SISR method is chal-

lenging. Despite the difficulties, thanks to the developments

of deep learning and large-scale datasets with high qual-

ity images, many learning-based SR methods [2, 5, 12, 14,

15, 29] have recently shown prominent performance gains

over traditional optimization-based approaches [23]. With

the power of the deep neural network, they enjoy the dra-
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Figure 1. NTIRE 2020 Super-resolution challenge (×4) [18] im-

ages (1st column). ZSSR [21] with BM3D [4] results (2nd col-

umn). Our SimUSR with BM3D results (3rd column). Ground

truth HR image (4th column) is not available in this setup. Our

method achieves superior SR performance for all the cases.

matic boost of the SR performance by stacking a lot of lay-

ers [29] or widen the network [15].

While most of the deep learning-based SR methods

heavily rely on a large number of image pairs (super-

vised SR), unfortunately, such a large-scale and high qual-

ity dataset is not always accessible, especially when we deal

with a real environment. A few recent works have proposed

a workaround solving an unpaired SR task [7, 16, 27]. Since

this setup does not require full supervision of LR and HR

image pairs but images from each domain, it is a more real-

istic scenario for many real-world applications. However, in

many applications (e.g., medical image), gathering HR (or

clean) images itself requires a lot of efforts or sometimes

even impossible.



To address this, Shocher et al. [21] have proposed a fully

unsupervised method, called zero-shot super-resolution

(ZSSR), which performs both training and testing at run-

time using only a single LR test image. By learning a map-

ping from a scale-down version of the LR image to itself,

ZSSR learns to exploit internal image statistics to super-

resolve the given image. It outperformed the previous inter-

nal SR methods [11] in a huge margin with a high flexibility

because the model can easily be adapted to any unknown

degradation or downsample kernel.

However, ZSSR has several drawbacks. 1) It requires an

online optimization procedure at runtime. Since it needs at

least 1K steps (both forward and backward propagation),

the latency of the ZSSR is extremely high. 2) It is difficult to

benefit from a large capacity network. Because ZSSR has to

perform online training on a single image, the model should

be able to quickly adapt to the given image while avoid-

ing the overfitting issue, which limits ZSSR to use a shal-

low network architecture. 3) When noises are present in LR

images, ZSSR shows deteriorated performance because the

model can never learn to denoise, and even after adding a

denoising module, it suffers from its restrictive framework.

4) It does not utilize any prior information at all, which is

an excessively restrictive constraint. While collecting LR-

HR image pairs are difficult, acquiring LR images only is

relatively easy and feasible in many real-world scenarios.

Since the internal-based SR methods generally show worse

SR performance than the external-based models, it is desir-

able to exploit every available prior information as long as

it stays in the unsupervised regime.

To mitigate these limitations, we propose a simple base-

line for unsupervised SR (SimUSR) that relaxes the ZSSR

into a supervised setting. Instead of using a single image,

our SimUSR make pseudo-pairs using multiple LR images.

To correctly guide the model, we employ BM3D [4] to re-

move noises from the LR images when preparing the pairs.

Though these are very simple corrections, they bring several

benefits: our framework can now exploit every benefit of su-

pervised learning. Thanks to this pseudo-supervision, am-

ple prior information enables a model to reduce the perfor-

mance gap between the unsupervised (only LR is available)

and the supervised setting (HR is available). SimUSR can

utilize recently developed network architectures and tech-

niques that provide huge performance gains (Figure 1). In

addition, since the online training is not necessary, SimUSR

can significantly reduce its runtime latency as well. The dif-

ferences of the supervised SR, ZSSR, and SimUSR are sum-

marized in Figure 2.

We argue that our assumption is fairly practical while

still remaining under the unsupervised learning setup; we

only use LR images. Our approach is meaningful in that it

investigates the blind spot of the field that should have been

addressed but overlooked.

Our contributions are summarized as follows:

1. We propose a simple but strong baseline for unsuper-

vised SR (SimUSR) (NTIRE Challenge: 1st in PSNR,

2nd in SSIM, and 13th in LPIPS).

2. By casting the unsupervised SR into the supervised

SR, SimUSR provides stable offline learning with a

dramatically decreased latency at runtime.

3. We provide a comprehensive analysis on the effect of

using various SR networks and techniques. By taking

the state-of-the-art techniques and SR networks as our

backbone, our method shows further enhancements.

2. Related work

Supervised Super-resolution. Recently, deep learning-

based super-resolution models [2, 5, 12, 15, 29] have shown

a dramatic leap over the traditional algorithms [23]. Most of

the successful deep SR approaches fall into the supervised

setting, where a network is trained on an external dataset

having low- and high-resolution pairs. As long as the size

of the dataset and the network capacity are large enough, it

is well known that the supervised approach provides a better

chance to enhance the SR performance [15, 29]. However, it

is also true that their performance and generalizability dete-

riorate dramatically when the dataset size is small and when

there exists mismatch between training and testing environ-

ments [26, 6]. To mitigate this issue, recent approaches fo-

cus on blind SR, which assumes that there exist LR and HR

pairs but with unknown degradation and downsample ker-

nel [9]. Unlike the aboves, our proposed method can train a

network even when there are no LR and HR pairs.

Unpaired Super-resolution. A few recent works have ad-

dressed an unpaired SR task [7, 16, 27] that does not assume

a paired setting. Since this setup does not require a full su-

pervision, it is a more realistic scenario for many real-world

applications. Most of the methods employ generative adver-

sarial framework [8] so that a generator learns to map HR

images into their distorted LR version. Using this gener-

ated pairs, they train an SR network in a supervised setting.

However, in practice, there are cases where HR images are

not even available, which requires a fully unsupervised SR.

Unsupervised Super-resolution. Though the unpaired SR

is sometimes considered as an unsupervised SR, we first

clarify that unsupervised SR should strictly denote the task

without any supervision neither paired images nor HR im-

ages. Under this definition, there are only a handful of stud-

ies [24, 10, 21] and zero-shot super-resolution (ZSSR) [21]

falls into this. ZSSR uses LR sons that are downsampled im-

ages of the given LR test image (a.k.a LR father). Using this

pseudo pairs, they train the model in a supervised manner

but only exploiting the internal statistics of the given test
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Figure 2. Schematic comparison of the supervised SR, ZSSR [21], and our SimUSR. We analyze current SR approaches in terms of the

training dataset, offline phase, and online phase. The offline phase is operated beforehand the user’s inference request (i.e. training process

of the supervised SR). Online phase denotes runtime. (1st row) While supervised SR requires the LR-HR pairs, ZSSR and SimUSR use

LR images only, making them more applicable to the real-world SR scenarios. ZSSR utilizes only a single test LR image and performs both

optimization and inference at runtime. (2nd, 3rd rows) On the other hand, SimUSR exploits additional LR images and follows a similar

procedure to the supervised setup, where the model is first trained offline and inference is done online.

image. Because every procedure is performed at runtime,

ZSSR suffered from high latency. To overcome this, Soh et

al. [22] have proposed meta-transfer ZSSR (MZSR). They

added a meta-transfer learning phase to exploit the infor-

mation of the external dataset, which decreased the number

of the steps required at runtime. Still, to quickly optimize

the network, MZSR was limited to use a simple 8-layer

network. Unlike the aforementioned methods, our SimUSR

can benefit from the larger capacities of recently developed

SR models and short latency at runtime by removing the on-

line update phase, while remaining in the fully unsupervised

regime in that it only utilizes the LR images.

3. Zero-shot super-resolution

The zero-shot super-resolution (ZSSR) [21] tackles the

fully unsupervised SR task, where only low-resolution im-

ages (ILR) are available. To do that, ZSSR performs both

optimization and inference at runtime using a single test im-

age (Figure 2). During the online optimizing phase, they use

an test input image (ILR) as LR father (I
father
LR ) and gen-

erates LR son (IsonLR ) by downsampling LR father with an

arbitrary kernel k. By doing so, they create pseudo-pair

(I′LR, I
′

HR) = (IsonLR , I
father
LR ),

where I
son
LR = ILR ↓s,k and I

father
LR = ILR. Here, ↓s,k

denotes a downsampling operation with an arbitrary kernel

k and scale factor s.

With this pseudo-pair, optimizing a SR model now be-

comes a standard supervised setting. The core idea of ZSSR

is to make the model learn internal image-specific statistics

of a given test image during the online training. For infer-

ence, it generates final SR output (ISR) by feeding ILR to

the trained image-specific network.

4. Our method

We introduce a simple baseline for a fully unsupervised

super-resolution task (SimUSR). Similar to the ZSSR [21],

our method does not use any HR images for training the

network. However, we slightly relax the constraint of ZSSR

and assumes that it is relatively easy to collect the LR im-

ages, {ILR1
, . . . , ILRN

}, where N is the number of LR im-

ages. This allows our method to exploit multiple pseudo-

pairs:

(I′LRk
, I′HRk

) = (IsonLRk
, I

father
LRk

), for k = 1 . . . N.

Here, we generate I
son
LR and I

father
LR with the same protocol

that used in ZSSR.



Table 1. Quantitative comparison (PSNR/SSIM) on the bicubic SR (scale ×4) benchmark datasets. We boldface the best performance of

both supervised SR and ours.

Dataset
Supervised SR

ZSSR
SimUSR (Ours)

CARN RCAN EDSR CARN RCAN EDSR

Set5 32.13/0.8937 32.63/0.9002 32.46/0.8968 31.13/0.8796 31.94/0.8908 32.40/0.8962 32.37/0.8955

Set14 28.60/0.7806 28.87/0.7889 28.80/0.7876 28.01/0.7651 28.44/0.7786 28.71/0.7860 28.70/0.7855

B100 27.58/0.7349 27.77/0.7436 27.71/0.7420 27.12/0.7211 27.49/0.7324 27.68/0.7394 27.66/0.7389

Urban100 26.07/0.7837 26.82/0.8087 26.64/0.8033 24.61/0.7282 25.70/0.7740 26.45/0.7986 26.31/0.7940

Manga109 - 31.22/0.9173 31.02/0.9148 27.84/0.8657 30.03/0.9014 30.73/0.9124 30.59/0.9107

Table 2. Quantitative comparison (PSNR) on SR (scale ×4) task

with mixture of augmentation (MoA) [26]. We show the effect of

MoA on our SimUSR and supervised SR (SSR) model. Note that

SSR results are provided to show the improved upper limit again.

Type Model Set14 Urban Manga

SimUSR
RCAN

28.80 26.60 30.85
(+MoA)

SSR
RCAN

28.92 26.93 31.46
(+MoA)

Though we now lose the generalizability over a single

test image, compared to the cost of the relaxation, the ben-

efits are very huge: we can fully enjoy the advantages of

the supervised learning framework. More specifically, using

these multiple pairs, we can now train a network offline and

perform inference online as any supervised model usually

does. Our method can be implemented by a simple modi-

fication of the supervised SR approach, it gives high flexi-

bility and extensibility. For example, unlike the ZSSR and

MZSR [22], which inevitably use shallow networks, we can

use any off-the-shelf SR network and technique available,

such as data augmentation [26] (Section 5.1). In addition,

since the runtime of our SimUSR only depends on the net-

work’s inference speed, this also gives a huge acceleration

in terms of the runtime latency (Section 5.3).

5. Experiments

In this section, we describe our experimental settings and

compare the performance of our method with the supervised

SR models and the ZSSR [21]. In Section 5.1, we analyze

how much our SimUSR improves the performance over the

ZSSR and how far we are left to reach the supervised per-

formance. Then, in Section 5.2, we apply our method on the

NTIRE 2020 SR dataset [18].

Baselines. We use ZSSR [21] as our major baseline method.

However, since ZSSR and SimUSR are not designed to han-

dle noisy cases, we attach BM3D [4] as a pre-processing

step. For our SimUSR, we use various models as our

backbone network. We use three SR models: CARN [2],

RCAN [29] and EDSR [15]. Each of the model have differ-

ent numbers of parameters from 1.1M to 43.2M (million).

Dataset and evaluation. We use the DF2K [1, 15] dataset

for the bicubic degradation SR task. However, unlike the

Lim et al. [15], we only use the LR images when we train

the models. For evaluation, we use Set5 [3], Set14 [25],

B100 [19], Urban100 [11], and Manga109 [20] for bicubic

SR task. To evaluate our method on the real-world SR task,

we use NTIRE 2020 dataset [18]. This dataset is generated

with unknown degradation operation to simulate the realis-

tic image processing artifacts. In addition, only non-paired

LR and HR images are given so that the model should be

trained via unsupervised setup. Same as DF2K, we do not

use any of HR images at the training phase. We use PSNR

and SSIM to measure the performance. We calculate both

metrics on RGB channels for the NTIRE dataset while only

using the Y channel for the bicubic SR task.

5.1. Bicubic super­resolution

Here, we compare SimUSR with the ZSSR and the su-

pervised SR models. Though the classical bicubic SR task

is not our main task, it provides a testbed to analyze every

model simultaneously. This also shows how much gap there

exists between the supervised and unsupervised frame-

works. For fair comparison, we report our performance us-

ing different SR networks as our backbone (CARN [2],

RCAN [29], and EDSR [15]). The quantitative comparison

on various benchmark dataset is shown in Table 1. Exploit-

ing the additional LR images, our SimUSR shows large im-

provements over the ZSSR in every case.

More interestingly, by exploiting the recent develop-

ment of supervised SR techniques, such as data augmen-

tation, SimUSR further reduces the gap toward the super-

vised learning models (Table 2). Note that, while the super-

vised models can use HR images as ground truth, SimUSR

only uses LR images. Therefore, the model should gener-

alize over the learned scale and pixel distributions. Toward

this, we used mixture of augmentation (MoA) [26], which

is a recent data augmentation method for low-level vision

task. MoA is known to not only improve the performance

but also enhance the generalization power of the model. By

employing the MoA, which ZSSR does not benefit from (re-

sults not shown), our performance again increases by 0.09

dB (Set14), 0.15 dB (Urban100), and 0.12 dB (Manga109),
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Figure 3. Qualitative comparison of using our proposed method on the various benchmark datasets which are generated by the Bicubic

downsample kernel. ∆ is the absolute residual intensity map between the network output and the ground-truth HR image.



Table 3. Quantitative comparison (PSNR/SSIM) on the NTIRE

2020 dataset [18]. We analyze the effect of denoising (w/ BM3D)

and affine transformations (w/o Affine). We also analyze the ad-

vantage of applying SimUSR.

Method
w/ w/o

PSNR / SSIM
BM3D Affine

ZSSR

25.82 / 0.6898

X 26.45 / 0.7320

X X 26.55 / 0.7344

SimUSR+CARN X X 27.19 / 0.7520

SimUSR+RCAN X X 27.24 / 0.7550

SimUSR+EDSR X X 27.28 / 0.7554

which are upto 3.63 dB (Manga109) improvements over the

ZSSR. Therefore, from now on, we use MoA with SimUSR

by default unless it is specified.

The qualitative results also shows the superior results

of SimUSR over the ZSSR (Figure 3). In all the cases,

SimUSR benefits from the increased performance by us-

ing external LR images. This tendency is clearly shown in

the residual intensity map between the SR and HR image.

For example, our method (with any backbone) successfully

restores the replicating patterns (1st, 3rd, and 4th rows)

while ZSSR has difficulty of recovering distortions. Note

that ZSSR is supposed to better learn the internal statistics

by repeatedly seeing the same LR image patches, which is

in principle good at recovering replicating patterns.

5.2. Real­world super­resolution

In this section, we compare ZSSR [21] and our method

on the NTIRE 2020 dataset [18]. We found two observa-

tions that 1) ZSSR suffers from noise, and 2) the data aug-

mentation methods, which are used in the original ZSSR,

actually harm its SR performance (Table 3). Based on this

observation, we decided to attach BM3D [4] before the

ZSSR network optimization. For a fair comparison, we also

use BM3D with our SimUSR. Regarding the data augmen-

tation, we suspect that this is due to ZSSR network’s small

capacity and the severe spatial distortion by applying strong

affine transformations [26].

By adding an ad-hoc denoiser (BM3D), ZSSR perfor-

mance is dramatically improved by 0.63dB and 0.0422 in

PSNR and SSIM, respectively. And by discarding affine

augmentation, we can further enhance the ZSSR to achieve

26.55dB in PSNR (3rd row). With the same setting, our pro-

posed SimUSR outperforms the ZSSR in a huge margin.

For example, SimUSR with the lightweight SR network,

CARN [2], already boosts the SR performance of the ZSSR

by 0.64dB and 0.0176 in PSNR and SSIM, respectively.

Moreover, thanks to the high flexibility of our method, we

can easily improve the performance by simply changing the

backbone to any other SR network. For instance, we get

Table 4. The number of the parameters and runtime comparison of

480×320 LR images with scale factor ×4.

Method ZSSR
SimUSR (Ours)

CARN EDSR RCAN

# Params. 0.23M 1.14M 15.6M 43.2M

Runtime 300.83s 0.12s 1.93s 1.07s

another 0.09dB improvement in PSNR by just replacing a

backbone network from CARN to RCAN [29]. Figure 4

shows the qualitative comparison between the ZSSR and

our method with different backbone networks. Similar to

the bicubic SR task, SimUSR (with any backbone) provides

better restoration results across various cases.

5.3. Execution time

In this section, we evaluate and compare the latency of

ZSSR and our SimUSR (Table 4). Note that we benchmark

the runtime speed on the environment of NVIDIA TITAN X

GPU by generating a 1080p SR image on scale factor ×4.

Although ZSSR has only 0.23M parameters, it requires a

huge amount of runtime (300.83s) since it has to perform

optimization and inference at runtime. In contrast, our pro-

posed SimUSR only takes less than two seconds (1.93s)

even if we use a heavy SR network (EDSR) as a backbone

model. Comparing to the ZSSR, our method is at least 155

times faster than the ZSSR and if we use a lightweight SR

network (CARN), 2,500 times faster (0.12s vs. 300.83s).

To embed the SR method to the real application, it is

obvious that both SR performance and the latency are im-

portant aspects (e.g. SR system for the streaming service).

However, the above analysis reflects that although ZSSR

has nice properties, which does not need an HR image, ap-

plying it to the real application is challenging because of its

high latency. On the other hand, our approach can meet the

criteria that real applications demand (on both the perfor-

mance and speed) by taking advantage of supervised SR. In

addition, if necessary, we can further reduce the latency by

replacing the backbone to more lightweight network thanks

to the flexibility of our method.

5.4. NTIRE 2020 super­resolution challenge

This work is proposed to participate to the NTIRE 2020

super-resolution challenge [18]. This challenge aims to de-

velop an algorithm for the real-world SR task similar to the

prior challenge in AIM 2019 [17]. However, unlike the pre-

vious challenge, there exist no LR and HR image pairs in

the dataset akin to the setup that we experiment in Sec-

tion 5.2. We submitted our SimUSR to the first track (image

processing artifact), where the clean image is degraded by

the unknown image artifact and downsample kernel. In this

challenge, models are evaluated using the PSNR, SSIM and

LPIPS [28] metrics.
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Figure 4. Qualitative comparison of using our proposed method on the NTIRE 2020 dataset [18]. ∆ is the absolute residual intensity map

between the network output and the ground-truth HR image.
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Figure 5. Performance comparison of each entry in the NTIRE

2020 super-resolution challenge [18] (track one). Our proposed

SimUSR is marked as a red circle. Our method achieves the best

PSNR with a reasonable LPIPS (13th rank).

Final result on the test dataset is shown in Figure 5 and

Table 5. As shown in Figure 5, our method achieves the

best PSNR score among all entries with a reasonable LPIPS

score. Note that since we directly optimize the network us-

ing pixel-based loss, the LPIPS score of our SimUSR is

lower than the rank of PSNR. We also report the challenge

result sorted on the PSNR (Table 5). We get the best PSNR

and second-best on SSIM with the 13th rank of LPIPS.

6. Discussion

In this section we discuss about the limitation of our

method and the future direction.

Limitation. Though the accessibility to multiple LR images

is a mild and reasonable relaxation in many cases, there

are still many applications and domains that cannot resort

on such assumption where collecting the data is very ex-

pensive, e.g., medical imaging. In addition, SimUSR heav-

ily relies on the generalizability of a model over different

scales and pixel distributions, which can cause unexpected

artifacts [26]. Because SimUSR uses bicubic downsampling

to prepare the pseudo pairs, this may also cause an implicit

bias in the SR model during the training. Last but not least, it

is true that SimUSR is a basic approach that one would eas-

ily come up with but overlooked until now. We argue that it

should be by no means a new state-of-the-art but serve as a

reasonable baseline to beat in the future.

Future work. We showed that our SimUSR framework is a

strong baseline but it still has a plenty of room to improve its

performance. For example, we used the BM3D as the pre-

processing module for removing the noise. This pre-module

can be replaced to more effective models [13].

Table 5. Performance comparison of each entry in the NTIRE 2020

super-resolution challenge [18] (track one) sorted on the PSNR.

The number in the parenthesis denotes the rank. Our proposed

SimUSR is ranked the best in PSNR and second-best in SSIM.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Ours 27.09 (1) 0.77 (2) 0.369 (13)

Anonymous 1 27.08 (2) 0.78 (1) 0.325 ( 8)

Anonymous 2 26.73 (3) 0.75 (5) 0.379 (15)

Anonymous 3 26.71 (4) 0.76 (4) 0.280 ( 6)

Anonymous 4 26.54 (5) 0.75 (8) 0.302 ( 7)

Anonymous 5 26.23 (6) 0.75 (7) 0.327 (10)

7. Conclusion

We have introduced a simple but effective baseline for a

fully unsupervised super-resolution task (SimUSR). we first

clarify that unsupervised SR should strictly denote the task

without any access to HR images. While complying with

this definition, we assume that low resolution (LR) images

are relatively easy to obtain in the real-world. Exploiting

multiple LR images, we generated a pseudo-pair dataset of

LR images and their down-scaled version and use this to

train a SR model. This simple conversion allows us to en-

joy the advantages of supervised learning. We demonstrated

that our SimUSR outperforms previous unsupervised SR

method while having very short latency. Moreover, by in-

tegrating the recently developed SR architectures and tech-

niques, we showed that SimUSR successfully close the per-

formance gap between the unsupervised and the supervised

SR methods. Though our approach is simple, we argue that

accessibility to multiple LR images is a legitimate setting

and SimUSR serves as a strong baseline of unsupervised SR

in this regime, which should be investigated prior to consid-

ering other complicated methods.
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