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Abstract

Image dehazing is an ill-posed problem that has been ex-

tensively studied in the recent years. The objective perfor-

mance evaluation of the dehazing methods is one of the ma-

jor obstacles due to the lacking of a reference dataset. While

the synthetic datasets have shown important limitations, the

few realistic datasets introduced recently assume homoge-

neous haze over the entire scene. Since in many real cases

haze is not uniformly distributed we introduce NH-HAZE,

a non-homogeneous realistic dataset with pairs of real hazy

and corresponding haze-free images. This is the first non-

homogeneous image dehazing dataset and contains 55 out-

door scenes. The non-homogeneous haze has been intro-

duced in the scene using a professional haze generator that

imitates the real conditions of hazy scenes. Additionally,

this work presents an objective assessment of several state-

of-the-art single image dehazing methods that were evalu-

ated using NH-HAZE dataset.

1. Introduction

Haze is an atmospheric phenomenon that highly influ-

ences the quality of images captured under such conditions.

In consequence, haze may reduce the performance of var-

ious outdoor applications. Haze is characterized by a high

density of floating particle in the air which reduces signifi-

cantly the image quality in terms of contrast and color shift-

ing.

Image dehazing aims at restoration of image contents af-

fected by the haze. This is an ill-posed problem that has

been solved initially using additional information [18, 37].

Most of the early single image dehazing methods solve the

optical model of Koschmieder [26] by searching for differ-

ent priors that capture statistical properties of the hazy and

non-hazy images [20, 38, 24, 40, 27, 10, 1, 21, 19, 39].

One of the major obstacles in image dehazing is the val-

idation of the proposed methods. Despite of their large

number and variety, the quality of the image dehazing so-

lutions is in many times debatable. Therefore, identifying

their limitations and the new research directions is quite

difficult. The image dehazing field is still lacking standard-

ized benchmarks allowing objective and quantitative per-

formance evaluation of the dehazing techniques. Basically,

a major issue to objectively assess image dehazing perfor-

mance is the absence of reference haze-free images. Col-

lecting pairs of hazy and corresponding haze-free (ground-

truth) images is a burdensome task since both images (haze

and haze-free) are required to be captured under identical

conditions.

Recently, important steps forward have been made

by image dehazing challenges organized in conjunction

with the IEEE CVPR NTIRE workshops [2, 12]. The

NTIRE challenges employed new realistic image dehazing

datasets (with haze and haze-free images): I-HAZE [5], O-

HAZE [8] and DENSE-HAZE [4].

One limitation of these datasets is the common assump-

tion that the haze is homogeneously distributed over the en-

tire scene. In fact, haze distribution has a non-homogeneous

character in many real scenes. Therefore, the existence of

a dataset with non-homogeneous haze is very important for

the image dehazing field.

This work introduces NH-HAZE1 which represents

the first realistic image dehazing dataset with non-

homogeneous hazy and haze-free (ground-truth) paired im-

ages. The non-homogeneous haze has been generated using

a professional haze generator that imitates the real condi-

tions of haze scenes. NH-HAZE contains 55 pairs of im-

ages recorded outdoor. Our new dataset has been employed

by the IEEE CVPR 2020 NTIRE workshop associated chal-

lenge on image dehazing [9], a challenge which attracted

hundreds of registered participants.

Additionally, this work presents a comprehensive evalu-

ation of several state-of-the-art single image dehazing meth-

ods, that were objectively evaluated on our new dataset.

1https://data.vision.ee.ethz.ch/cvl/ntire20/nh-haze/
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Figure 1: NH-HAZE dataset. Five sets of images of the NH-HAZE dataset.

Since NH-HAZE dataset contains ground-truth (haze-free)

images, the analyzed single image dehazing techniques

have been assessed quantitatively using two traditional met-

rics: PSNR and SSIM [42].

2. Related Work

2.1. Image dehazing methods

Image dehazing is an ill-posed problem that has been

solved initially based on additional information such as at-

mospheric cues [18, 32], multiple images captured with po-

larization filters [33, 37], or known depth information [25,

40].

More recently, single image dehazing techniques employ

the optical model of Koschmieder [26] searching for dif-

ferent priors that capture statistical properties of the hazy

and non-hazy images [20, 38, 24, 40, 27, 10, 1, 21, 19, 39].

Tan [38] optimizes the local contrast based on the observa-

tion that the airlight highly influences the edge information

of hazy images. Dark channel prior DCP [24] is based on

the assumption that in non-hazy regions without sky, the

intensity value of at least one color channel within a local

window is close to zero. Color lines [21] and haze-line [13]

priors were built on the observation that the color distribu-

tion impacts the color channels distribution. Color channel

compensation [11] exploits the observation that color im-

ages taken under extreme illumination present low intensity

of at least one color channel.

Another direction of research in image dehazing includes

those methods that restore the visibility of hazy image with-

out assuming the optical model [38, 1, 17]. For instance

local contrast maximization-based methods [38, 40] and

fusion-based techniques [1, 17, 3, 7] shown effectiveness

for single image dehazing, without an explicit transmission

estimation.

The advent of and the advances in the field of deep-

learning led also to competitive learning-based solutions

for image dehazing. DehazeNet [14] takes a hazy image

as input and outputs its medium transmission map that is

subsequently used to recover a haze-free image via atmo-

spheric scattering model. For its training, DehazeNet re-

sorts to data that is synthesized based on the physical haze

formation model. Ren et al. [35] proposed a coarse-to-fine

network consisting of a cascade of convolutional neural net-

work (CNN) layers, also trained with synthesized hazy im-

ages. For a diverse selection of deep learned solutions we

refer the reader to the recent NTIRE dehazing challenges

reports [2, 12, 9].

2.2. Dehazing assessment

Although the progress made in image dehazing is re-

markable, an important problem remains: the evaluation of

the proposed methods. Objective assessment of the dehaz-

ing performance of a given algorithm was limited due to the

absence of reference haze-free images (ground-truth). Col-

lecting pairs of hazy and corresponding haze-free images is

a burdensome task since both images (hazy and haze-free)

are required to be captured under identical conditions.

Due to this limitation, earlier dehazing quality metrics

were restricted to non-reference image quality metrics (NR-

IQA) [30, 31, 36]. Hautiere et al. [23] simply relied on the

gradient of the visible edges. Chen et al. [16] employed

a subjective assessment of enhanced and original images

captured in bad visibility conditions. Choi et al. [17] intro-

duced Fog Aware Density Evaluator (FADE), a blind mea-

sure, which aims to predict the visibility of a hazy scene

from a single image without using a haze-free (reference)

image. Unfortunately, in the absence of a ground-truth im-

age, these blind image dehazing assessment techniques are

not very accurate and therefore have not been generally ac-

cepted by the dehazing community.

A more successful strategy builds upon synthesized hazy



images. The synthetic hazy images have been generated

assuming the simplified optical model. As a result, con-

sidering an image with known depth map (related with the

transmission map of the optical model) the haze effect is

synthesized straightforwardly. Tarel et al. [41] introduced

FRIDA, one of the first synthetic image dehazing datasets.

FRIDA contains 66 pairs of images with the hazy scenes

generated using computer graphics. D-Hazy [6] dataset

uses the images and the depth maps of the Middleburry2

and the NYU-Depth V23 datasets. The haze is synthesized

based on Koschmieder’s optical model [26] assuming a pure

white value of the airlight constant.

RGB-NIR [29] is a relatively small dataset that contains

only 4 sets of hazy, haze-free and NIR ground-truth indoor

images.

The O-HAZE [8] is the first introduced realistic dataset

that contains hazy and haze-free (ground-truth) images. It

consists of 45 various outdoor scenes captured using a pro-

fessional haze generator under controlled illumination. I-

HAZE [5] dataset is similar to O-HAZE but recorded in

indoor environments. I-HAZE and O-HAZE were em-

ployed by the first image dehazing challenge [2] organized

in conjunction with the 2018 IEEE CVPR NTIRE work-

shop4. While O-HAZE and I-HAZE consists of relatively

light and homogeneous haze, DENSE-HAZE [4] is a real-

istic dataset that contains dense (homogeneous) hazy and

haze-free (ground-truth) images. DENSE-HAZE was em-

ployed by the image dehazing challenge [12] at the 2019

IEEE CVPR NTIRE workshop.

Complementary to prior work, in this paper we intro-

duce NH-HAZE, the first realistic image dehazing dataset

with non-homogeneous hazy and haze-free (ground-truth)

images.

3. Recording the NH-HAZE dataset

NH-Haze dataset contains 55 various outdoor scenes

captured with and without haze. NH-Haze is the first de-

hazing dataset that contains non-homogeneous haze scenes.

Our dataset allows to investigate the contribution of the haze

over the scene visibility by analyzing the scene objects ra-

diance starting from the camera proximity to a maximum

distance of 20-30m.

The recording outdoor conditions had to be similar to the

ones encountered in hazy days and therefore the recording

period has been spread over more than two months during

the autumn season. Basically, all outdoor scenes have been

recorded during cloudy days, in the morning or in the sun-

set. We also had to deal with the wind speed. In order to

limit fast spreading of the haze in the scene, the wind dur-

2http://vision.middlebury.edu/stereo/data/scenes2014/
3http://cs.nyu.edu/˜silberman/datasets/nyu_depth_v2.

html
4www.vision.ee.ethz.ch/ntire18/

ing recording had to be below 2-3 km/h. The absence of

wind criterion was the hardest to satisfy and explains the

long recording duration.

The hardware used to record the scenes consisted from

a tripod and a Sony A5000 camera remotely controlled

(Sony RM-VPR1). We recorded JPG and ARW (RAW)

5456×3632 images, with 24 bit depth. Each scene acquisi-

tion started with manual adjustment of the camera settings.

The shutter-speed (exposure-time), the aperture (F-stop),

the ISO and white-balance parameters have been set at the

same level when capturing the haze-free and hazy scene.

To set the camera parameters (aperture-exposure-ISO),

we used an external exponometer (Sekonic) while for set-

ting the white-balance, we used the middle gray card (18%

gray) of the color checker. For this step we changed the

camera white-balance mode in manual mode and placed the

reference grey-card in the front of it.

To introduce haze in the outdoor scenes we employed

two professional haze machines (LSM1500 PRO 1500 W),

which generate vapor particles with diameter size (typically

1 - 10 microns) similar to the atmospheric haze particles.

The haze machines use cast or platen type aluminum heat

exchangers to induce liquid evaporation. We chose special

(haze) liquid with higher density in order to simulate the

effect occurring with water haze over larger distances than

the investigated 20-30 meters.

The generation of haze took approximately 2-3 minutes.

After starting to generate haze, we used a fan to spread the

haze in the scene in order to reach a nonuniform distribution

of the haze in a rage of 20-30 meters in front of the camera.

Moreover, in each outdoor recorded scene a Macbeth

color checker was placed to allow for post-processing. We

used a classical Macbeth color checker of size 11 by 8.25

inches and a 4×6 grid of painted square samples.

4. Evaluated Dehazing Techniques

As previously mentioned, we performed a validation of

several competitive image dehazing techniques based on

our NH-HAZE dataset. We briefly discuss these image

dehazing techniques in the following paragraphs.

He et al. [24] is one of the first single image dehazing

proposed techniques. They introduced Dark Channel Prior

(DCP), an extension of the dark object [15]. DCP has been

used by many recent image dehazing techniques to estimate

the transmission map of the optical model. This statistic is

based on the observation that most of an outdoor image re-

gions have pixels that present low intensity in at least one of

the color channels. The exception of this rule is represented

by the regions of sky and with haze. DCP helps to roughly

estimate (per patch) the transmission map (directly related

with the depth map of the scene). In the original work

the transmission was refined by applying an expensive



Figure 2: Comparative results. The first row shows the hazy images and the last row shows the ground-truth. The other rows

from left to right show the results of He et al. [24], Cai et al. [14], Berman et al. [13], Galdran et al. [22], Zhang et al. [43],

Liu et al. [28], 3C [11] and Ancuti et al. [7].

alpha matting strategy. In this evaluation the refinement

of DCP approach was performed based on the guiding filter.

Cai et al. [14] introduced DehazeNet, one of the first

deep learned methods for image dehazing. Dehazenet is

an end-to-end learned CNN that estimates the transmission

map. It is trained to map hazy to haze-free patches using

an synthesized hazy dataset. Dehazenet consists from four

sequential steps: features extraction, multi-scale mapping,

local extrema and finally non-linear regression.

Berman et al. [13] solution is based on the color

consistency observation introduced by Omer et al. [34].

This approach considers that the color distribution in a

haze-free images is well approximated by a discrete set of



He et al. (DCP) Berman et al. Cai et al. Galdran et al. Zhang et al. Liu et al. 3C+DCP Ancuti et al.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set 1 18.093 0.657 16.731 0.663 14.439 0.578 15.982 0.606 18.284 0.652 15.712 0.604 19.653 0.698 17.925 0.664

Set 9 8.993 0.430 11.539 0.522 12.237 0.519 10.103 0.473 17.213 0.621 9.339 0.459 13.943 0.566 12.626 0.574

Set 14 11.930 0.519 12.438 0.505 14.627 0.602 13.308 0.586 16.264 0.668 15.332 0.633 15.826 0.619 15.797 0.628

Set 18 12.739 0.513 14.407 0.579 14.243 0.555 14.744 0.578 19.239 0.668 16.013 0.602 14.431 0.558 17.824 0.643

Set 25 15.175 0.593 17.835 0.691 16.128 0.637 17.192 0.649 20.498 0.712 15.377 0.642 15.598 0.601 18.810 0.697

Set 34 14.627 0.439 14.078 0.550 14.106 0.401 15.426 0.416 18.083 0.548 13.968 0.421 16.129 0.577 15.996 0.657

Set 35 14.064 0.455 14.319 0.611 13.307 0.454 14.054 0.432 18.883 0.582 14.111 0.454 14.938 0.592 14.756 0.671

Set 37 12.304 0.580 14.777 0.684 12.911 0.536 11.819 0.489 16.472 0.645 14.284 0.536 14.057 0.655 15.654 0.675

Set 45 13.397 0.487 13.813 0.552 13.245 0.499 13.812 0.503 19.101 0.619 13.539 0.505 13.374 0.521 15.805 0.587

Set 48 11.425 0.299 11.626 0.435 11.333 0.301 12.603 0.315 15.973 0.454 12.338 0.335 10.841 0.409 10.564 0.513

Set 50 13.148 0.416 11.443 0.476 12.528 0.398 13.693 0.414 15.887 0.460 13.726 0.442 13.210 0.514 12.130 0.555

Set 53 13.201 0.471 13.175 0.555 10.985 0.438 13.140 0.483 18.684 0.592 12.281 0.492 12.958 0.524 13.592 0.587

Table 1: Quantitative evaluation. We randomly picked up 12 sets from the NH-HAZE dataset, and computed the PSNR

and SSIM between the ground-truth images and the dehazed images produced by the evaluated techniques. The hazy images,

ground-truth and the results are shown in Fig.2.

DCP Berman et al. Cai et al. Galdran et al. Zhang et al. Liu et al. 3C+DCP Ancuti et al.

PSNR 12.913 12.464 12.379 13.323 17.081 13.086 13.523 14.296

SSIM 0.472 0.530 0.455 0.482 0.585 0.498 0.552 0.602

Table 2: Quantitative evaluation on all the 55 set of images of the NH-HAZE dataset. This table presents the average values

of the PSNR and SSIM, over the entire dataset.

clusters in the RGB color space. Basically, this approach

assumes that the pixels in a given cluster are non-local and

are spread over the entire image plane. Therefore the pixels

of a hazy region are assumed to be affected differently. For

hazy images these color clusters become different lines

in RGB color space, named haze-lines. The position of a

pixel within the line reflects its transmission level. Based

on the haze-lines the proposed method estimates both the

transmission map and haze free image.

Galdran et al. [22] employ the Retinex theory for image

dehazing problem. Their approach applies Retinex on

inverted intensities of a hazy input image proving that this

strategy is effective for image dehazing.

Zhang et al. [43] present a CNN-based approach to

dehaze images. They propose a Perceptual Pyramid Deep

Network that has an encoder-decoder structure. The model

is learned from paired data using a combination of mean

squared error and perceptual losses. This approach is the

winner of the IEEE CVPR NTIRE 2018 image dehazing

challenge [2].

Liu et al. [28] introduce also a CNN-based approach

named GridDehazeNet. This network consists from three

main modules. The first module pre-processes the data

yielding inputs with better diversity and more pertinent

features. The second module, the backbone module, allows

for a more efficient information exchange across different

scales. The last module post-processes the outputs in order

to reduce the level of the artifacts.

3C [11] introduces an original general solution (named

3C- Color Channel Compensation) to improve image

enhancement in terms of color appearance for images

characterized by severely non-uniform color spectrum

distribution. It is based on the observation that, under

such adverse conditions, the information contained in at

least one color channel is close to completely lost, making

the traditional enhancing techniques subject to noise and

color shifting. 3C is used as a pre-processing method

that reconstructs the lost channel based on the opponent

color channel. In this evaluation we employ 3C as a

pre-procesing step applied to the traditional DCP.

Ancuti et al. [7] introduce the first general image

dehazing method that yields competitive results for both

day and night-time hazy scenes. The method is based on

a novel local airlight estimation approach that allows to

effectively deal with the night-time conditions character-

ized in general by non-uniform distribution of the light due

to the multiple localized artificial sources. Multiple patch

sizes are considered to generate several images. These

derived images are merged based on a multi-scale fusion

strategy guided by several weight maps.



Figure 3: Comparative detail insets. The first, third and fifth rows show the hazy images (first column), their corresponding

ground-truth (last column), and the results of several dehazing techniques He et al. [24], Cai et al. [14], Berman et al. [13],

Galdran et al. [22], Zhang et al. [43], Liu et al. [28], 3C [11] and Ancuti et al. [7], for three sets of the NH-HAZE dataset.

The corresponding detail insets are shown below in the even rows.

5. Results and Discussion

The new NH-HAZE dataset has been used to perform

a comprehensive evaluation of the recent competitive sin-

gle image dehazing techniques presented in Section 4. We

have randomly selected several images of our dataset and

show them in Fig. 2 (in the first column, non-homogeneous

hazy images, and in the last column, haze free images). The

other columns (from left to right) depict the results gener-

ated using the dehazing techniques of He et al. [24], Cai et

al. [14], Berman et al. [13], Galdran et al. [22], Zhang et

al. [43], Liu et al. [28], 3C [11] and Ancuti et al. [7].

Moreover, Fig. 3 shows the comparative detail insets of

different scenes of the NH-HAZE dataset and the yielded

results of the dehazing techniques previously mentioned.

On a close inspection we can observe that the well-know

DCP [24] recovers quite well the image structure, but also

amplifies the color shifting artifacts, while removing the

varying hazy layers of the scene.

However, the operator introduced recently in [11]

demonstrates that using 3C as a pre-processing step reduces

significantly the color shifting introduced by the original

DCP [24] and generates visually pleasing results for non-

homogeneous hazy scenes.

The results generated by the Berman et al. [13], due to

local airlight and transmission estimation strategy, present

increased contrast, sharper edges and less color artifacts.

The method of Ancuti et al. [7] that also estimates locally

the airlight, generates high contrast and vivid colors, but it

tends to introduce a slight yellowish color-shifting for this

set of images. Galdran et al. [22] despite of the local strat-

egy employed, presents some limitations to pleasantly re-

store the local contrast.

The CNN-based techniques of Cai et al. [14] and Liu et

al. [28] are limited to restore the contrast in the hazy regions

mostly due to their strategy that assume homogeneous hazy

scenes. On the other hand, the CNN-method of Zhang et

al. [43] deals better with the variation of the haze in the

scene.

We draw the conclusion, that the CNN-based methods

have a great potential and perform in general better than the

other considered techniques [24, 13, 22]. The main excep-

tion of the non-CNN techniques is the method of Ancuti et

al. [7]). These non-CNN techniques introduce higher color

distortions compared with the CNN-based techniques and

in general tend to introduce unnatural appearances of the

results. In addition to the color shifting, these methods are

prone to amplify the structural artifacts and initial noise.

NH-HAZE has the main advantage to facilitate an objec-

tive quantitative evaluation based on the ground-truth haze-



free images. This allows to identify the main limitations of

the existing techniques while offering important clues for

future investigations.

In this work we perform an objective evaluation of the

several image dehazing techniques based on NH-HAZE.

Table 1 compares the output of different dehazing tech-

niques with the ground-truth (haze-free) images based on

PSNR and SSIM for the images shown in Fig. 2. The struc-

tural similarity index (SSIM) compares local patterns of

pixel intensities that have been normalized for luminance

and contrast. The SSIM ranges in [-1,1], with maximum

value 1 for two identical images. In addition to Table 1,

Table 2 presents the average SSIM and PSNR values over

the entire 55 scenes of the NH-HAZE dataset. From these

tables, we can conclude that in terms of structure and color

restoration the methods of Zhang et al. [43] and Ancuti et

al. [7] perform the best on average when considering the

SSIM and PSNR measures. As could be observed also vi-

sually, the other methods are less competitive both in terms

of structure and color restoration.

Overall, none of the techniques performs better than

others on all images. The low SSIM and PSNR val-

ues recorded for the analyzed techniques demonstrate

once again that image dehazing is complex and that the

non-homogeneity character of the haze poses additional

challenges.
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