
Identity Enhanced Residual Image Denoising

Saeed Anwar1,2, Cong Phuoc Huynh2, Fatih Porikli2

1Data61-CSIRO, 2The Australian Natinal University

saeed.anwar@data61.csiro.au

Abstract

We propose to learn a fully-convolutional network model

that consists of a Chain of Identity Mapping Modules and

residual on the residual architecture for image denoising.

Our network structure possesses three distinctive features

that are important for the noise removal task. Firstly, each

unit employs identity mappings as the skip connections and

receives pre-activated input to preserve the gradient mag-

nitude propagated in both the forward and backward direc-

tions. Secondly, by utilizing dilated kernels for the convo-

lution layers in the residual branch, each neuron in the last

convolution layer of each module can observe the full re-

ceptive field of the first layer. Lastly, we employ the residual

on the residual architecture to ease the propagation of the

high-level information. Contrary to current state-of-the-art

real denoising networks, we also present a straightforward

and single-stage network for real image denoising.

The proposed network produces remarkably higher nu-

merical accuracy and better visual image quality than the

classical state-of-the-art and CNN algorithms when being

evaluated on the three conventional benchmark and three

real-world datasets.

1. Introduction

In recent years, the amount of multimedia content is

growing at an enormous rate, for example, online videos,

audios, and photos due to hand-held devices and other

types of multimedia devices. Thus, image processing,

specifically, image denoising, has become an essential pro-

cess for various computer vision and image analysis ap-

plications. A few notable methods benefiting from im-

age denoising are detection ([43]), face recognition ([28]),

super-resolution ([53]), etc. In the past few years, the re-

search in this area has shifted its focus on how to make

the best use of image priors. To this end, several ap-

proaches attempted to exploit non-local self similar (NSS)

patterns ([9, 15]), sparse models ([22, 39]), gradient mod-

els ([48, 46]), Markov random field models ([42]), exter-

nal denoising ([54, 6, 36]) and convolutional neural net-
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Figure 1. Denoising results: In the first row, an image corrupted by

the Gaussian noise with σ = 50 from the BSD68 dataset ([42]).

In the second row, a sample image from RNI15 ([32]) real noisy

dataset. Our results have the best PSNR score for synthetic im-

ages, and unlike other methods, it does not have over-smoothing

or over-contrasting artifacts. Best viewed in color on a high-

resolution display.

works ([56, 33, 57]).

The non-local matching (NLM) of self-similar patches

and block matching with 3D filtering (BM3D) in a collab-

orative manner have been two prominent baselines for im-

age denoising for almost a decade now. Due to popularity

of NLM ([9]) and BM3D ([15]), a number of their vari-

ants ([20, 31, 21]) were also proposed to execute the search

for similar patches in similar transform domains.

The use of external priors for denoising has been moti-

vated by the pioneering studies of [34, 12], which showed

that selecting correct reference patches from a large external

image dataset of clean samples can theoretically suppress

additive noise and attain infinitesimal reconstruction error.

However, directly incorporating patches from an external

database is computationally prohibitive even for a single

image. To overcome this problem, Chan et al. [11] pro-

Code available at https://github.com/saeed-anwar/IERD



posed efficient sampling techniques for large databases but

still the denoising is impractical as it takes hours to search

patches for one single image if not days. An alternative to

these methods can be considered as the dictionary learning

based approaches [18, 37, 16], which learn over-complete

dictionaries from a set of external natural clean images and

then enforce patch self-similarity through sparsity.

Aiming at improving the use of external datasets, many

previous works such as [59, 19, 51] investigated the use of

maximum likelihood frameworks to learn Gaussian mixture

models of natural image patches or group patches for clean

patch estimation. Several studies, including [52, 13], mod-

ified Zoran et al. [59]’s statistical prior for reconstruction

of class-specific noisy images by capturing the statistics

of noise-free patches from a large database of same cate-

gory images through the Expectation-Maximization algo-

rithm. Other similar methods on external denoising include

TID [36], CSID [6] and CID [55]; however, all of these

have limited applicability in denoising of generic (from an

unspecific class) images.

As an alternative, CSF [44] learns a single framework

based on unification of random-field based model and half-

quadratic optimization. The role of the shrinkage in wavelet

image restoration is to attenuate small values towards zero

due to the assumption of these values being the product of

noise instead of the signal values.These predictions are then

chained to form a cascade of shrinkage fields of Gaussian

conditional random Fields. The CSF algorithm considers

the data term to be quadratic and must have a closed-form

solution based on discrete Fourier transform.

With the rise of convolutional neural networks (CNN), a

significant performance boost for image denoising has been

achieved [56, 57, 33, 10, 44]. Using deep neural networks,

IrCNN [57] and DnCNN [56] learn to predict the resid-

ual noise present in the contaminated image by using the

ground-truth noise in the loss function instead of the clean

image. The architectures of IrCNN [57] and DnCNN [56]

are very simple as it only stacks of convolutional, batch nor-

malization and ReLU layers. Although both models were

able to report favorable results, their performance depends

heavily on the accuracy of noise estimation without know-

ing the underlying structures and textures present in the im-

age.

TRND [14] incorporated a field-of-experts prior [42]

into its convolutional network by extending conventional

nonlinear diffusion model to highly trainable parametrized

linear filters and influence functions. It has shown im-

proved results over more classical methods; however, the

imposed image priors inherently impede its performance,

which highly rely on the choice of hyper-parameter settings,

extensive fine-tuning and stage-wise training.

Another notable deep learning-based work is non-local

color image denoising (abbreviated as NLNet), presented

by [33] which exploits the non-local self-similarity using

deep networks. Non-local variational schemes have moti-

vated the design of the NLNet model [33] and employ the

non-local self-similarity property of natural images for de-

noising. The performance heavily depends on coupling dis-

criminative learning and self-similarity. The restoration per-

formance is comparatively better to several earlier state-of-

the-art. Though, this model improves on classical methods

but lagging behind IrCNN [57] and DnCNN [56], as it in-

herits the limitations associated with the NSS priors as not

all patches recur in an image.

Currently, the trend changed from synthetic denoising

towards real-image denoising ([41, 23, 8, 5]). Although,

the algorithms, for example, DnCNN, etc. trained a single

model for synthetic datasets; however, it failed to achieve

satisfactory results on real images. Commonly, real-image

denoising is a two-stage process. The first step involves the

prediction of the noise variance, while the second stage em-

ploys the predicted noise-level to denoise the image. As an

example, Noise Clinic proposed (NC) by [32] first predicts

the noise, which is dependent on the signal’s frequency and

then used non-local Bayes (NLB) ([31]) to denoise it.

Similarly, [58] trains FFDNet, a non-blind denoising net-

work based on Gaussian noise. The mentioned network

achieves partial success in denoising the real noisy images.

However, FFDNet requires manual settings in case of high

noise variance. More recently, [23] proposed CBDNet, a

blind network for real-noisy images. The system is com-

posed of two subnets: one for prediction of noise and the

second to denoise photographs using the predicted noise.

Furthermore, CBDNet uses multiple losses and exploits

synthetic and real images alternatively to train the model.

The authors also report the use of high noise variance to

denoise a low noisy image. Moreover, to improve results,

the system may require manual intervention. More recently,

Anwar & Barnes presented denoising real images via atten-

tion mechanism, known as RIDNet [5]. The modules are

carefully designed to learn features differently. In this work

we present a straightforward end-to-end structure that deliv-

ers results on real noisy images using a single-stage network

without requiring any intervention or attention mechanism.

1.1. Inspiration & Motivation

Existing convolutional neural network image denoising

methods ([10, 56, 57]) connect weight layers consecutively

and learn the mapping by brute force. One problem with

such an architecture is the addition of more weight lay-

ers to increase the depth of the network. Even if the new

weight layers are added to the above mentioned CNN based

denoising methods, it will suffer from the vanishing gradi-

ents problem and make it worse ([7]). This increase in the

depth of the network is essential to attain the performance

boost ([26]). Therefore, our goal is to propose a model that
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Figure 2. The proposed network architecture, which consists of multiple modules with similar structures. Each module is composed of

a series of pre-activation-convolution layer pairs. The multiplier block negates the input block features to be summed at the end of the

mapping module.

overcomes this deficiency. Another reason is the lack of

single-stage real image denoising. Most of the current de-

noising systems are either for synthetic image denoising or

treat noise estimation and denoising separately, ignoring the

relationship between the noise and the image structures.

To provide a solution, our choice is the convolutional

neural networks in a discriminative prior setting for image

denoising. There are many advantages of using single-stage

CNNs for synthetic and real images, which include efficient

inference, incorporation of robust priors, integration of lo-

cal and global receptive fields, regressing on nonlinear mod-

els, and discriminative learning capability. Furthermore, we

propose a modular single-stage network where we call each

module as a identity module (IM). The identity module can

be replicated and easily extended to any arbitrary depth for

performance enhancement.

1.2. Contributions

The contributions of this work can be summarized as fol-

lows:

• An effective CNN architecture that consists of a Chain

of Identity Mapping modules for image denoising.

These modules share a common composition of lay-

ers, with residual connections between them to facili-

tate training stability.

• The use of dilated convolutions for learning suitable

filters to denoise at different levels of spatial extent and

residual on the residual architecture for the ease of flow

of the high-frequency details.

• A low-weight single-stage real image denoiser without

any complex modules.

• Extensive evaluation on six datasets (three synthetic

and three real) against more than 20 state-of-the-art de-

noising methods.

2. Identity Enhanced Residual Denoising

This section presents our approach to image denoising

by learning a Convolutional Neural Network consisting of

a series of Identity Mapping Modules. Each module is

composed of a series of pre-activation units followed by

convolution functions, with residual connections between

them. The meta-structure of our Identity Enhanced Resid-

ual Denoising (IERD) network is explained in Section 2.1

followed by the formulation of the learning objective in Sec-

tion 2.2.

2.1. Network Design

Residual learning has recently delivered state of the

art results for object classification ([24, 27]) and detec-

tion ([35]), while offers training stability. Inspired by the

Residual Network variant with identity mapping ([27]), we

adopt a modular design for our denoising network. The de-

sign consists of a series of Identity Mapping modules.

2.1.1 Network Elements

Figure 2 depicts the entire architecture, where identity map-

ping modules are shown as blue blocks, which are, in turn,

composed of basic ReLU and convolution layers. The out-

put of each module is a summation of the identity function

and the residual function.

Three parameters govern the meta-level structure of the

network: M is the number of identity modules, L is the

number of pairs of pre-activation and convolution layers

in each module, and C is the number of output channels,

which we fixed across all the convolution layers.

The high-level structure of the network can be viewed as

a chain of identity modules, where the output of each mod-

ule is fed directly into the succeeding one. Consequently,

the output of this chain is fed to a final convolution layer

to produce a tensor with the same number of channels as

the input image. At this point, the final convolution layer

directly predicts the noise component from a noisy image.

The noisy image/patch is then added to the input to recover

the noise-free image.

The identity mapping modules are the building blocks

of the network, which share the following structure. Each

module consists of two branches: a residual branch and an



identity mapping branch. The residual branch of each mod-

ule contains a series of layers pairs, i.e. a nonlinear pre-

activation (typically ReLU) layer, followed by a convolu-

tion layer. Its primary responsibility is to learn a set of con-

volution filters to predict image noise. Besides, the identity

mapping branch in each module allows the propagation of

loss gradients in both directions without any bottleneck.

2.1.2 Justification of the network design

Several previous image denoising works have adopted a

fully convolutional network design, without any pooling

mechanism ([56, 29]). This is necessary in order to pre-

serve the spatial resolution of the input tensor across differ-

ent layers. We follow this design by using only non-linear

activations and convolution layers across our network.

Furthermore, we aim to design the network in such a way

where convolution layers neurons in the last layer of each

identity mapping (IM) module observe the full spatial re-

ceptive field in the first convolution layer. This design helps

to learn to connect input neurons at all spatial locations to

the output neurons, in much the same way as well-known

non-local mean methods such as ([15, 9]). Instead of us-

ing a unit dilation stride within each layer, we also exper-

imented with dilated convolutions to increase the receptive

fields of the convolution layers. By this design, we can re-

duce the depth of each IM module while the final layer’s

neurons can still observe the full input spatial extent.

Pre-activation has been shown to offer the highest per-

formance for classification when used together with iden-

tity mapping ([27]). In a similar fashion, our design em-

ploys ReLU before each convolution layer. This design dif-

fers from existing neural network architectures for denos-

ing ([29, 33]). The pre-activation helps training to converge

more easily, while the identity function preserves the range

of gradient magnitudes. Also, the resulting network gener-

alizes better as compared to the post-activation alternative.

This property enhances the denoising ability of our network.

2.1.3 Formulation

Now we formulate the prediction output of this network

structure for a given input patch y. Let W denote the set of

all the network parameters, which consists of the weights

and biases of all constituting convolution layers. Specifi-

cally, we let wm,l denote both the kernel and bias parame-

ters of the l-th convolution layer in the residual branch of

the m-th module.

Within such a branch, the intermediate output of the l-th

ReLU-convolution pair and of the m-th module is a compo-

sition of two functions

zm,l = f(g(ym,l);wm,l), (1)

where f and g are the notation for the convolution and

the ReLU functions, zm,l is the output of the l-th ReLU-

convolution pair of m-th module. By composing the series

of ReLU-convolution pairs, we obtain the output of the m-

th residual branch as

rm = −zm,0 + f(g(. . . f(g(ym,0;wm,0)) . . .);wm,l),
(2)

where zm,0 is the output of the first ReLU-convolution

pair, and rm is the residual output of the corresponding

module. Chaining all the identity mapping modules, we

obtain the output as
∑M

m=1
rm. Finally, the output of this

chain is convolved with a final convolution layer with learn-

able parameters wm+1 to predict the noise component as

IERD(y,W) = f(y +
∑M

m=1
rm, wm+1).

2.2. Learning to Denoise

Our network is trained on image patches or regions rather

than at the entire image. A number of reasons drive this de-

cision. Firstly, it offers a random sampling of a large num-

ber of training samples at different locations from various

images. The random shuffling of training samples is well-

known to be a useful technique to stabilize the training of

deep neural networks. Therefore, it is preferable to batch

training patches with a random, diverse mixture of local

structures, patterns, shapes, and colors. Secondly, there has

been a success in approaches that learns image patch priors

from external data for image denoising ([59]).

From a set of noise-free training images, we randomly

crop several training patches xi, i = i, . . . , N as the

ground-truth. The noisy version of these patches is obtained

by adding (Gaussian) noise to the ground truth training im-

ages. Let us denote the set of noisy patches correspond-

ing to the former as yi, i = i, . . . , N . With this setup, our

image denoising network is aimed to reconstruct a patch

x∗

i = IERD(yi,W) from the input patch yi.

The learning objective is to minimize the following sum

of squares of ℓ2-norms

L ,
1

N

N∑

i=1

‖IERD(yi,W)− xi‖
2. (3)

To train the proposed network on a large dataset, we min-

imize the objective function in Equation 3 on mini-batches

of training examples. Training details for our experiments

are described in Section 3.2.

3. Experiments

3.1. Datasets

We performed experimental validation on three widely

used publicly available synthetically generated noisy

datasets (in supplementary materials) and three real noisy

image datasets described below.



Table 1. Detailed architecture of an identity mapping module.

Identity Module Layers

Parameters 1st 2nd 3rd 4th 5th 6th

Padding 1 3 3 3 3 3

Dilation 1 3 3 3 3 3

Kernel Size 3 3 3 3 3 3

Channels 64 64 64 64 64 64

• DnD: Recently, [40] proposed the Darmstadt Noise

Dataset (DND) to benchmark the denoising algo-

rithms. The dataset is composed of images with inter-

esting and challenging structures. The size of each im-

age is in Megapixels; therefore, each image is cropped

at 20 locations of size 512 × 512 pixels yielding 1000

test crops. Only these test images are provided; there

are no images for training or validation.

• RNI15: RNI15 proposed by [32] consists of 15 real

noisy images. There are no ground-truth images avail-

able for this dataset.

• SIDD: Smartphone Image Denoising Dataset (SIDD)

proposed by [1] is the largest collection of real-noisy

images. A total of 30k noisy images are gathered from

ten different scenes under different lighting conditions

via five smartphone cameras with their ground truth

images.

For evaluation purposes, we use the Peak Signal-to-

Noise Ratio (PSNR) index as the error metric. We com-

pare our proposed method with around 20+ state-of-the-art

methods on the above six datasets. To ensure a fair compar-

ison, we use the default setting provided by the respective

authors.

3.2. Training Details

The training input to our network is noisy, and noise-

free patch pairs cropped randomly from the BSD400

dataset ([38]) for synthetic denoising while for real

noisy images, we use cropped patches from SSID ([1]),

Poly( [47]), and RENOIR ([4]). Note that there is no over-

lap between the training and evaluation datasets. We also

augment the training data with horizontally and vertically

flipped versions of the original patches and those rotated at

an angle of πn
2

, where n = 1, 2, 3. The training patches are

randomly cropped on the fly from the images of the men-

tioned datasets.

We offer two strategies for handling different noise lev-

els. The first one is to train a network for each specific noise

level, and we call this model as “noise-specific” model. Al-

ternatively, we train a single model for the any noise, and

we refer to this model as a “noise-agnostic” model. At each

update of training, we construct a batch of 32 by randomly

selecting noisy patches with different noise levels.

Table 2. Denoising performance (in PSNR) on the BSD68

dataset ([38]) for different sizes of training input patches for σn =

25, keeping all other parameters constant.

Training patch size

20 30 40 50 60 70

29.13 29.30 29.34 29.36 29.37 29.38

We implement the denoising method in the PyTorch

framework on two Tesla P100 GPUs and employ [30]’s

Adam optimization algorithm for training. The initial learn-

ing rate was set to 10−4, and the momentum parameter was

0.9. We scheduled the learning rate such that it is halved af-

ter every 105 iterations. We train our network from scratch

by a random initialization of the convolution weights ac-

cording to the method in [25] and a regularization strength,

i.e. weight decay, of 10−3.

3.3. Boosting Denoising Performance

To boost the performance of the trained model, we

use the late fusion/geometric transform strategy as adopted

by [45]. During the evaluation, we perform eight types of

augmentation (including identity) of the input noisy images

y as yti = Γi(y) where i = 1, · · · , 8. From these geomet-

rically transformed images, we estimate corresponding de-

noised images {x̂t
1, x̂

t
2, · · · , x̂

t
8}, where x̂t

i = IERD(ŷti ,W )
using our model. To generate the final denoised image x̂,

we perform the corresponding inverse geometric transform

x̃−t
i = Γ−1

i (x̃t
i) and then take the average of the outputs

as x̃ = 1

8

∑8

i=1
x̃t
i. This strategy is beneficial as it saves

training time and has a small number of parameters as com-

pared to individually trained eight models. We also found

empirically that this fusion method gives approximately the

same performance as the models trained individually with

geometric transform. The boosted version is denoted

3.4. Structure of Identity Modules

The structure of the identity modules used in our exper-

iments is depicted in Table 1. Each module consists of a

series of layers of “ReLU + Conv” pair. All the convolution

layers have a kernel size of 3 × 3 and 64 output channels.

The kernel dilation and padding are the same in each layer

and vary between 1 and 3. The skip connection connects the

output of the first pair of “ReLU + Conv” to the last “Conv”

as shown in figure 2

3.5. Ablation Studies

3.5.1 Influence of the patch size

In this section, we show the role of the patch size and its

influence on the denoising performance. Table 2 shows the

average PSNR on BSD68 ([42]) for σn = 25 with respect

to the increase in size of the training patch. It is obvious

that there is a marginal improvement in PSNR as the patch



Table 3. The average PSNR of the denoised images for the BSD68

dataset, with respect to different number of modules M. The

higher the number of modules, the higher is the accuracy.

Number of modules

2 3 4 6 8

29.28 29.34 29.34 29.35 29.36

Table 4. Denoising performance for different network settings to

dissect the relationship between kernel dilation, number of layers

and receptive field.

No of layers 18 9 6

Kernel dilation 1 2 3

29.34 29.34 29.34

size increases. The main reason for this phenomenon is the

size of the receptive field, with a larger patch size network

learns more contextual information, hence able to predict

local details better.

3.5.2 Number of modules

We show the effect of the number of modules on denoising

results. As mentioned earlier, each module M consists of

six convolution layers, by increasing the number of mod-

ules, we are making our network deeper. In this settings, all

parameters are constant, except the number of modules, as

shown in Table 3. It is clear from the results that making

the network deeper increases the average PSNR. However,

since fast restoration is desired, we prefer a small network

of three modules i.e. M = 3, which still achieves better

performance than competing methods.

3.5.3 Kernel dilation and number of layers

It has been shown that the performance of some networks

can be improved either by increasing the depth of the net-

work or by using large convolution filter size to capture the

context information ([57, 56]). This helps the restoration

of noisy structures in the image. The usage of traditional

3 × 3 filters is popular in deeper networks. However, there

is a tradeoff between the number of layers and the size of

the dilated filters without effecting denoising results. In Ta-

ble 4, we present three experimental settings to show the

tradeoff between the dilated filter size and the depth of the

network. In the first experiment, as shown in the first col-

umn of Table 4, we use a traditional filter of size 3× 3 and

depth of 18 to cover the receptive field of training patch.

In the next experiment, we keep the size of the filter the

same but enlarge the filter using a dilation factor of two.

Although this increases the size of the filter to 5 × 5; how-

ever, still having only nine non-zero entries similar to the

above experiment, and it can be interpreted as a sparse fil-

ter. Therefore, the receptive field of the training patch can

now be covered by nine non-linear mapping layers, contrary

Table 5. PSNR reported on the BSD68 dataset for σn = 25 when

different features are added to the baseline (first row).

Dilation Identity Boosting PSNR

29.24

X 29.23

X 29.28

X X 29.32

X X X 29.34

to the 18-layers depth per module. Similarly, by expanding

the filter by dilation of three would result in the depth of

each module to be six. As in Table 4, all three trained mod-

els result in similar denoising performance, with the appar-

ent advantage of the shallow network being the most effi-

cient. The number of parameters reduced from 1954k to

663k; similarly, the memory usage for one input patch is

reduced from 22MB to 6.5MB.

3.5.4 Network structure Analysis

In Table 5, we show the performance on the BSD68 dataset

when adding different features, including a kernel dilation

of three across all convolution layers, identity skip con-

nection, or boosting via geometric transformation to the

DnCNN baseline which is reported in the first row. The

improvement over DnCNN is observed with the introduc-

tion of identity skip connections. Applying a dilation of

three over 17 or 19 convolutional layers of DnCNN (row

2) does not appear to be effective. However, using dilated

convolution in a short chain of six layers, such as row 3, im-

proves the performance further. In Table 5, PSNR is 29.32
dB without boosting and 29.34 dB (last row) if we average

the output from eight transformed images.

3.6. Real­world images

So far, state-of-the-art denoising methods, such as

DnCNN ([56]), IrCNN ([57]) and BM3D ([15]) etc. usually

have been evaluated on classical images, and the BSD68

dataset but their performance is limited on real image

datasets. Furthermore, real image denoising is becoming

popular; hence, we compare our method against recent

state-of-the-art [5, 23, 58] algorithms.

3.6.1 Darmstadt Noise Dataset

We visually compare our method with a few recent al-

gorithms, as shown on several samples from [40] in Fig-

ure 3. It can be observed that synthetic denoiser such as

CBM3D ([15]), DnCNN ([56]) etc., and real image denois-

ers such as CBDNet ([23]) and FFDNet ([58]), are unable

to remove the noise from the images. On the other hand, it

can be seen that our method eliminates noise and preserve

the structures.
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Figure 3. Comparison of our method against the state-of-the-art algorithms on real images containing Gaussian noise from Darmstadt Noise

Dataset (DND) benchmark for different denoising algorithms. Difference can be better viewed in magnified view.

Table 6. Mean PSNR and SSIM of the denoising methods evalu-

ated on the real images dataset by [40].

Method Blind/Non-blind PSNR SSIM

CDnCNNB ([56]) Blind 32.43 0.7900

EPLL ([59]) Non-blind 33.51 0.8244

TNRD ([14]) Non-blind 33.65 0.8306

NCSR ([17]) Non-blind 34.05 0.8351

MLP ([10]) Non-blind 34.23 0.8331

FFDNet ([58]) Non-blind 34.40 0.8474

BM3D ([15]) Non-blind 34.51 0.8507

FoE ([42]) Non-blind 34.62 0.8845

WNNM ([22]) Non-blind 34.67 0.8646

NC ([32]) Blind 35.43 0.8841

NI ([2]) Blind 35.11 0.8778

KSVD ([3]) Non-blind 36.49 0.8978

MCWNNM ([50]) Non-blind 37.38 0.9294

TWSC ([49]) Non-blind 37.96 0.9416

FFDNet+ ([58]) Non-blind 37.61 0.9415

CBDNet ([23]) Blind 38.06 0.9421

IERD (Ours) Blind 39.20 0.9524

RIDNET [5] Blind 39.25 0.9528

IERD+ (Ours) Blind 39.30 0.9531

The quantitative results in PSNR and SSIM averaged

over all the images for real-world DnD is presented in Ta-

ble 6. Our method is the best performer, followed by CBD-

Net. Our method is also able to improve significantly on

NI ([2]), a software which is part of coral draw and photo-

shop. It is to be noted that our method does not require to

know the noise level in advance, like [15]’s BM3D and does

not require to estimate it separately, like [23]’s CBDNet.

3.6.2 RNI15

The ground-truth images for RNI15 ([32]) are not publicly

available; therefore, we present the visual comparison only

in Figure 4. In the first example, we can see that there

are artifacts on the face for the output of FFDNet ([58])

and CBDNet ([23]) while our method is able to remove the

noise without introducing any artifacts. In the second ex-

ample (given in the second row), our method smooths out

the noise and can produce crisp edges while the competing

method fails to produce any results without noise. The noise

structures are very prominent in the second image near the

eyes, as well as the gloves. This shows the robustness of our

method against challenging images.

3.6.3 SSID

We utilize the SIDD real noise dataset ([1]) as the final

dataset for comparison. Table 7 shows the average PSNR

on the validation dataset where our method improves upon

FFDNet ([58]) and CBDNet ([23]) with a margin of 9.62dB

and 8.04dB. Next, we show the sample visual denoise im-

ages from SIDD for various competing algorithms in Fig-

ure 5. Our results are resembling the ground-truth image

colors while the previous state-of-the-art images produce

color casts and artificial colors.



Input IRCNN CBDNet IERD (Ours) IERD+ (Ours)

Input FFDNet CBDNet IERD (Ours) IERD+ (Ours)

Figure 4. Sample visual examples from RNI15 ([32]). Our method annihilates the noise and preserves the essential details while the

competing methods fail to deliver satisfactory results i.e. unable to remove noise. Best viewed on high-resolution display.

GT Noisy CBM3D DnCNN FFDNet CBDNet IERD (Ours) IERD+ (Ours)

Figure 5. A few challenging examples from SSID dataset ([1]). Our method can restore true colors and remove noise.

Table 7. The quantitative results (in PSNR (dB)) for the SSID

dataset ([1]).

Methods

BM3D DnCNN FFDNet CBDNet RIDNet IERD+

30.88 26.21 29.20 30.78 38.71 38.82

4. Conclusions

To sum up, we employ residual learning and iden-

tity mapping to predict the denoised image using a three-

module and six-layer deep network of 19 weight layers

with dilated convolutional filters without batch normaliza-

tion. Our choice of network is based on the ablation studies

performed in the experimental section of this paper.

This is the first modular framework to predict the de-

noised output without any dependency on the pre- or post-

processing. Our proposed network removes the potentially

authentic image structures while allowing the noisy obser-

vations to go through its layers, and learns the noise patterns

to estimate the clean image.

On real images, we have shown that our method pro-

vides visually pleasing results and a gain of about 1.2dB

on Darmstadt Noise Dataset, 9.62dB on smartphone image

denoising dataset (SIDD) in terms of PSNR. The real im-

ages appear less grainy after passing through our proposed

network and preserving fine image structures. Furthermore,

competitive denoising algorithms either require information

about the noise in advance or estimate it in a disjoint stage

while, on the contrary, our network does not require any

information about the noise present in the images.

In the future, we aim to generalize our denoising network

to other image restoration and enhancement tasks such as

deblurring, color correction, JPEG artifact removal, rain re-

moval, dehazing, and super-resolution etc.
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